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The vascular pathogen Eutypa lata, which causes Eutypa dieback in grapevines, is a major threat to grape production worldwide.
Here, we present the first draft genome sequence of E. lata (UCR-EL1). The computational prediction and annotation of the
protein-coding genes of UCR-EL1 provide an initial inventory of its potential virulence factors.
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Eutypa dieback of grapevines is a wood disease caused by the
ascomycete Eutypa lata (Pers.: Fr.) Tul. & C. Tul. (also known

as E. armeniacae Hansf. and M. V. Carter) (1, 2). E. lata infections
result in significant economical losses due to reduced yields, in-
creased crop management costs, and shortened life span of the
vines (3, 4).

E. lata enters the host through pruning wounds, colonizes the
vascular tissues (1, 5), and gradually kills the plant by secreting
phytotoxins (6, 7) and cell wall-degrading enzymes (8). Grape
cultivars show differences in their susceptibilities to E. lata (9), but
no resistant cultivars or completely effective management prac-
tices are available.

E. lata isolate UCR-EL1 was recovered from the margin of a
grapevine (Vitis vinifera cv. “Cremson”) wood canker collected in
Fresno County (California) in 2011. Fungal colony purification
and species identification were performed as described by Rol-
shausen et al. (10). DNA was extracted using a modified cetyltrim-
ethylammonium bromide (CTAB) method (11), and 7.3 Gb of
Illumina HiSeq 2000 sequence data was generated. Most (99.77%)
of the 62.3 million quality-trimmed (Q � 30) and contaminant-
filtered reads were assembled using CLC Genomic Workbench
v6.0; 2,334 scaffolds (3,322 contigs; median coverage, 97�) with
total length of 54.0 Mb (N50, 68.3 kb; L50, 238; gaps, 103 kb;
G�C content, 46.6%) were assembled. Assembly parameters were
optimized to achieve maximal assembly completeness of the gene
space estimated using the Core Eukaryotic Genes Mapping Ap-
proach (CEGMA) analysis (12). By mapping 248 low-copy core
eukaryotic genes (CEGs) (12), which are conserved across higher
eukaryotes, the UCR-EL1 genome was estimated to be �97%
complete.

Scaffolds were masked for repeats using RepeatMasker (13),
and gene prediction was performed with the eukaryotic gene
finder Augustus (14), trained using the gene models identified by
CEGMA (12). A total of 11,818 complete protein-coding se-
quences were obtained, which is similar to the gene content of
other ascomycetes (15, 16). Ninety-two percent of the predicted
proteome was annotated based on its sequence homology to pro-

teins in the NCBI nonredundant (nr) database (BLASTp, e-value
�10-3). While these ab initio-discovered gene models need to be
further curated and validated using empirical transcript data, they
provide us with a first glimpse of the functions encoded in the
E. lata genome. In agreement with the known capability of E. lata
to degrade woody tissues (8), we found among the 1,224 poten-
tially secreted proteins (SignalP v4.0 [17]) a rich repertoire of cell
wall-degrading enzymes comprising 217 putative glycoside hy-
drolases annotated based on homology with proteins in the CAZy
database (18). The most abundant CAZy families identified
among the putative secreted proteome were GH61 (26 genes),
GH43 (22 genes), and GH16 (17 genes). While GH61 enzymes
enhance the breakdown of lignocellulosic material in combina-
tion with cellulolytic enzymes (19), GH43 and GH16 enzymes
have hemicellulolytic activities. A large number of putative cyto-
chrome P450 monooxygenases (205 genes), known to be involved
in lignin oxidation, were also found, as is reported in other ge-
nomes of wood-rotting fungi (20–22).

Nucleotide sequence accession numbers. This Whole-
Genome Shotgun project has been deposited at DDBJ/EMBL/
GenBank under the accession no. AORF00000000. The version
described in this paper is the first version, accession no.
AORF01000000.
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