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Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of 
immature myeloid cells (IMCs) that, under normal conditions, may differentiate into mature 
macrophages, granulocytes, and dendritic cells. However, under pathological conditions 
associated with inflammation, cancer, or infection, such differentiation is inhibited leading 
to IMC expansion. Under the influence of inflammatory cytokines, these cells become 
MDSCs, acquire immunosuppressive phenotype, and accumulate in the affected tissue, 
as well as in the periphery. Immune suppressive activity of MDSCs is partly due to upreg-
ulation of arginase 1, inducible nitric oxide synthase, and anti-inflammatory cytokines, 
such as IL-10 and TGF-β. These suppressive factors can enhance tumor growth by 
repressing T-cell-mediated anti-tumor responses. TNF is a critical factor for the induc-
tion, expansion, and suppressive activity of MDSCs. In this study, we evaluated the 
effects of systemic TNF ablation on tumor-induced expansion of MDSCs in vivo using 
TNF humanized (hTNF KI) mice. Both etanercept and infliximab treatments resulted in a 
delayed growth of MCA 205 fibrosarcoma in hTNF KI mice, significantly reduced tumor 
volume, and also resulted in less accumulated MDSCs in the blood 3 weeks after tumor 
cell inoculation. Thus, our study uncovers anti-tumor effects of systemic TNF ablation 
in vivo.

Keywords: MDsc, transplantable tumor model, anti-cytokine therapy, il-6, TnF, pro-inflammatory cytokines, 
Mca 205 fibrosarcoma

inTrODUcTiOn

Myeloid-derived suppressor cells (MDSCs) constitute a heterogeneous population of immature 
myeloid cells (IMCs) that instead of undergoing terminal differentiation start to expand under the 
influence of inflammation, cancer, or infection (1). These cells are characterized by co-expression of 
CD11b and Gr-1 and can be subdivided into two populations: granulocytic CD11b+Ly6G+Ly6Clow 
and monocytic CD11b+Ly6G−Ly6Chi cells (2). Initially, their accumulation was detected in cancer 
patients, but later an expansion of such heterogeneous population of myeloid cells with suppressive 
functions was also reported in several experimental carcinogenesis models in mice (3–8). It is believed 
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that tumor microenvironment releases various factors, such as 
GM-CSF, M-CSF, and VEGF, which may stimulate myelopoiesis, 
as well as the production of pro-inflammatory cytokines, such 
as IL-6, TNF, and IL-1β, and anti-microbial peptides S100A8 
and S100A9 (9). These factors may promote inflammation and 
induce activation and expansion of MDSCs via transcription 
programs controlled by STAT1, STAT3, and NFκB transcription 
factors (10–12). Suppressive activity of MDSCs is associated with 
upregulation of arginase 1 (Arg1), inducible nitric oxide synthase 
(iNOS), reactive oxygen species (ROS), and anti-inflammatory 
cytokines, such as IL-10 and TGF-β (9, 13–15). These suppres-
sive factors can enhance tumor growth by repressing T-cell 
proliferation as well as T-cell- and NK-cell-mediated anti-tumor 
responses (16–19). Furthermore, IL-10 and TGF-β production by 
MDSCs may lead to the induction of T-regulatory cells and M2 
macrophages with suppressive capacity (20–22). Additionally, 
MDSCs can attract other myeloid cells, such as neutrophils and 
macrophages, which further contribute to the inflammatory 
processes in tumor microenvironment (23).

TNF is a multifunctional cytokine involved in host defense, 
immune regulation, cell survival, lymphoid tissue organogenesis, 
and inflammation (24). TNF was initially described due to its 
potent anti-tumor effects against Meth A sarcoma and other 
transplantable tumors in mice (25). However, cancer therapy with 
systemically administered recombinant human TNF is associated 
with severe side effects due to TNF-mediated inflammation and 
toxicity (26). Ironically, given its name – tumor necrosis factor, 
it was later found that TNF may play a pro-tumorigenic role 
by enhancing chronic inflammation (27–30). These opposing 
functions of TNF in experimental carcinogenesis models can be 
attributed to complex signaling networks involving a constellation 
of TNF-producing cells and two different TNF receptors. TNF 
exists both in soluble and membrane-bound forms. In addition, a 
soluble form of lymphotoxin (sLTa and LTα3), a molecule closely 
related to TNF, can also signal through the same receptors (31). It 
was recently demonstrated in a transplantable tumor model that 
TNF–TNFRII axis may control the survival of MDSCs through 
upregulation of cellular FLICE-inhibitory protein (c-FLIP), 
leading to the inhibition of caspase-8 activity (32). Moreover, 
membrane-associated form of TNF (tmTNF) appears more 
potent than soluble TNF (sTNF) for MDSC activation (33). It was 
also reported that TNFRII is crucial for the suppressive activity 
of MDSCs, since myeloid cells without TNFRII failed to produce 
IL-6 and NO (34). Finally, in chronic inflammation experiments, 
it was found that TNF inhibits differentiation of myeloid cells and 
increases suppressive capacity of MDSCs. MDSCs from TNF-
deficient mice failed to suppress T-cell proliferation, produced 
lower levels of iNOS, S100A8, S100A9, and RAGE (35).

Tumor microenvironment is orchestrated by a complex net-
work of cells of both innate and adaptive immunity, which may 
contribute to the tumor progression, instead of inducing anti-
tumor immune responses (36). MDSCs represent an important 
component of tumor microenvironment (23), which by activating 
different signaling pathways may induce survival and proliferation 
of tumor cells, suppress T-cell- and NK-cell-mediated anti-tumor 
immune responses, and promote angiogenesis and metastasis 
(9). Recent experimental data suggested that pro-inflammatory 

cytokines, such as TNF and IL-6, are necessary for the induction, 
expansion, and suppressive activity of MDSCs (33, 35, 37, 38). 
Therefore, we considered to address the impact of anti-cytokine 
therapy on tumor development and MDSC accumulation in a 
transplantable tumor model in mice. Pharmacological blockers 
of TNF and IL-6 are widely used in the clinic for treatment of 
various autoimmune disorders (39). Whether such long-term 
treatment may promote neoplasia in patients or, on the contrary, 
provide additional protection from emerging tumors is of high 
clinical relevance (40). In this study, we employed a unique 
experimental model to study the effects of TNF neutralization 
on tumor-induced expansion of MDSCs in vivo. Using pharma-
cological inhibition of human TNF in humanized mice (hTNF 
KI) with either etanercept or infliximab, we demonstrated that 
in mice transplanted with MCA 205 fibrosarcoma, MDSC 
accumulation and tumor growth were significantly diminished. 
Our study provides another example of pro-tumorigenic activity 
of endogenous TNF that involves MDSCs and may be useful 
for future validation of cell-type-specific anti-cytokine therapy, 
targeting TNF on myeloid cells (41).

MaTerials anD MeThODs

Mice
Humanized TNF KI mice on C57Bl/6 background were recently 
described (41, 42). C57Bl/6 mice and hTNF KI mice were bred 
at Animal Breeding Facility of Shemyakin and Ovchinnikov 
Institute of Bioorganic Chemistry, Puschino, Moscow Region, 
Russia, housed under specific pathogen-free conditions on 12 h 
light/dark cycle at room temperature. For tumor injections, 
age- and sex-matched C57Bl/6 and hTNF KI mice were used 
at the age of 8–10 weeks. All manipulations with animals were 
carried out in accordance with recommendations in the Guide 
for the Care and Use of Laboratory Animals (NRC 2011), the 
European Convention for the protection of vertebrate animals 
used for experimental and other scientific purposes, Council 
of Europe (ETS 123), and “The Guidelines for Manipulations 
with Experimental Animals” (the decree of the Presidium of the 
Russian Academy of Sciences of April 02, 1980, no. 12000-496). 
All animal procedures were approved by Scientific Council of the 
Engelhardt Institute of Molecular Biology.

Tumor cell lines
MCA 205 fibrosarcoma and EL4 T-cell lymphoma were cultured 
in RPMI 1640 medium supplemented with 10% FBS, l-glutamine 
(2  mM), 100  U/ml penicillin, and 100  μg/ml streptomycin in 
the T75 flasks. Following four to six passages, tumor cells were 
harvested, washed in PBS, and injected subcutaneously into the 
abdomen region of mice in the amount of 1 × 106 cells in 200 μl. 
Tumor growth was monitored every 2–5 days, and tumor volume 
was calculated as (l × w × h) in cubic millimeter.

TnF Blockers
Etanercept (Pfizer Ireland Pharmaceuticals, Ireland, J17413) and 
infliximab (Schering-Plough, Ireland, 3RMKA86001) were used 
to neutralize TNF. Mice were injected with 10 μg/g of etanercept 
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or infliximab every 3 days. Control mice received PBS. Tumor cells 
were injected 1 week after the first injection of TNF inhibitors.

Flow cytometry analysis
Single cell suspensions prepared from blood, spleen, and lymph 
nodes were stained with epitope-specific antibodies (eBiosci-
ence, Inc., San Diego, CA, USA): FITC-labeled Gr-1 (RB6-8C5), 
PE-labeled F4/80 (BM8), Pacific Blue-labeled B220 (RA3-6B2), 
Pe-Cy7-labeled Ly6C (HK 1.4), APC-labeled CD11b (M1/70), 
PerCP-Cy5.5-labeled CD45 (30-F11), and APC-Cy7-labeled 
viability dye. For blocking unspecific binding, anti-Fc gamma 
receptor antibodies (2.4G2) were used. For NO and ROS 
detection, carboxy-H2DCFDA (Thermo Fisher Scientific) and 
DAF-FM diacetate (Thermo Fisher Scientific) were used, respec-
tively, each at a final concentration of 1 μM. Data were acquired 
with FACSCanto II Cytometer (BD Biosciences) and analyzed 
with FlowJo software. Gating strategies are summarized in the 
supplementary figures for MDSCs in the blood (Figure S1A in 
Supplementary Material), MDSCs in the spleen and the lymph 
nodes (Figure S1B in Supplementary Material), T-cell prolifera-
tion assay (Figure S2A in Supplementary Material), and NO and 
ROS in the blood (Figure S2C in Supplementary Material).

real-time Quantitative rT-Pcr analysis
Total RNA was isolated using the TRIzol Reagent (Invitrogen, 
Carlsbad, CA, USA), according to the manufacturer’s protocol. 
Reverse transcription was performed using 1 μg total RNA and 
oligo(dT)18 primers with RevertAid first strand cDNA synthesis 
kit (Thermo Scientific, USA), according to the manufacturer’s 
protocol. Real-time quantitative PCR was performed using 
qPCRmix-HS SYBR kit (Evrogen, Moscow, Russia) on the Applied 
Biosystems 7500 Real-Time PCR System (Applied Biosystems, 
Foster City, CA, USA). The following primers were used: Actb, F: 
5′-GACCTCTATGCCAACACAGT, R: 5′-AGAAAGGGTGTA 
AAACGCAG; S100A9, F: 5′-TTAGCCTTGAAGAGCAAG AA 
GATGG, R: 5′-AGCTCAGCTGATTGTCCTGGT; Adam17, F:  
5′-GGCCGG AAACGAGTTAAGCC, R: 5′-AGCTTCTCAAGT 
CGCGGATG; Nos2, F: 5′-GTCA ACTGCAAGAGAACGGAGA, R: 
5′-TCTGTGCTGTCCCAGTGAGG; Bcl2l1, F: 5′-TGGAGTAAA 
CTGGGGTCGCA, R: 5′-TCCACAAAAGTGTCCCAGCC; Arg1, 
F: 5′-CTCTGGGAATCTGCATGGGC, R: 5′-GGCCTTTTCTT 
CCTTCCCAGC; Tgfb1, F: 5′-TGCTGACCCCCACTGATACG, 
R: 5′-GTTTGGGGCTGATCCCGTTG; S100a8, F: 5′-CTTCAAG 
ACATCGTTTGAAAGG, R: 5′-ATTCTTGTAGAGGGCATGGT;  
Il10, F: 5′-GACAATAACTGCACCCACTTCC, R: 5′-AACCCAA 
GTAACCCTTAAAGTCC; and Il6, F: 5′-GTGGAAATGAGA 
AAAGAGTTGTGC, R: 5′-GGAGAGCATTGGAAATTGGGGT. 
Amplifications were performed using the following program: 
preheating stage at 95°C for 10 min, 40 cycles at 95°C for 15 s, 
annealing at 61°C for 30 s, and extension at 72°C for 20 s. Relative 
expression of target genes was determined according to ΔΔCt 
with normalization to Actb expression.

T-cell Proliferation assay
T-cells were isolated from spleens of naive mice using CD4 
(L3T4) MicroBeads, according to the manufacturer’s protocol 
(Miltenyi Biotec, Germany). T-cells were labeled with 5  mM 

CFSE (Molecular Probes, USA) for 15  min at 37°C, washed 
three times with cold RPMI, and diluted in 96-well round-
bottom plates at concentration 4  ×  105 cells in RPMI 1640 
medium supplemented with 10% FBS, l-glutamine (2  mM), 
100  U/ml penicillin, 100  μg/ml streptomycin, 10  mM Hepes, 
50  μM b-ME, MEM (Thermo Fisher Scientific, 11130-051), 
and sodium pyruvate (1  mM) in each well. These cells were 
cocultured with 2 × 106 purified splenic MDSCs from tumor-
bearing mice undergoing etanercept, infliximab, or PBS 
treatment. CD11b+Gr-1+ cells were purified from the spleens 
of tumor-bearing mice using MDSC isolation kit, according to 
the manufacturer’s protocol (Miltenyi Biotec, Germany). For 
stimulation of T-cell proliferation, we used anti-CD3 (clone 
145-2C11) and anti-CD28 (clone 37.51) antibodies in final 
concentrations of 1 μg/ml and 6 ng/ml, respectively. After 72 h, 
cells were collected and analyzed by flow cytometry (Figure S2A 
in Supplementary Material).

statistical analysis
Statistical analysis was performed using GraphPad Prism software 
(version 6, San Diego, CA, USA). Two-tailed unpaired Student’s 
t-test was used for comparison of two independent data samples 
and determination of the degree of reliability. The data were 
obtained in at least three independent experiments and presented 
as the mean ±  SD. P values <0.05 were considered to indicate 
statistical significance.

resUlTs

systemic TnF ablation with etanercept 
efficiently reduces Mca 205 Tumor 
growth and MDsc accumulation in 
c57Bl/6 Mice
TNF is important for MDSC development, in turn, MDSCs 
play a crucial role in tumor progression (9, 35). Genetic stud-
ies suggested that TNF may play a pro-tumorigenic role in skin 
carcinogenesis model (27). Thus, we hypothesized that prolonged 
in vivo blockade of TNF with pharmacological agents may result 
in anti-tumor effects. To test this hypothesis, we evaluated the 
ability of clinically used TNF blockers to prevent transplantable 
tumor growth in mice. Our initial experiments were carried out 
in C57Bl/6 mice using etanercept, a soluble fusion protein of 
human p75 TNF receptor and Fc portion of IgG1 antibody, as an 
inhibitor of murine TNF, because it is the only clinically available 
blocker that binds to murine TNF (43). We have chosen MCA 
fibrosarcoma cell line, since a potent anti-tumor effect of TNF 
in vivo was originally discovered on methyl-cholantrene-induced 
tumors (25). Specifically, we used transplantable tumor cell line, 
MCA205 fibrosarcoma, injected into C57Bl/6 mice, because the 
resulting tumors are known to be dependent on MDSC accumu-
lation (32). As a control reagent in this first set of experiments, 
we used infliximab, a chimeric monoclonal antibody against 
human TNF, which does not bind murine TNF but has the same 
Fcγ-domain as etanercept (44). The scheme of the experiment 
is shown in Figure 1. We first examined the growth kinetics of 
MCA 205 fibrosarcoma (Figure 2A) in C57Bl/6 recipients. Mice 
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FigUre 2 | etanercept efficiently reduces transplantable tumor growth and MDsc accumulation in c57Bl/6 mice. (a) Tumor growth in control mice 
(blue) and mice undergoing treatment with etanercept (red). Each line represents the growth curve of mean tumor volume ±SD. (B) MDSC accumulation in the 
blood. Each bar represents mean relative MDSC level in the blood of tumor-bearing mice normalized to tumor-free mice ± SD. (c) Representative dot plots for 
MDSC staining in the blood from mice without tumors (left), etanercept (middle), or PBS-treated (right) tumor-bearing mice on day 16 after tumor cells inoculation. 
Cells were first gated as VD−CD45+, and then CD11b+Gr-1+ cells were defined as MDSCs (with Gr-1 antibody clone RB6-8C5 recognizing both Ly6G and Ly6C 
epitopes). Data are representative of two independent experiments with three to five mice per each group. *p < 0.5, **p < 0.01, and ***p < 0.001.

FigUre 1 | scheme of the experiment. Mice were injected i.p. with 10 μg/g of etanercept, infliximab, or PBS in the volume of 200 μl twice a week during 
4 weeks of the experiment. Exponentially growing 1 × 106 MCA 205 tumor cells were injected 1 week after the initiation of anti-TNF therapy. Tumor growth was 
monitored every 2–3 days, and tumor volume was calculated as (l × w × h). Peripheral blood was drawn from the recipient mice prior to tumor cells inoculation 
(day −1) and then every 4–7 days. Blood samples were analyzed by flow cytometry for MDSC accumulation. After 21 days of tumor growth, mice were euthanized 
and spleens, lymph nodes, and tumors were collected for flow cytometry analysis and MDSC separation.
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treated with infliximab or PBS rapidly developed tumors with 
the similar kinetics (only infliximab group is shown as a control 
on Figure 2). Importantly, mice injected with etanercept dem-
onstrated a significant reduction in tumor volume starting from 

day 10 after tumor inoculation (Figure 2A). We then evaluated 
the effects of systemic TNF ablation on MDSC accumulation 
by treating mice with etanercept (Figures 2B,C) and compared 
MDSC levels in the blood of tumor-bearing and tumor-free 
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FigUre 3 | infliximab or etanercept efficiently reduce tumor growth and MDsc accumulation in hTnF Ki mice. (a) Tumor growth in hTNF KI mice 
undergoing treatment with PBS (black), etanercept (red), or infliximab (blue). Each line represents the growth curve of mean tumor volume ±SD. (B) MDSC 
accumulation in the blood of tumor-bearing hTNF KI mice undergoing treatment with PBS (black), etanercept (red), or infliximab (blue). Each bar represents mean 
relative MDSC level in the blood of tumor-bearing mice normalized to tumor-free mice ±SD. (c) Representative dot plots for MDSC staining in the blood from mice 
without tumors (left), anti-TNF (middle), or PBS-treated (right) mice with tumors on day 16 after tumor cells inoculation. Cells were first gated on VD−CD45+. MDSCs 
were defined as CD11b+Gr-1+ cells (with Gr-1 antibody clone RB6-8C5 recognizing both Ly6G and Ly6C epitopes). (D) MDSC accumulation in the spleens and 
peripheral lymph nodes of tumor-bearing mice three weeks after tumor inoculation. Graph shows relative numbers of Ly6C+Ly6G+cells among CD11b+ cells. Cells 
were gated as VD-CD45+B220–. Data are representative of more than three independent experiments with five to six mice per each group; *p < 0.5 and **p < 0.01.
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mice. As expected, mice under etanercept therapy accumulated 
significantly less MDSCs in the blood compared to mice under 
infliximab or PBS treatment, whereas tumor-free mice had very 
low MDSC levels (Figure  2B and data not shown). Moreover, 
we observed differences in MDSC levels starting from day 10, 
when the differences in tumor growth were also significant. Taken 
together, these data show that TNF neutralization might reduce 
tumor growth and MDSC accumulation in a transplantable MCA 
tumor model in mice.

Treatment with infliximab or etanercept 
efficiently reduces Tumor growth and 
MDsc accumulation in humanized  
TnF Ki Mice
One important difference between etanercept and antibody-based 
anti-TNF drugs (such as infliximab, adalimumab, and others) is 
that the former may also bind and neutralize soluble LTα3 (45). 
Because several non-redundant functions of sLTα3 were reported, 
for instance, the role of LTα3 produced by innate lymphoid cells in 
the gut (46), we wanted to make sure that the effects of etanercept 
in our tumor model (including results presented in Figure 2) were 

due to neutralization of TNF and not to soluble LTα3. To this end, 
we compared the effects of anti-TNF therapy on tumor growth 
using humanized knock-in mice, which produce human TNF 
instead of murine TNF (further referred to as hTNF KI mice) (41, 
42). This model allowed us to compare therapeutical effects of 
various human TNF blockers in vivo, in our case – etanercept and 
infliximab. First of all, tumor growth (Figures 2A and 3A) and the 
accumulation of MDSCs (Figures 2B and 3B) in tumor-bearing 
hTNF KI mice were comparable to those in wild-type mice, in 
both cases MDSCs reached 30–40% in the blood 3 weeks after 
MCA 205 tumor cells inoculation. We then compared the effects 
of TNF blockade with either etanercept or infliximab on MCA 
205 growth and found that both drugs efficiently and comparably 
inhibited tumor growth (Figure 3A), indicating that anti-tumor 
effects were most likely due to TNF and not to sLTa neutraliza-
tion. Three weeks after inoculation, the tumor volume in mice 
undergoing anti-TNF treatment reached only 200 mm3, as com-
pared to 500–600 mm3 in the control group. Histological analysis 
revealed infiltration of the tumor tissue by myeloid cells in all 
three experimental groups (Figure S3 in Supplementary Material). 
We also observed a significant reduction in MDSC levels in the 
blood of mice treated with either of the two blockers (Figure 3B). 
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MDSC accumulation in control mice reached 30–40% of total 
leukocytes in the blood, while in mice treated with etanercept 
or infliximab it only reached 15–20% (Figure 3C). Tumor-free 
mice in each group, despite receiving TNF blockers, showed the 
same frequency of CD11b+Gr-1+ myeloid cells, at approximately 
8–10% of total blood leukocytes (Figure 3C). We also followed 
accumulation of MDSCs in the periphery: in lymph nodes and in 
the spleen, and found that the frequency of MDSCs was higher 
in PBS-treated group (Figure  3D). These data indicated that 
TNF plays a crucial role in MCA205 tumor growth and MDSC 
accumulation.

systemic TnF inhibition affects 
suppressive Functions of MDscs
To study the impact of systemic TNF ablation on the functional 
properties of MDSCs, we examined ROS and NO production 
in  vivo by blood MDSCs of tumor-bearing hTNF KI mice 
undergoing treatment with TNF inhibitors. We detected a 
significant reduction in NO in CD11b+Ly6C+ myeloid cells 
in the blood of both etanercept- and infliximab-treated mice 
as compared to PBS-treated hTNF KI tumor-bearing mice 
(Figure 4A), whereas significant difference in ROS production 
was only detected in etanercept-treated tumor-bearing hTNF 
KI mice (Figure S2B in Supplementary Material). Furthermore, 
to address possible impact of anti-TNF treatment on MDSC 
functions, we evaluated suppressive activity of myeloid cells on 
T-cell proliferation using a co-culture of CFSE-labeled T-cells 
and purified MDSCs in the presence of agonistic anti-CD3 and 
anti-CD28 antibodies. MDSCs were isolated from the spleens of 
hTNF KI tumor-bearing mice undergoing treatment with anti-
TNF blockers or with PBS, as control. After 3 days of co-culture, 
we determined the label distribution in the population of CD4+ 
T-cells (Figure 4B). As expected, purified MDSCs isolated from 
PBS-treated tumor-bearing mice completely suppressed T-cell 
proliferation (Figures  4B,E, left). Strikingly, MDSCs isolated 
from tumor-bearing mice under infliximab or etanercept treat-
ment were not able to prevent T-cell proliferation indicating that 
their suppressive function was compromised (Figures 4B,E, mid-
dle and right). Unstimulated and stimulated T-cells in the absence 
of MDSCs are shown as control stainings in Figures 4C,D). We 
also analyzed gene expression and evaluated their suppressive 
activity ex vivo. For this, we isolated MDSCs from the spleens 
of wild-type tumor-bearing mice after etanercept administration 
using magnetic bead separation (Figure S4A in Supplementary 
Material). We then performed gene expression analysis to see 
how anti-TNF treatment may affect the transcriptome of MDSCs 
(Figure S4B in Supplementary Material). We specifically looked 
for genes that encoded factors known to play an important 
role in MDSC function and found that at least some of them 
were indeed affected by systemic anti-TNF treatment. In par-
ticular, we observed significant reduction in the expression of  
il10, adam17, and tgfb, while the expression of arginase-1 gene 
was increased (Figure S4B in Supplementary Material). Taken 
together, our data demonstrated that systemic TNF inhibitors may 
not only reduce MDSC numbers but also affect their suppressive  
function.

DiscUssiOn

Tumor microenvironment plays an important role in tumor  
growth and in resistance to therapies, in particular, through 
suppression of anti-tumor immune responses and by promot-
ing angiogenesis, metastasis, and survival of cancer cells (47). 
Although certain mechanisms governing cross talk between 
microenvironment and tumor cells have been previously eluci-
dated, the role of pro-inflammatory cytokines, such as TNF, IL-6, 
and IL-1, is not completely understood (48, 49). MDSCs repre-
sent a component of tumor microenvironment, which provides 
suppressive effects on immune cells, such as cytotoxic T-cells and 
NK-cells (23). Recently, it was shown that TNF is important for 
MDSC survival, expansion, and function (32, 33, 35). Role of TNF 
is particularly interesting because TNF, as its name suggests, has a 
necrotizing anti-tumor activity in MCA sarcoma model in mice 
(25) that was reproduced with recombinant human TNF (50) and 
also because these anti-sarcoma effects are used clinically in the 
isolated limb perfusion setting (51). However, in other experi-
mental models in mice and also in patients, TNF was reported 
to play a pro-tumorigenic role, and thus its therapeutic blockade 
may prove beneficial (40, 52). In our study, we demonstrated that 
systemic pharmacologic TNF ablation leads to the delay in trans-
plantable tumor growth of MCA 205 fibrosarcoma, accompanied 
by decreased accumulation of MDSCs.

The reasons for these contrasting effects of endogenous versus 
systemically administered TNF are not fully understood. It is 
known that hemorrhagic necrosis of tumors is not due to direct 
TNF cytotoxicity on tumor cells but rather due to acute effects 
on tumor vasculature that is a part of tumor microenvironment 
(53) (Figure 5A). It is generally believed that such acute activat-
ing effects of TNF are very fast and are mediated by TNFRI. 
On the other hand, local effects of endogenous TNF, released 
from tumor cells and from tumor microenvironment, may be 
local and long-lasting and they could be mediated by both TNF 
receptors, with TNF–TNFRII axis having a distinct role because 
it requires tmTNF and cell-to-cell contacts (54). The downstream 
effects of such signaling may lead to the expression of pro-
inflammatory cytokines, chemokines, and adhesion molecules 
resulting in chronic inflammation  –  one of the hallmarks of 
cancer development (55) (Figure 5B). In addition to this, TNF 
promotes expansion of MDSCs, which have pro-tumorigenic role 
and also accumulate during chronic inflammation (32, 33, 35) 
(Figure 5C). As already discussed, TNF therapy has found only 
limited clinical application in cancer treatment, while anti-TNF 
therapy is widely used in the treatment of autoimmune diseases. 
Could such systemic and often long-term TNF blockade predis-
pose autoimmune patients to cancer? Or on the contrary, could 
anti-cytokine therapy provide a protection against emerging 
tumors? These are types of questions that we want to address in 
animal models.

In order to compare possible in vivo anti-tumor effects of TNF 
blockers used in clinic, we utilized an experimental model of 
humanized (hTNF KI) mice, endogenously producing human but 
not mouse TNF (41, 42). We found that after injection of tumor 
cells, hTNF KI mice develop MCA 205-derived tumors compa-
rably with C57Bl/6 mice. TNF neutralization by either of the two 
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FigUre 4 | infliximab or etanercept efficiently inhibit suppressive functions of MDscs. (a) Blood MDSCs of tumor-bearing hTNF KI mice undergoing 
treatment with etanercept (red) or infliximab (blue) have reduced levels of NO compared to PBS-treated mice (black). Data are representative of two independent 
experiments. (B) Purified splenic MDSCs from tumor-bearing hTNF KI mice undergoing systemic TNF ablation with etanercept (red) or infliximab (blue) fail to 
suppress T-cell proliferation. MDSCs and T-cells were co-cultured at ratio 5:1, 2 × 106 and 4 × 105 cells, respectively. (c) In vitro proliferation of purified CFSE-
labeled T-cells from the spleens of naive mice after three days of stimulation with anti-CD3 and anti-CD28 antibodies or (D) unstimulated T-cells. (e) CFSE-labeled 
T-cells from naive mice after three days of stimulation with anti-CD3 and anti-CD28 antibodies in the presence of purified splenic MDSCs from tumor-bearing mice 
treated with PBS (left), etanercept (middle), or infliximab (right). Pink and red peaks were defined as non-proliferating and proliferating cells, respectively. Cells were 
gated as VD−CD4+. Data are representative of three independent experiments with each group represented by six mice, and MDSCs were isolated from pooled 
splenocytes from two to three mice. *p < 0.5 and **p < 0.01.
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blockers, infliximab or etanercept, resulted in comparable reduc-
tion of tumor volume in hTNF KI mice and also correlated with 
reduced frequency of MDSCs, which may play a pro-tumorigenic 

role (Figure 5D). This clearly suggests that the effects of etaner-
cept administration are due to TNF and unlikely due to soluble 
LTα3 blockade. This is an important observation, since the role 
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FigUre 5 | Dual role of TnF in cancer and MDscs. (a) TNF as anti-cancer agent. High doses of exogenous TNF induce tumor necrosis (25). However, 
necrotizing effect of TNF is not due to cytotoxic killing of tumor cells but because of direct action of TNF on endothelial cells, which leads to significant destruction of 
tumor-associated vessels and tumor rejection (56). Furthermore, TNF is an important molecule for anti-tumor immunity by cytotoxic NK- and T-cells (57, 58). In 
patients, TNF alone is inefficient, but in combination with chemotherapy, it increases tissue concentration of chemotherapy drugs, through the increase of blood 
vessel permeability, and is used in isolated perfusion procedure for the sarcoma treatment of the limb (59). (B) TNF as a pro-tumorigenic molecule. Binding of TNF 
with TNFR on endothelial cells and cancer-associated fibroblasts leads to NFκB activation and upregulation of chemokines, adhesion molecules, growth factors, and 
pro-inflammatory cytokines, resulting in increased angiogenesis, inflammation, and recruitment of immune cells (60, 61). TNF through the same signals activates 
proliferation of tumor cells and induces the release of different factors by tumor cells, such as metalloproteinases and VEGF, resulting in angiogenesis and tumor 
niche remodeling (62). (c) TNF and MDSCs. TNF and other pro-inflammatory cytokines, produced by tumor cells and tumor microenvironment, sustain chronic 
inflammation (63). During chronic inflammation myeloid cells do not differentiate into mature macrophages, neutrophils, and dendritic cells but rather accumulate as 
immature cells with suppressive capacity, so-called MDSCs (1). TNF is crucial for MDSCs, due to its direct effects on myeloid cells (33–35). MDSCs suppress 
anti-tumor immunity driving tumor development (9). (D) Anti-TNF therapy. Neutralization of TNF by etanercept or infliximab may result in tumor delay, decrease of 
MDSC accumulation, inefficient T-cell suppression, and increase of cytotoxic T-cells.
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of lymphotoxin in carcinogenesis has been previously described 
(64–68). Furthermore, our experiments suggest that TNF inhibi-
tion affects MDSCs by altering their gene expression. Specifically, 
purified CD11b+Gr-1+ cells, isolated from C57Bl/6 mice undergo-
ing etanercept treatment, showed decreased expression levels of 
genes that encode anti-inflammatory cytokine, such as TGF-β and 
IL-10, which are necessary for polarization of M2 macrophages 
(69), differentiation of Tregs, capable of functional inhibition 
of cytotoxic cells (20–22). Specifically, we detected a reduced 
expression of the gene encoding ADAM17, which may cleave 
off CD62L from the surface of T-cells, providing MDSCs with 
the ability to prevent activation of naive T-cells by blocking their 
migration to the sites of inflammation (70). The same protease 
converts membrane-bound forms of pro-inflammatory cytokines 

and their receptors, such as IL-6R and TNF, into secreted soluble 
forms (71). Interestingly, in MDSCs from mice receiving anti-
TNF treatment, we detected an increase in the expression level 
of arginase-1 gene. This enzyme facilitates suppressive activity 
of MDSCs through degradation of arginine (14). Thus, these 
changes in gene expression could affect the function of myeloid 
cells and may be important for anti-tumor immunity. To address 
the question of how TNF blockade could affect suppressive capac-
ity of MDSCs, we looked at ROS and NO production by blood 
MDSCs in  vivo and also tested the ability of MDSCs to inhibit 
proliferation of T-cells in a functional assay ex vivo. We found 
that purified splenic MDSCs from hTNF KI tumor-bearing mice, 
undergoing infliximab or etanercept treatment, failed to suppress 
T-cell proliferation, whereas MDSCs from the control PBS-treated 
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tumor-bearing mice had the expected suppressive activity. This 
supports our in vivo data concerning significantly reduced level 
of NO in blood MDSCs of mice receiving either etanercept or 
infliximab. These findings imply that TNF inhibition not only 
reduces accumulation of MDSCs but also affects their suppressive 
capacity. Overall, our data support the notion that MDSCs may 
be a target for anti-tumor therapy in patients and it also high-
lights TNF as a mediator with non-redundant pro-tumorigenic 
functions. One possible avenue in anti-cytokine therapy being 
developed in our laboratory is to neutralize pro-inflammatory 
cytokines in cell-restricted fashion (41). For using such a strategy 
in cancer treatment, cellular sources of pro-tumorigenic cytokine 
in each particular case should be first identified.
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