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Background. Apoptosis-antagonizing transcription factor (AATF) participates in tumor progression in multiple cancer types.
However, its role across cancers is not well understood. Methods. Data from The Cancer Genome Atlas (TCGA), Genotype-
Tissue Expression (GTEx), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Human Protein Atlas (HPA) were
used to analyze the multiomic roles of AATF in 33 tumor types, including gene and protein expression, survival prognosis,
gene mutation, DNA methylation, protein phosphorylation, AATF coexpressed genes and their enrichment analysis, and
immunological analysis. Results. In TCGA and GTEx databases, 31 tumors and their corresponding normal tissues had AATF
expression data, and it was differentially expressed in 29 of them. AATF was elevated in 27 tumors, decreased in 2 tumors, and
was a risk factor for overall survival (OS) in 8 tumors and a risk factor for disease-free survival (DFS) in 4 tumors. AATF
expression levels in various cancer types were significantly correlated with the infiltration levels of cancer-associated fibroblasts,
endothelial cells, CD4+ T cells, B cells, myeloid dendritic cells, eosinophils, and macrophages. The immune checkpoints PD-1,
PD-L1, and CTLA4 were positively correlated with AATF expression in bladder urothelial carcinoma (BLCA), kidney
chromophobe (KICH), and prostate adenocarcinoma (PRAD). Conclusion. In cancer, AATF expression is generally higher than
that in normal tissue, and it is also associated with immunomodulation-related genes. AATF may be a risk factor for poor
prognosis across cancers.

1. Introduction

Cancer is one of the main causes of death worldwide [1].
Tumors are mainly caused by molecular aberrations, includ-
ing somatic mutations, copy number alterations, chromo-
somal rearrangements, transcriptional expression changes,
and epigenetic variations [2]. The Cancer Genome Atlas
(TCGA) is an applied platform for genome sequencing anal-
ysis of large samples of 33 cancers, which enables us to sys-
tematically analyze molecular aberrations in cancers by
applying genomic technologies [3]. Pan-cancer studies are
necessary for understanding cancer-generating systems.

As a natural barrier to cancer development, apoptosis
regulates cell death and inhibits the growth of cancer cells
[4]. Apoptosis removes potentially harmful cells, which can

stop tumor growth [5]. Efficient elimination of cancer cells
through programmed cell death or apoptosis is a mainstay
and goal of clinical cancer therapy [6]. Apoptosis-
antagonizing transcription factor (AATF), which binds to
RNA polymerase II, is involved in transcriptional regulation,
DNA damage response, cell cycle regulation, and apoptosis
[7]. Jing et al. [8] found that compared to normal tissues,
AATF expression is increased in Wilms’ tumor, and it can
also promote the proliferation, invasion, and migration of
Wilms’ tumors. Welcker et al. [9] showed that AATF
inhibits p53-driven apoptosis in some tumor tissues in vivo
and contributes to their proliferation and progression.
Desantis et al. [10] reported that AATF can maintain tumor
cell survival by controlling the autophagy response and
endoplasmic reticulum stress. Based on the above studies,
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Figure 1: Continued.
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AATF plays a number of important roles in cancer develop-
ment; for example, cancer cells are protected from apoptosis
induction or autophagy, thus promoting cancer cell survival
and cancer progression.

In the absence of a comprehensive description of
AATF’s molecular properties in human cancer, the role of
AATF in pan-cancer research is currently unknown. In this
study, we used multiple TCGA-based tools to comprehen-
sively analyze the expression signature of AATF in different
types of cancer for the first time. Additionally, various
potential biological functions and common features of
AATF across cancers were analyzed and verified to explore
the potential molecular mechanism of AATF across cancers.

2. Method

2.1. Gene Expression Analysis. The AATF was entered into
the “Gene_DE” module of the TIMER2.0 online tool
(http://timer.comp-genomics.org/) to acquire AATF gene
expression data in different tumors or specific tumor sub-
types and adjacent normal tissues in TCGA database [11].
RNA-seq data in transcripts per million read (TPM) format
for TCGA and Genotype-Tissue Expression (GTEx) were
downloaded from the University of California, Santa Cruz
(UCSC XENA; https://xena.ucsc.edu/) [12, 13]. The RNA-
seq data in TPM format were analyzed and compared after
log2 conversion and visualized using the “ggplot” package
of R software. Unpaired samples t-test was used to compare
the expression level of AATF between the normal and tumor
groups; statistical significance was set at P < 0:05. Abbrevia-
tions for all tumor names can be found in the abbreviation
table (Supplementary Table 1).

2.2. Protein Expression Analysis and Immunohistochemical
(IHC) Staining Analyses. The University of Alabama at Bir-
mingham Cancer Data Analysis Portal (UALCAN) (http://
ualcan.path.uab.edu/analysis prot.html) is an interactive
web resource for analyzing cancer omics data, enabling pro-
tein expression analysis on the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) dataset [14, 15]. The gene
name AATF was entered into the “CPTAC” module of the
UALCAN website to analyze and compare the expression
levels of the total protein of AATF between cancer tissues
and normal tissues. To verify the expression of AATF pro-
tein at the histological level, immunohistochemistry- (IHC-
) based AATF protein expression maps in various tumors
and corresponding normal tissues were downloaded from
the Human Protein Atlas (HPA) database (http://www
.proteinatlas.org/) [16].

2.3. Analysis of the Relationship between AATF Expression
and Different Pathological Stages of Tumors. The relation-
ship between RNA expression of AATF and tumor patho-
logical stage was analyzed using the “Pathological Stage
Plot” module of the GEPIA2 (http://gepia2.cancer-pku.cn/
#analysis) tool [17]. Differences in RNA expression of AATF
at different pathological stages of various tumors were visu-
alized using violin plots. The relationship between AATF
protein expression in the CPTAC database and eight tumor
pathological stages was analyzed in UALCAN.

2.4. Survival Prognosis Analysis. Overall survival (OS) and
disease-free survival (DFS) of AATF in all TCGA tumor
patients were analyzed using the “Survival Analysis” module
of GEPIA2, and survival maps were plotted.
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Figure 1: RNA and protein expression levels of AATF in human tumors and adjacent normal tissues (∗, P < 0:05; ∗∗, P < 0:01; ∗∗∗, P < 0:001
; ns, no significance). (a) We used TIMER2.0 to analyze the RNA expression levels of AATF in different tumors. The gray background shows
the expression of AATF in the tumor and adjacent normal tissues and compares them, and the white background shows the AATF
expression in only tumor tissues. (b) AATF expression in different tumors and normal tissues after TCGA and GTEx using combined
data. The red font represents tumors without normal tissue data in TCGA. (c) Protein data were extracted and analyzed using the
CPTAC dataset, comparing the protein expression of AATF between cancer and normal tissues.
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2.5. Genetic Alteration Analysis. Genetic alteration analysis
of AATF was performed by using “TCGA Pan-Cancer Atlas
Studies” dataset in the cBio Cancer Genomics Portal (http://
cbioportal.org) tool [18]. Use the “Summary of Cancer
Types” submenu to visualize genetic alteration frequencies.

2.6. Promoter Methylation and Protein Phosphoprotein
Analysis. Promoter methylation and protein phosphoryla-
tion levels of AATF between different cancers and corre-

sponding normal tissues were analyzed using the
UALCAN website. Data on promoter methylation were
based on TCGA database. Data on protein phosphorylation
were based on the CPTAC database.

2.7. Coexpression Heat Map, Enrichment Analysis, and PPI
Network. Protein–protein interaction (PPI) networks were
generated by the STRING website (https://string-db.org)
[19]. The parameter settings are as follows: meaning of
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Figure 2: RNA expression of AATF in 12 tumor and normal tissues and compare the immunohistochemical images of AATF in these 12
tumor tissues and normal tissues in the HPA database (∗, P < 0:05; ∗∗, P < 0:01; ∗∗∗, P < 0:001): (a) normal bladder tissue vs. BLCA; (b)
normal breast tissue vs. BRCA; (c) normal cervical tissue vs. CESC; (d) normal colon tissue vs. COAD; (e) normal liver tissue vs. LIHC;
(f) normal lung tissue vs. LUAD; (g) normal ovarian tissue vs. OV; (h) normal prostate tissue vs. PRAD; (i) normal skin tissue vs.
SKCM; (j) normal stomach tissue vs. STAD; (k) normal testicular tissue vs. TGCT; (l) normal endometrial tissue vs. UCEC.
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network edges select “evidence,” active interaction sources
select “Experiments,” minimum required interaction score
select “medium confidence 0.4,” and max number of interac-
tors to show select “no more than 20 interactors.” Finally,
the experimentally determined binding protein of AATF
was obtained. The open-source bioinformatics software plat-
form Cytoscape (version 3.8.2) was used to visualize molec-
ular interaction networks [20]. The top 100 AATF-
correlated genes in the datasets of all TCGA tumors were
identified by using GEPIA2. The correlation of the top 10
AATF coexpressed genes with tumors was identified in
TIMER2.0, and the results are shown as a heat map. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed on
AATF and the top 100 relevant genes downloaded from
GEPIA2. Analysis was performed using the clusterProfiler
R package (version 3.14.3). The ggplot2 R package (version
3.3.3) was used for visualization.

2.8. Immune Infiltration Analysis and Correlation Analysis of
Immune Regulation-Related Genes. The association between
AATF expression and immune infiltration in all TCGA
tumors was analyzed using the “Immune-Gene” module of
TIMER2.0. Cancer-associated fibroblasts, endothelial cells,

B cells, CD4+ T cells, myeloid dendritic cells, macrophages,
and eosinophils were selected for detailed analysis. To assess
the relationship between AATF expression and immune
checkpoint genes, the data on the correlation between AATF
and immune checkpoint genes across cancers were analyzed
from the “Immune Association” module of TIMER2.0 and
downloaded. The ggplot2 R package (version 3.3.3) was used
for visualization.

3. Result

3.1. Cancer and Normal Tissue Expression Levels of AATF.
To clarify the expression level of AATF across cancers, we
first analyzed the TIMER2.0 tool, and 21 of the 33 tumors
had tumor and adjacent normal tissue data. Comparing
AATF expression in tumors and adjacent normal tissues,
AATF was elevated in 15 tumors and decreased in 1 tumor
(P < 0:05). Because there were no adjacent normal tissue
controls, 10 tumors only showed AATF expression levels
in tumors (Figure 1(a)). Next, TCGA and GTEx data were
combined to compare the expression of AATF in pan-
cancer and normal tissues. After combining the data, 2 of
the 33 tumors still had no normal tissues to compare. By
comparing the expression of AATF in 31 tumors and
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Figure 3: (a) TCGA database was used to analyze the relationship between the RNA expression of AATF and the pathological stage of
KICH, KIRP, and LIHC. (b) The relationship between AATF protein expression and 8 tumor pathological stages was analyzed in the
CPTAC database.
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normal tissues, it was found that AATF was different in 29
tumors. It was elevated in 27 tumors and decreased in 2
tumors (P < 0:05, Figure 1(b)).

3.2. Protein Expression Analysis Data and
Immunohistochemical Staining of AATF. Extraction and

analysis of protein data were performed using the CPTAC
dataset, and 10 tumors in the database had AATF protein
expression-related data. Comparing the protein expression
of AATF between cancer and normal tissues, AATF was ele-
vated in 8 of the 10 tumors (P < 0:05, Figure 1(c)). The
immunohistochemical results downloaded from the HPA
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Figure 4: Survival prognostic analysis. (a) Overall survival and (b) disease-free survival analysis of different tumors in TCGA by AATF gene
expression. Survival maps and Kaplan–Meier curves for statistically significant results are shown.

6 Oxidative Medicine and Cellular Longevity



database were analyzed and compared with the AATF gene
expression data from TCGA+GTEx database. We found
consistent analysis across 12 tumors, with AATF being
upregulated in all 12 tumors (Figure 2).

3.3. AATF Expression Levels in Different Stages. TCGA data-
base was used to analyze the relationship between AATF
RNA expression and 33 tumor pathological stages, among
which kidney chromophobe (KICH), kidney renal papillary
cell carcinoma (KIRP), and liver hepatocellular carcinoma
(LIHC) were significantly different in each pathological stage
(P < 0:05, Figure 3(a)). The relationship between AATF pro-
tein expression in the CPTAC database and the pathological

stage of 8 tumors was analyzed on the UALCAN website, of
which 7 tumors had differences in different pathological
stages, including breast invasive carcinoma (BRCA), colon
adenocarcinoma (COAD), kidney renal clear cell carcinoma
(KIRC), head and neck squamous cell carcinoma (HNSC),
lung adenocarcinoma (LUAD), ovarian serous cystadeno-
carcinoma (OV), and uterine corpus endometrial carcinoma
(UCEC) (P < 0:05, Figure 3(b)).

3.4. Survival Prognostic Analysis Data. The OS and DFS of
AATF in all TCGA tumor patients were analyzed using
GEPIA2. Elevated AATF expression was found to be a risk
factor for OS in 8 tumors (adrenocortical carcinoma
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Figure 5: The mutational feature of AATF in different tumors of TCGA was analyzed using the cBioPortal tool. (a) Mutation type and (b)
mutation site are shown.
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(ACC) (HR = 4:1, P = 0:025), esophageal carcinoma (ESCA)
(HR = 1:7, P = 0:029), HNSC (HR = 1:4, P = 0:0092), KIRP
(HR = 2:2, P = 0:017), LIHC (HR = 1:6, P = 0:0078), LUAD
(HR = 1:4, P = 0:044), mesothelioma (MESO) (HR = 2:4, P
= 0:00077), and pancreatic adenocarcinoma (PAAD)
(HR = 1:5, P = 0:046)) (Figure 4(a)). Elevated AATF expres-
sion was also a risk factor for DFS in 4 tumors, including
ACC, KIRP, LIHC, and prostate adenocarcinoma (PRAD)
(ACC (HR = 3:1, P = 0:0023), KIRP (HR = 2, P = 0:021),
LIHC (HR = 1:6, P = 0:0016), and PRAD (HR = 1:6, P =
0:032)) (Figure 4(b)).

3.5. Genetic Alteration Analysis Data. The mutational fea-
tures of AATF in different tumors in TCGA were analyzed
using the cBioPortal tool. The analysis found that the fre-
quency of AATF mutations was the highest in UCEC, with
5.63% (33/583) of UCEC cases harboring genetic variations
(Figure 5(a)). We also discovered and visualized mutation
sites of AATF, as shown in Figure 5(b). Missense mutations
were the most common type of mutation and were ran-
domly distributed within AATF; among them, the R516 W
site was the most frequently mutated site, with 4 missense
mutations occurring at this site.

3.6. Promoter Methylation and Protein Phosphorylation
Data. Promoter methylation is closely related to the occur-
rence and progression of cancer [21]. After analyzing the
promoter methylation levels of AATF between different can-
cers and corresponding normal tissues using data from
TCGA on the UALCAN website, it was found that, com-

pared with normal tissues, AATF promoter methylation
levels were significantly elevated in KIRC and lung squa-
mous cell carcinoma (LUSC) (P < 0:05), whereas AATF pro-
moter methylation levels were significantly decreased in 8
tumors, including bladder urothelial carcinoma (BLCA),
ESCA, HNSC, LIHC, PRAD, rectum adenocarcinoma
(READ), thyroid carcinoma (THCA), and UCEC (P < 0:05,
Figure 6). Protein phosphorylation is also inextricably linked
to cancer [22]. We also compared differences in AATF pro-
tein phosphorylation levels between normal and primary
tumor tissues. The protein phosphorylation level of AATF
at 4 sites, including S203, S316, S320, and S321, was changed
in six tumors (BRCA, glioblastoma multiforme (GBM),
LIHC, HNSC, KIRC, and LUAD) with data in the CPTAC
database on the UALCAN website (Figure 7(a)). Compared
with normal tissues, except for HNSC, which was decreased
at the S203 site, the other five tumors had increased phos-
phorylation levels of AATF at the corresponding phosphor-
ylation sites (Figure 7(b)).

3.7. AATF Coexpressed Genes and Enrichment Analysis
Results and PPI Network. Using the STRING website, 20
experimentally detected AATF-related genes were analyzed,
and the PPI network was created and visualized using Cytos-
cape (Figure 8(a)). A heat map of expression correlations
between AATF and representative genes of the top AATF-
related genes in TCGA project identified by GEPIA2 was
plotted in TIMER2.0 (Figure 8(b)). AATF and the top 100
coexpressed genes of GEPIA2 were subjected to GO and
KEGG pathway analysis (Figures 8(c) and 8(d)). The GO
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Figure 6: The promoter methylation level of AATF in the different tumors.
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results showed that these genes were mainly enriched in the
functional categories “ribosome biogenesis,” “catalytic activ-
ity, acting on RNA,” and “preribosome.” The KEGG results
showed that these genes were mainly enriched in “spliceo-
some,” “base excision repair,” “DNA replication,” “protea-
some,” and “mismatch repair.”

3.8. Correlation Analysis of AATF and Immune Cell
Infiltration and the Expression of Immunomodulation-
Related Genes. Tumor-infiltrating immune cells are an
important part of the tumor microenvironment and are

closely related to the occurrence, progression, and metastasis
of tumors [23, 24]. Therefore, we explored the correlation of
AATF expression levels with immune infiltration of cancer-
associated fibroblasts, endothelial cells, CD4+ T cells, B cells,
myeloid dendritic cells, eosinophils, and macrophages
(Figure 9). We found that the expression of AATF was neg-
atively correlated with the infiltration of cancer-associated
fibroblasts in sarcoma (SARC), testicular germ cell tumors
(TCGT), and thymoma (THYM). The expression of AATF
was positively correlated with endothelial cell infiltration in
KIRC and THCA and negatively correlated in THYM. The
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Figure 7: Phosphorylation analysis of the AATF protein in different tumors. (a) Schematic diagram of the phosphorylation protein site of
AATF. (b) Phosphorylation levels and phosphorylation sites of AATF protein in tumor and normal tissues (∗, P < 0:05; ∗∗, P < 0:01; ∗∗∗,
P < 0:001).
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Figure 8: Continued.
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Figure 8: AATF-related gene enrichment analysis. (a) The protein–protein interaction network was analyzed via the STRING online
resource. (b) A heat map of expression correlations of the top 10 AATF coexpressed genes in tumors was drawn by TIMER2. The top
100 interacting genes of GEPIA2 subjected to KEGG and GO pathway analysis are shown as (c) bubble plots and (d) chord diagrams.
(For detailed results in (c) and (d), refer to Supplementary Table 2).
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expression of AATF was positively correlated with B cell
infiltration in LIHC and negatively correlated in LUAD.
CD4+ T cell infiltration in LUSC, myeloid dendritic cell
infiltration in PRAD, and macrophage infiltration in BLCA
were all positively correlated with the expression of AATF.
In READ, eosinophil infiltration was negatively correlated
with AATF expression.

Tumors can evade immune responses by exploiting
immune checkpoint genes such as PD-1 and CTLA-4 [25].
To closely estimate the association between AATF expres-
sion and the tumor microenvironment in the pan-cancer
dataset, we further investigated the relationship between
AATF expression and immunomodulation-related genes,
including immune checkpoint, immunostimulatory, and
immunosuppressive genes. Notably, we observed that AATF
expression was positively correlated with most of the
immune regulation-related genes in KICH, LIHC, and
PRAD (Figure 10). To better show the significant results,
we combine the significant results in Figures 9 and 10
together and plotted in Supplementary Figure 1.

4. Discussion

AATF was first reported in 1999 [26]. AATF is involved in
the regulation of cell proliferation, DNA damage response,
apoptosis, and cell cycle arrest [7]. There is still a need for
further study to determine whether AATF can contribute
to the pathogenesis of different types of tumors through
common molecular mechanisms. We were unable to locate
any studies analyzing the whole pan-cancer from the per-
spective of AATF through our literature search. Therefore,
starting from gene expression, survival prognosis, promoter
methylation, protein phosphorylation, gene mutation,
immune infiltration, and immunomodulation-related gene
expression, we conducted a comprehensive detection and
analysis of the AATF gene in a total of 33 tumors in TCGA
and CPTAC databases. In TCGA and GTEx databases, 31
tumors and their corresponding normal tissues had AATF

expression data, and it was different in 29 of them compared
with normal tissues. It was elevated in 27 tumors and
decreased in 2 tumors. This suggests that AATF is closely
linked to most cancers.

Apoptosis is prevented by AATF, which regulates gene
transcription and cell proliferation [27]. AATF has been
shown to be overexpressed in a variety of cancer tissues,
such as breast cancer, multiple myeloma, leukemia, lung
cancer, hepatocellular carcinoma, and head and neck squa-
mous cell carcinoma, and its level increases during disease
progression [9, 10, 28–33]. AATF is also a regulator of
tumor cell survival and tumor progression, and studies have
found that silencing AATF promotes apoptosis in breast
cancer cells [32, 34]. Tan et al. [35] found that AATF is over-
expressed in human bladder cancer and promotes cancer
progression through its regulation of cyclin E and survivin,
suggesting that a potential marker and therapeutic target
for bladder cancer can be identified by using AATF. Kumar
et al. [30] found that MCP1 can be upregulated by AATF
through STAT3 and become a key factor in hepatocellular
carcinoma development. Additionally, reducing AATF levels
significantly reduced hepatocellular carcinoma cell onco-
genic properties, such as proliferation, migration, and angio-
genesis, and reduced cell death. According to the current
study, AATF expression in most tumors was higher than
that in normal tissues. Clearly, AATF plays a critical role
in the progression of cancer, possibly by preventing apopto-
sis induction and promoting cell survival.

In cancer research, survival analysis is a critical analytical
index for assessing disease prognosis. Liu et al. [36] found
that elevated AATF leads to poor prognosis in hepatocellular
carcinoma patients. Most neuroblastoma patients express
AATF gene amplification, and a high level of AATF is linked
to a poor prognosis and reduced survival [37]. In our
research, elevated AATF expression was a risk factor for
OS in 8 tumors and a risk factor for DFS in 4 tumors. AATF
is also closely related to tumor survival and prognosis. How-
ever, how AATF affects tumor survival and prognosis
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Figure 9: The correlation between the AATF expression level and immune infiltration of cancer-associated fibroblasts, endothelial cells, B
cells, CD4+ T cells, myeloid dendritic cells, macrophages, and eosinophils.
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Figure 10: Continued.
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requires further research. As a result of AATF depletion,
tumor cells are sensitive to anticancer drugs, suggesting that
AATF might be a potential therapeutic target [38].

Gene mutation is one of the main causes of tumorigene-
sis. Sharma et al. [39] reported a novel oncogenic mutant
AATF protein that was discovered in an aberrant AATF
transcriptome. They used stem cells as a prototype model
in a follow-up study to explore whether overexpression of
APOBEC3G affects AATF gene expression in these cells
and genes involved in oncogenic transformation [40]. They
found that APOBEC3G binds AATF mRNA within its third
exon and promotes the translation of a truncated 23 kDa
product; in turn, it has the intrinsic ability to mediate onco-
genic transformation induced by APOBEC3G in such cells
[40]. However, the mechanism of AATF mutation is unclear.
Only the mutational signature of AATF and the mutational
sites of AATF in different tumors of TCGA are shown in this
study.

In many tumors, promoter methylation is essential for
regulating tumor gene expression. According to the study,
AATF promoter methylation levels were significantly lower
in 8 tumor tissues than in normal tissues, potentially corre-
lating with the high expression of AATF in these tumors.
An important posttranslational process that modulates pro-
tein activity and interactions is phosphorylation. It has been
demonstrated that phosphorylation of AATF enhances its
binding to p53, thereby regulating p53 activity [41]. We
identified 4 phosphorylation sites, S203, S316, S320, and

S321, in 6 tumors with significantly changed AATF protein
phosphorylation levels in the CPTAC database. A greater
understanding of the possible role of AATF promoter meth-
ylation and protein phosphorylation in tumorigenesis is
needed.

This study revealed the relationship between AATF and
tumor-infiltrating immune cells and investigated the
immune status of cancer patients by detecting the expression
of AATF. AATF expression levels in various cancer types
were significantly correlated with the infiltration levels of
cancer-associated fibroblasts, endothelial cells, CD4+ T cells,
B cells, myeloid dendritic cells, eosinophils, and macro-
phages. In cancer patients, choosing the right individualized
immunotherapy strategy is especially important [42, 43]. In
recent years, immune checkpoint blockade therapy has
changed the landscape of cancer treatment and has become
one of the most important immunotherapies in the treat-
ment of cancer [44]. We explored the immune checkpoints
associated with AATF and found that AATF expression
was associated with immune checkpoint genes in many
tumors. The results suggest that the function of immune
cells regulated by AATF is closely related to the occurrence
and development of tumors. Major immune checkpoints
include PD-1, PD-L1, and CTLA4 [45]. In the present study,
we found that the expression levels of PD-1, PD-L1, and
CTLA4 in BLCA, KICH, and PRAD were significantly posi-
tively correlated with AATF. Across a variety of cancers, the
expression of AATF was highly correlated with immune
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Figure 10: The correlation between AATF and immunoregulation-related genes. (a) A heat map represents the correlation between AATF
expression and immunostimulatory genes. (b) A heat map represents the correlation between AATF expression and immunosuppressive
status-related genes.
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infiltration and immune checkpoint markers, which indi-
cates that AATF may be a target for immunotherapy.

However, this study also has some limitations. First, this
research was based on data obtained from a public database,
without further validation of our findings at the cellular and
animal levels. Furthermore, the pathophysiological mecha-
nisms underlying the results have not been systematically
and deeply explored. Therefore, further in vitro and in vivo
studies are required to elucidate the oncogenic mechanism
of AATF and its potential as a therapeutic target.

5. Conclusion

In conclusion, an in-depth analysis of the pan-cancer impact
of AATF was performed, including gene and protein expres-
sion, survival prognosis, gene mutation, promoter methyla-
tion, protein phosphorylation, AATF coexpressed genes
and their enrichment analysis, immune cell infiltration,
and the expression of immunomodulation-related genes.
We found that the expression of AATF was higher in cancer
than in normal tissues, and it was also associated with genes
related to immune regulation. This study helps us to under-
stand the role of AATF in tumorigenesis from the perspec-
tive of clinical tumor samples. AATF may be a risk factor
for poor prognosis across cancers.
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