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Exosomes are extracellular vesicles derived from cell endocytosis which act as transmitters 
between cells. They are composed of proteins, lipids, and RNAs through which they partic-
ipate in cellular crosstalk. Consequently, they play an important role in health and disease. 
Our view is that exosomes exert a bidirectional regulatory effect on pathogen infections by 
delivering their content. First, exosomes containing proteins and RNAs derived from patho-
gens can promote infections in three ways: (1) mediating further infection by transmitting 
pathogen-related molecules; (2) participating in the immune escape of pathogens; and 
(3) inhibiting immune responses by favoring immune cell apoptosis. Second, exosomes 
play anti-infection roles through: (1) inhibiting pathogen proliferation and infection directly; 
(2) inducing immune responses such as those related to the function of monocyte- 
macrophages, NK cells, T cells, and B cells. We believe that exosomes act as “bridges” 
during pathogen infections through the mechanisms mentioned above. The purpose of 
this review is to describe present findings regarding exosomes and pathogen infections, 
and highlight their enormous potential in clinical diagnosis and treatment. We discuss two 
opposite aspects: infection and anti-infection, and we hypothesize a balance between 
them. At the same time, we elaborate on the role of exosomes in immune regulation.
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iNTRODUCTiON: wHAT ARe eXOSOMeS?

History
Exosomes are extracellular vesicles (EVs) formed intracellularly by a process of endosome mem-
brane invagination which generates multivesicular bodies (MVBs) containing intraluminal vesicles 
(ILVs) (1). Canonical exosomes measure 50–100 nm, have a density of 1.13–1.19 g/ml in sucrose 
density gradients and present a cup-shaped morphology on examination by transmission electron 
microscopy (2). These membrane vesicles were initially found in rat reticulocytes (3). Compared 
with cell membranes, exosome membranes are enriched in lipids such as cholesterol and sphingo-
myelin and in lipid-raft-associated proteins (4). The term “exosomes” for these EVs of endosomal 
origin was first proposed in 1987 (5). Since then, interest in exosomes has consistently grown, with an 
ever-increasing number of studies focusing on the function and application of exosomes in pathogen 
infections and other pathological conditions.

Biogenesis
According to present knowledge, the biogenesis of an exosome consists of four stages: initiation, 
endocytosis, MVB formation, and secretion (6).
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At first, membrane-associated molecules, such as nucleic 
acids, proteins and others, are internalized via endocytic vesicles 
formed by invagination of the plasma membrane. Endocytic 
vesicles then fuse with early endosomes and deliver their content 
to them. Early endosomes mature into late endosomes character-
ized by the presence of ILVs in their lumen, reason for which they 
are also called MVBs (7, 8). The main fate of MVBs is to fuse with 
lysosomes, where their content is degraded. Another possibility 
is for MVBs to merge with the plasma membrane, therefore, 
releasing its ILVs into the extracellular space, where they are 
called exosomes (9). Therefore, the composition of exosomes is 
expected to reflect to some extent the composition of MVBs. For 
instance, proteins of the endosomal sorting complex required 
for transport (ESCRT) and CD63 are associated with MVBs and 
have also been found in exosomes (10). Due to the complexity of 
endocytic pathways, the mechanisms regulating exosome release 
have not been well elucidated to date.

isolation and Detection
With the development of technology, more and more strategies 
were continually applied for detecting and isolating exosomes, 
promoting the exploration of exosomes. Among these techniques, 
we can mention transmission microscopy, ultracentrifugation, 
density-gradient separation, immunoaffinity capture (11), and 
microfluidic systems (12). Based on the small size and low den-
sity of exosomes, ultracentrifugation is the most developed and 
commonly used method for exosome isolation. This technique 
employs an exceedingly high centrifugal force, which can reach 
100,000 g, to precipitate subcellular components or even macro-
molecules. However, it is very time-consuming and the exosome 
purity achieved is poor (13). As technology improves, new sepa-
ration techniques have emerged such as sequential filtration (14). 
Considering the importance of exosomes, a low-cost, hypersensi-
tive, and simple detection method is desirable. Relatively new, 
stochastic techniques for exosome detection are photoactivated 
localization microscopy (PALM) or stochastic optical recon-
struction microscopy (STORM). PALM and STORM are based 
on single-molecule localization to track exosomes, which can be 
observed down to the nanometric level and allow the visualiza-
tion of intracellularly incorporated exosomes (15).

DiSCRePANT eXPReSSiON OF 
eXOSOMeS FROM iNFeCTeD AND 
UNiNFeCTeD CeLLS

Exosomes play an important role during the biological processes 
following pathogen infections, with changes in exosome quan-
tity, content, and membrane structure being detected. In this 
section, a brief description of these changes is provided, whereas 
details on mechanisms and functions will be discussed in later 
sections.

Alterations in the Numbers of exosomes 
Generated
Due to the altered cellular activity of infected cells and the utiliza-
tion of endocytic pathways of host cells by pathogenic organisms, 

the number of exosomes generated by host cells may change in 
relationship with the transmission of infection. For instance, 
it has been shown that patients infected with Plasmodium 
presenting symptoms for >6 days exhibit an increase of 20–30% 
in platelet-originated exosomes. Of note, the levels of plasma 
exosomes decreased at least 20% after 21 days of treatment (16). 
In a rotavirus (RV) study, the culture media from RV-infected 
cells contained a higher amount of heat shock cognate protein 
70, TGF-β1, and other exosome proteins than those from control-
treated cells, suggesting that RV infection of human intestinal 
epithelial cells increases the release of EVs (17). The presence 
of pathogens can also drive exosome production. In a study of 
Mycobacterium bovis Bacille Calmette–Guerin (M.bovis BCG) 
infection in mice, the kinetics of bacterial load showed an initial 
increase that peaked at day 10 followed by a gradual decline 
through to day 60. Interestingly, the exosome concentration in 
serum showed similar kinetics, with a peak value approximately 
100-fold higher compared with a normal, uninfected condition. 
This suggested that infection induces exosome secretion and this 
is correlated with the bacterial burden (18). Recent studies have 
speculated on the mechanisms by which the number of exosomes 
derived from different cells could be affected during infection. 
First, the intracellular synthesis of exosomal marker proteins 
increases in association with infection. Second, pathogens 
seem to promote molecule assemblage and secretion activity 
in infected cells. For example, the presence of the viral matrix 
protein viral protein 40 (VP40) in ebola virus (EBOV)-infected 
cells is known to induce an upregulation of the exosomal markers 
CD63, apoptosis-linked-gene-2 product-interacting protein X 
(Alix) and Endosomal Sorting Complex Required for Transport 
machinery-II proteins, indicating that exosomal biogenesis is 
activated during EBOV infection (19). In addition, unlike other 
pathogens, parasites themselves can secrete exosomes for inter-
communication purposes and, therefore, exosomes are found 
increased in body fluids from parasite-infected organisms.

Changes in exosome Membrane Structure
Exosomes are vesicle structures with an external membrane 
consisting of a phospholipid bilayer with which proteins, carbo-
hydrates, lipids, and nucleic acids are associated (20). The struc-
ture of exosomal membranes often changes as a consequence 
of infections, including alterations in the quantity of structural 
proteins and lipids and even spatial configuration inversions. 
The protein content of exosomes has been shown to be modified 
under pathological or stress status (21). Simbari et al. have sug-
gested that, after nematode infection, an increase in plasmalogen 
in exosome membranes is counteracting the diminished levels 
of other lipids, such as cholesterol and sphingomyelin (22). Diaz 
et al. demonstrated that 26 membrane-associated proteins were 
significantly more abundant in exosomes from Mycobacterium 
tuberculosis (M.tb)-infected macrophages (23). In exosomes from 
the urine of leptospira-infected rats, the membrane protein alanyl 
aminopeptidase (CD13) was significantly increased (24).

Alterations of exosome Content
A body of research confirms that infections with pathogenic 
organisms lead to significant changes in exosome content, such 
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TABLe 1 | Alterations of exosome content triggered by infections.

exosomal contents Secreting cells Changing 
trend

infection involved Function Reference

EBOV VP40 (structural 
protein)

EBOV-infected cells Upregulation EBOV infection Modulating RNAi components in recipient immune cells, 
ultimately resulting in cell death

(19)

ALT-2 protein Larva of the filarial 
parasite B. malayi

Upregulation Filariasis Inducing the signaling proteins GATA-3 and SOCS-1, which 
act to induce type 2 responses and dampen IFN-γ-dependent 
inflammatory signals in the cell

(26)

Cellular prion protein 
(PrP C)

Neuroblastoma cells Upregulation Prion disease; 
Alzheimer disease

Accelerating fibrillization of amyloid beta and reducing 
neurotoxic effects imparted by oligomeric Aβ

(27)

LPS Gram-negative 
bacteria

Upregulation Gram-negative 
bacteria infection

Promoting caspase-11 activation and host defense against 
bacterial infection and pathogenesis of sepsis

(28)

Bacterial pore forming 
α-toxin

Staphylococcus 
aureus

Upregulation S. aureus infection Allowing for delivery of bacterial virulence factors to distant cells (42)

Lethal toxin virulence factor B. anthracis-
infected cells

Upregulation B. anthracis 
infection

Allowing for the delivery of LT to cells at sites distal to infection (43)

CagA CagA-expressing 
gastric epithelial 
cells

Upregulation Helicobacter pylori 
virulence infection

Developing extra-gastric disorders associated with CagA-
positive H. pylori infection

(44)

Viral transactivator Tax HTLV-1-infected 
T-cell lines

Upregulation HTLV-1 infection Activating transcription of target cells (45)

Mature virions HHV-6-infected cells Upregulation HHV-6-infection Spreading infection faster through exosomes (47)

Serum resistance-
associated protein

T. brucei Upregulation T. brucei Allowing evasion from human innate immunity (50)

Immunogenic variant 
surface glycoprotein

T. brucei Upregulation T. brucei Altering the physical properties of the erythrocyte membrane 
and causing clearance of infected erythrocytes by 
macrophages in the liver and spleen

(50)

VPS4B and ALIX protein HAV-infected cells Upregulation HAV infection Facilitating escape from neutralizing antibodies and probably 
promoting virus spread

(53)

HBx HBV-infected 
hepatocytes

Upregulation HBV infection Resulting in decrease of intracellular APOBEC3G protein level, 
therefore, enhancing infection

(62)

EBV-miR-BART3 and 
EBV-miR-BHRF1-1

EBV-transformed 
lymphoblastoid 
cell line

Upregulation EBV-infection Indicated as crucial in the crosstalk between EBV and the host 
microenvironment

(29)

miRNA-200, miR-16, 
miR-71

Nematode parasites Upregulation H. polygyrus 
infection

Suppressing Type 2 responses and then suppressing innate 
immunity responses

(30)

miR-21, miR-29a HBV-infected 
hepatocytes

Upregulation HBV infection Suppressing IL-12p35 mRNA expression to counteract host 
innate immune responses 

(61)

aatk, slc7a1 and cdkal 
(mRNAs encoding HIV-1 
Nef protein)

Human monocytes Upregulation HIV-1 Involved in large-scale bystander cell death of uninfected CD4+ 
T cells and dysregulation of fatty acid metabolism

(64)

let-7f, miR-145, miR-199a, 
and miR-221

Umbilical 
mesenchymal stem 
cells

Upregulation HCV (hepatocyte 
virus) infection

Targeting specific cellular factors or directly binding to viral 
genomes to block productive HCV replication

(68)

HCV ss-RNA (associated 
with miR-122 and Ago-2)

HCV-infected 
hepatocytes

Upregulation HCV infection Increasing inflammation in the liver and leading to liver fibrosis (74)
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as protein kinase G in M.tb infections (25), abundant larval tran-
script protein in infections with the filarial parasite B. malayi (26), 
cellular prion protein (PrP C) in prion disease and Alzheimer 
disease (27), lipopolysaccharide (LPS) in infections with Gram-
negative bacteria (28), and nucleic acids [EBV-miR-BART3 and 
EBV-miR-BHRF1-1 in Epstein–Barr virus (EBV) infections (29), 
miRNA-200 in H. polygyrus infections (30), miRNA-155, and 
miRNA-132 in M.tb infections (31)]. Additional information is 
listed below in Table 1.

THe ROLe OF eXOSOMeS iN 
HOMeOSTASiS

Exosomes act as modulators to maintain the homeostasis of 
our body, as shown by researchers who studied how exosomes 
participate in a number of physiological events at the level of 
molecules, tissues, and organs. It is particularly relevant to 
examine the role of exosomes in the immune system, based on 
the fact that exosomes can serve as messengers between different 
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immune cells. For example, exosomes from mesenchymal stem 
cells (MSCs) can activate toll-like receptor (TLR) signaling. 
Further studies demonstrated that MSC exosomes induced a 
subdued pro-inflammatory and an enhanced anti-inflammatory 
IL10 expression. Treg polarization was induced when CD4+ 
T cells were incubated at a 1:1,000 ratio with THP-1 cells that had 
been treated with MSC exosomes (32). It has been also observed 
that exosomes released by B lymphocytes are able to stimulate 
specific CD4+ T-cell clones in vitro, revealing a role for exosomes 
in peptide-MHC class ΙΙ complexes presentation (33). Other 
investigations have found that CD63+ exosomes transfer miRNAs 
unidirectionally from T-cells to APCs during immune synapse 
formation, resulting in gene expression changes in the recipient 
cells (34). Chaperones, such as heat shock protein 40 (HSP40) and 
heat shock protein 70 (HSP70), can be delivered via exosomes 
to target cells, mediating a non-cell-autonomous maintenance 
of protein homeostasis. It is speculated that this could be part 
of a mechanism compensating for a disequilibrium in the stress 
response of different cells of the same organism (35).

Exosomes also crucially influence the transmission of amyloid 
β-protein (Aβ) within cerebrospinal fluid (36, 37), sending and 
receiving biological messages to/from cardiomyocytes (CMs) 
(38), the expression of muscle genes and modulation of muscle 
differentiation (39), melanin synthesis enhancement (40), etc.

THe ROLe OF eXOSOMeS iN PATHOGeN 
iNFeCTiONS

Diseases caused by bacteria, parasites, or viruses (e.g., malaria, 
tuberculosis, and acquired immune deficiency syndrome) affect 
over one hundred million people worldwide (41). During the past 
decades, knowledge about exosomes has developed in a variety of 
directions and more particularly regarding pathogen infections. 
Exosomes can either accelerate or inhibit the process of infection. 
In both cases, exosomes make possible connections between host 
cells or between pathogens and host cells.

exosomes Act as a Bridge for the Delivery 
of Molecules and the Connection of 
Functions
Exosomes play a crucial role in infections as carriers of substances 
of pathogen origin. They can directly transmit pathogen-related 
molecules and also indirectly influence the infection progress 
through modulating the processes, such as immune evasion and 
apoptosis. We will detail the different ways in which they exert 
their action.

Mediating Further Infection through the Transmission 
of Pathogen-Related Molecules
It is currently believed that exosomes can act as transmitters 
of pathogen-related molecules that help spread the infection in 
body microenvironments. Regarding bacteria, Staphylococcus 
aureus-derived exosomes have been reported to contain the bac-
terial pore forming molecule α-toxin, therefore delivering this 
bacterial virulence factor to distant cells (42). Similarly, exosomes 
from Bacillus anthracis-infected cells have been observed to 

transport the lethal toxin virulence factor to sites distal to the 
infection (43). The function of exosomes in Helicobacter pilori 
(H. pylori) infection has also been studied. Exosomes secreted 
from cytotoxin-associated gene A (CagA)-expressing gastric 
epithelial cells enter the circulation and deliver CagA, a viru-
lence factor, to distant organs and tissues. The delivery of CagA 
has been proposed to be involved in the extragastric disorders 
commonly associated with H. pylori infection (44). Concerning 
viruses, their main objective is to favor the expression of patho-
genic genes. During viral infections, exosomes are vehicles of 
viral components, such as proteins, mRNAs, and microRNAs 
which are carried to target cells. For instance, exosomes 
produced by human T-cell leukemia virus-1 (HTLV-1)- 
infected T-cell lines deliver the viral transactivator Tax which 
can activate transcription in target cells (45). It has been found 
that exosomes derived from human immunodeficiency virus-1 
(HIV-1) and HTLV-1-infected cells contain proteins of viral 
and cellular origin that inhibit target cell migration as well as 
dsRNA/ssRNA which can increase nuclear gene expression 
and promote infection (46). Exosomes from cells infected with  
human herpesvirus 6 (HHV-6) contain mature virions; there-
fore, they help spread infection more efficiently (47). Exosomes 
have also been found associated with HIV-1 transactivator of 
transcription (TAT). TAT was able to cause neurite shortening 
and neuron death (48). Prions are proteinaceous infectious par-
ticles that can cause transmissible spongiform encephalopathies 
(TSEs) in mammals. The yeast Saccharomyces cerevisiae can har-
bor several prions, therefore, constituting a useful investigation 
model. The prototype yeast prion contains the translation ter-
mination factor Sup35. It has been demonstrated that cytosolic 
Sup35 NM prions are packaged into exosomes. These exosomes 
are able to transmit the prion phenotype to neighboring cells 
(49). Thus, EVs disseminate epigenetic information through 
protein transfer. Recipient cells can be changed by exosomes 
at the level of protein or nucleic acid, leading to pathological 
consequences in cells or tissues.

Exosomes from parasites can be involved in virulence and cyto-
toxicity. For example, nanotube-derived EVs from bloodstream 
forms of Trypanosoma brucei (T. brucei) have been shown to fuse 
with host erythrocyte membranes, with fusion being mediated by 
an unidentified EV surface protein. Fusion results in the transfer 
of lipids and parasite-specific antigens, including the immuno-
genic variant surface glycoprotein, to the erythrocyte surface. 
This interaction alters the physical properties of the erythrocyte 
membrane and may cause clearance of infected erythrocytes by 
macrophages in the liver and spleen (50). It has been observed 
that Toxoplasma gondii (T. gondii) can alter host cell (L6 cells) 
proliferation mechanisms by increasing the number of cells in 
S phase, and that exosomes enhance this effect by transferring 
molecules to uninfected neighboring cells (51). Another interest-
ing finding is that exosomes derived from mature red blood cell 
(RBC) during malaria infection carry a functional RNA-induced 
silencing complex with Argonaute 2 which is able to specifically 
silence gene expression in endothelial cells so as to alter their 
barrier property, thus supporting malarial infection (52).

Altogether, exosomes act as agents for the packaging of 
complete pathogens and/or related molecules (proteins, nucleic 
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acids, lipids). The delivery of exosome contents to cells medi-
ates the continuation and enhancement of infection processes 
(Figure 1).

Participating in the Immune Escape of Pathogens
Some pathogens can escape the host immune system with the 
help of exosomes and this favors their spread. For example, 
release of hepatitis A virus (HAV) from cells after being anchored 
within host cell membranes protects the virion from neutraliza-
tion by antibodies. Therefore, an exosomal route avoids contact 
of the virus with neutralizing antibodies and allows a better virus 
spread. During this process, the proteins vacuolar protein sorting 
4 homolog B (VPS4B) and ALIX play an important role (53). It 
has also been found that exosomes from virus-infected cells can 
spread miRNAs of non-host origin making them undetectable 
to the host immune system (54). In summary, the packaging 
of pathogen-related molecules makes good sense concerning 
immune evasion. The present section provides some conclusions 
and discusses future research directed at suppressing the spread 
of pathogens by interfering with exosomal pathways.

Similarly, recent studies found that hepatic exosomes can help 
transmit hepatitis C virus (HCV) infection in vitro due to HCV 
being protected from antibody neutralization (55). An interesting 
investigation found hepatitis E virus (HEV) RNA-containing 
particles in an exosome fraction. These particles are infec-
tious and cannot be neutralized by anti-HEV antibodies (56). 
Therefore, modifications in the RNA packaged within exosomes 
can be assumed to have occurred, with the specific mechanism 
still unexplored.

Interestingly, communication between parasites and between 
parasites and host cells can help immune evasion. In fact, T.b. 
rhodesiense-derived EVs can transfer the serum resistance-
associated protein (SRA) to T.b. brucei. SRA is needed to 
circumvent the action of host lytic factors, therefore, confer-
ring the ability to evade innate immunity (50). Other studies 
have uncovered the important role of exosomes in suppressing 
immune-related molecules or cells with the consequence of 
halting the spread of pathogens. For example, EBV has been 
postulated to escape immune responses by sequestering 

immune effectors, such as caspase-1, interleukin 1b (IL-1b), 
IL-18, and IL-33, in exosomes that are continuously secreted 
(57). Exosomes derived from HIV-1-infected cells enable HIV-1 
replication within resting human primary CD4+ T  cells (58). 
Equally, exosomes secreted by nematode parasites can suppress 
an innate type 2 response in  vivo by downregulating IL-33 
release (30). Furthermore, it has been found that Trypanosoma 
cruzi-derived exosomes lead to an increased secretion of IL-4 
and IL-10 and a diminished inducible nitric oxide synthase 
expression in CD4+ T cells and macrophages. This induces a Th2 
immune response polarization (59, 60). Exosomes derived from 
hepatitis B virus (HBV)-infected hepatocytes transport miR-21, 
miR-29a, and other miRs with immunoregulatory functions 
to THP-1 macrophages, which results in a downregulation of 
IL-12p35 mRNA expression in turn leading to a constrained 
host innate immune response (61). Similarly, it was found 
that hepatitis B viral X protein (HBx), a small non-structural 
X protein encoded by HBV, can enhance the externalization of 
apolipoprotein B mRNA-editing catalytic polypeptide-like pro-
tein 3G (APOBEC3G) within exosomes. Since APOBEC3G is an 
inhibitor of HBV replication, a decrease in its intracellular level 
favors the infection (62). In summary, there are mainly three 
immune evasion pathways. First, pathogens packaged within 
exosomes might not be detected by immune cells. Second, 
pathogens or pathogen-related substances can be modified 
within exosomes. Third, some immunity-related molecules can 
be suppressed by exosomes (Figure 2).

Promoting Immune Cell Apoptosis
Inhibiting immune responses is an effective way to favor pathogen 
spreading and exosomes can act as messengers in this process. 
A number of investigations indicate that exosomes released by 
infected cells mediate the inhibition of immune responses mainly 
accelerating the apoptosis of immune cells. Apoptosis is a process 
of programmed cell death that occurs in multicellular organisms 
and can also be induced by alterations in the microenvironment. 
Apoptotic cells show membrane blebbing, shrinkage, nuclear 
fragmentation, chromatin condensation, chromosomal DNA 
fragmentation, and global mRNA decay. Exosomes released from 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 2 | Exosome-mediated immune evasion pathways. Exosomes can 
package pathogens, modifying them or shutting down important immune 
effectors. The proteins vacuolar protein sorting 4 homolog B (VPS4B) and 
ALIX may mediate the spread of packaged pathogens. The protein serum 
resistance-associated protein (SRA) mediates the alteration of pathogens.

6

Zhang et al. Exosome and Pathogen Infection

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 90

virus-infected cells have been shown to contain viral RNA and 
proteins that trigger the induction of apoptosis on interaction 
with T- and monocytic cells. Such apoptosis is regulated by poly 
ADP-ribose polymerase 1 and caspase 3 (63). Exosomes secreted 
from Nef-expressing U937 monocytic cells can enter uninfected 
CD4+ T cells and induce their apoptosis. These exosomes selec-
tively contain three key mRNAs involved in cell death and fatty 
acid metabolism whose corresponding miRNAs are preferentially 
retained in the infected cells of origin: aatk, slc7a1, and cdkal 
(64). EBOV VP40 can be transported within exosomes and can 
modulate the expression of the RNAi components, including 
Dicer, Drosha, and Ago1 in recipient immune cells, ultimately 
resulting in cell apoptosis. VP40 has been suggested to be respon-
sible for the suppression of the T cell and myeloid arms of the 
immune system, resulting in the virus being able to replicate in 
an immunocompromised host (19). Lastly, Ahmed and his team 
observed that exosomes from EBV-infected cells can induce 
B-cell and T-cell apoptosis through the Fas ligand-mediated 
extrinsic pathway (65). In summary, immune cell apoptosis can 
be induced by exosomes containing RNAs or proteins associated 
with the pathogens.

exosomes and the inhibition of infection
Exosomes play an important role not only in the process of infec-
tion by pathogens but also in anti-infection. Indeed, a range of 
responses are laid out to ward off the infection after pathogen 
invasions.

Inhibiting Pathogen Proliferation and  
Transmission Directly
Exosomes could participate in the fight against infections by 
restraining the proliferation and transmission of pathogens and 
especially of viruses. In fact, exosomes can prevent viruses from 

replicating and transcribing. Exosomes from healthy semen 
block the spread of HIV-1 from vaginal epithelial cells to target 
cells as well as the passage of HIV-1 through the vaginal epithelial 
barrier. Upon internalization of exosomes into vaginal epithelial 
cells, functional mRNA encoding APOBEC3G was transferred, 
making a potential connection between semen exosomes and the 
impairment of viral RNA reverse transcriptional activity. Semen-
derived exosomes are, thus, found to decrease the intravaginal 
replication of the AIDS virus in mice as well as the virus systemic 
spread and viremia (66). In a parallel approach, exosomes from 
human vaginal secretions showed some inhibitory effects on 
HIV-1 infection. The exosomal fraction from this fluid decreased 
the efficiency of transmission and of reverse transcription and 
integration of HIV-1 vectors (67). Regarding HCV, some small 
RNAs (namely let-7f, miR-145, miR-199a, and miR-221) can tar-
get specific cellular factors or directly bind to the viral genome in 
order to block HCV replication. These miRNAs are transported 
via exosomes, which, therefore, mediate the antiviral process (68). 
During infection of cultured intestinal epithelium cells with a 
protozoan parasite, Cryptosporidium parvum, as well as following 
the stimulation of biliary epithelial cells with LPS, an activation of 
TLR4 signaling leads to the enhanced release of exosomes from 
these cells through the SNAP23-associated process of vesicular 
exocytosis. These exosomes transport epithelial antimicrobial 
peptides, which were found to bind to and decrease the viability 
and infectivity of C. parvum sporozoites (69). HCV replication 
can be controlled by exosomes derived from primary human liver 
sinusoidal endothelial cells that were able to stimulate type Ι or 
type ΙΙΙ IFNs (70). The delivery of anti-HCV factors to hepato-
cytes has been found to occur through exosomes released from 
TLR3-activated macrophages. Such exosomes contain miRNA-
29 family members which either activate a cellular anti-HCV 
response or directly target HCV gene expression, thus inhibiting 
HCV replication (71). An antiviral activity of exosomes has also 
been observed in animals. Chicken biliary exosomes can inhibit 
the replication of avian leucosis virus subgroup J (72).

Inhibiting Infection by Stimulating Immune 
Responses
When pathogens enter the human body, immune responses are 
triggered, with the release of cytokines and the development of 
humoral and cellular immunity. The immune response mainly 
consists of three stages: induction (sensitization stage), prolifera-
tion and differentiation (reactive stage) and, finally, definition. 
Exosomes play an important role by the following.

Improving Monocyte-Macrophage Functions
Macrophages take part in specific and non-specific immunity. 
They can kill and clear pathogens nonspecifically after phago-
cytosis as well as mediate inflammatory responses. In a specific 
manner, macrophages act as immune-regulators and antigen-
presenting cells. Their function in relation with innate immunity 
depends on the interaction of pattern recognition receptors such 
as TLRs, C-type lectin receptors and scavenger receptors with 
molecules on the surface of target organisms. Exosomes play a 
role in this process, as indicated by the observation that EVs of 
bacterial origin released from cells infected with m.tb can trigger 
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TLR2 in uninfected macrophages and, as a consequence, result in 
cytokine responses (73).

Antigen presentation is crucial for immune responses. It is 
performed by antigen-presenting cells (APCs), also known as 
accessory cells, which can be divided into two types: MHC Ι and 
MHC ΙΙ. MHC molecules present peptides to other immune cells 
in order to mount an adaptive immune response. Macrophages 
can act as APCs. During infection pathogenesis, macrophages 
acquire the M1 (classically activated) or M2 (alternatively 
activated) phenotypes regarding their activation programs, and 
this depends on the microenvironment where they are. Since 
exosomes participate in establishing tissue microenvironments 
upon their release by different cell types, they play a role concern-
ing macrophage differentiation and polarization.

Exosomes secreted by HCV-infected hepatocytes contain 
HCV ss-RNA associated with miR-122 and Ago-2, which can be 
taken up by circulating monocytes. In turn, these monocytes dif-
ferentiate into M2 macrophages that express pro-inflammatory 
cytokines and collagen, increasing inflammation in the liver and 
leading to fibrosis (74). Exosomes released from M.tb-infected 
cells transported mycobacterial lipids and proteins like mannose-
capped lipoarabinomannan, PIM and trehalose dimycolate to 
naïve macrophages, resulting in macrophage recruitment. As the 
recruited macrophages differentiate into multinucleated giant 
cells and epithelioid macrophages, the phase of rapid bacterial 
multiplication tended to be walled off by them, thus forming 
granuloma and controlling the containment locally at the level of 
granuloma (18). In another study, exosomes shed from M. avium 
sp. paratuberculosis-infected cells promoted the expression of 
CD80 and CD86 and the secretion of TNF-α and IFN-γ by mac-
rophages, suggesting that exosomes from infected macrophages 
can be carriers of bacterial antigens and/or molecules that can 
induce an immune response in resting cells (75).

Promoting the Function of NK-Cells
NK cells are important effectors of the innate immunity and act 
as cytotoxic lymphocytes in peripheral blood. NK-cell function 
can be indirectly enhanced by exosomes in a different fashion 
from that of macrophage activation. HCV is a positive-stranded 
RNA virus that targets hepatocytes. Besides infection, intercel-
lular transfer of HCV-RNA occurs by an exosome-mediated 
process. Exosomes from HCV-infected hepatocytes containing 
HCV-RNA fragments can be recognized by TLR3 in DCs, which 
then mature to express NK-activating ligands. At the same time, 
these exosomes evoke major cellular effectors and type Ι/ΙΙΙ IFNs 
in DCs, which facilitate NK induction against HCV (76). In 
another instance, EVs released from HBV-infected hepatocytes 
were found to contain viral nucleic acids and induce natural-
killer group 2, member D (NKG2D) ligand expression in hepatic 
F4/80+ cells. NKG2D ligands trigger IFN-γ generation from 
NK  cells. Furthermore, depleting exosomes from EVs mark-
edly reduces the expression of NKG2D ligand, suggesting that 
exosomes play a role in NK cell activation (61).

Promoting the Function of T Cells
T  cells play a key role in specific immune responses regarding 
both humoral and cellular immunity. Exosomes can induce T-cell 

functions by promoting the maturation of T cells and enhancing 
the expression of inflammatory cytokines.

The fact that macrophage- and DC-derived exosomes present 
MHC Ι and ΙΙ as well as T-cell co-stimulatory molecules on their 
surface strongly suggests that they may constitute an important 
element of antigen presentation mechanisms. Three models have 
been currently proposed for exosome-mediated antigen delivery 
to T cells: cross-dressing pattern, cross-presentation pattern, and 
direct exosome-induced T-cell activation (77).

In the cross-dressing pattern, exosomes from the infected 
cells including APCs could transfer preformed peptide-MHC 
complexes to the surface of the uninfected APCs, which could 
then present these antigens without having first phagocytosed 
an antigen-carrying organism nor having processed the antigen 
(78). For example, CD8+ dendritic cells incubated with LPS 
and an antigenic peptide can secret exosomes containing pre-
formed peptide–MHC complexes. These exosomes can then be 
captured by paraformaldehyde-fixed DCs, i.e., DCs unable to 
reprocess antigens, and induce T-cell activation determined as 
an upregulation of CD69+ (79). An interesting study shows that 
DC-derived exosomes can acquire TLR ligands from bacteria 
and act alerting the immune system by activating bystander 
DCs. As a consequence, both the expression of TNFα and pro-
inflammatory cytokine secretion by those cells are upregulated, 
and interaction with NKs results in an enhanced IFNγ secretion 
mediating enhanced Th1 polarization (80). Exosomes can actu-
ally contribute to generate a proper T-cell response other than 
direct presentation by macrophages and DCs. In an extreme case 
of exosome biogenesis impairment, Rab27a-deficient mice were 
incapable of trafficking mycobacterial components to exosomes. 
EVs isolated from M.tb-infected Rab27a-deficient mice showed 
a reduced capacity to elicit a pro-inflammatory response. Instead, 
exosomes from BCG-infected macrophages can promote a 
T-cell response by antigen cross-presentation (81). Chicken 
biliary exosomes were observed to influence immune responses 
by stimulating the proliferation of CD4+ and CD8+ T cells and 
monocytes from liver. They also inhibited avian leucosis virus 
subgroup J, which is an oncogenic retrovirus, from replicating 
in the DF-1 cell line (72). As for direct exosome-induced T-cell 
activation, Hwang and his colleagues found that APCs secret 
exosome-like vesicles which express ICAM-1 and B7 on their 
membrane as well as antigen-presenting peptide–MHC class I 
complexes, and which bind with CD8+ T cells to activate their 
proliferation and differentiation into peptide-specific effector 
cells (82).

In addition to participating in the antigen-presentation 
process, exosomes can also transport a variety of cytokines that 
promote T-cell activation and function. As an example, human 
peripheral CD3+ T cells activated with anti-CD3 and IL-2 release 
exosomes carrying large amounts of CCL5 (RANTES) that 
stimulate cytokine secretion and cause the proliferation of CD8+ 
T cells in vitro. Therefore, it can be speculated that these exosomes 
favor a cytotoxic response within an anti-infection process (83).

Exosomes can also affect T lymphocyte functions. An analysis 
of the impact of miR-155 loaded in H. pylori-infected macrophage-
derived exosomes showed that the expression of inflammatory 
cytokines, including TNF-a, IL-6, and IL-23 is enhanced (84). 
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In another study, outer membrane vesicles produced by Gram-
negative bacteria were seen to act as vehicles that deliver LPS to 
the host cell cytosol. This results in enhanced cell death and the 
activation of IL-1 cytokines (28). In brief, exosomes are able to 
enhance T-cell functions by delivering cytokines.

Promoting the Function of B Cells
B stem cells develop from hematopoietic precursor cells in an 
ordered maturation and selection process. B cells and the antibod-
ies they produce are the central elements of humoral immunity. 
As part of the adaptive immune system, B cells provide protection 
against an almost limitless variety of pathogens. Exosomes can 
specifically enhance B  cell-mediated immune responses. For 
instance, exosomes from Mycoplasma-infected tumor cells can 
induce the generation of cytokines by splenocytes (85).

In brief, numerous studies from different perspectives have 
indicated that exosomes play a significant role in the fight against 
infections from different perspectives (Figure 3).

APPLiCATiONS OF eXOSOMeS 
ReGARDiNG PATHOGeN iNFeCTiONS

As we have discussed, exosomes are involved in multiple steps 
during infections and the fight against them. They participate 

in the formation/modification of infection loci, the discrimi-
nation of antigens during the initial stages of infection, the 
regulation of cell apoptosis, and the modulation of immune 
cell functions. Exosomes also act as a source of antigens for 
the activation of T and B  cells. As a consequence, the role 
of exosomes as potential therapeutic agents is being actively 
considered.

Diagnosis of Pathogen infection
Exosomes can be used as sources of body fluid biomarkers. 
They have been isolated from serum (86), bronchoalveolar lav-
ages (87), urine (88), saliva (89), and others. Quantitative and 
qualitative differences in the composition of exosomes in health 
and disease have been reported (90). These differences, together 
with an easy isolation, make exosomes excellent biomarker 
reservoirs as well as potentially useful for diagnosis. Britton et al. 
demonstrated that the secretion of specific miRNAs within EVs 
from parasitic helminths can be the basis to develop novel and 
sensitive diagnostic markers of infection (91). Saá et  al. found 
that a fraction of the transmissible spongiform encephalopathy-
associated prion protein (PrPTSE) which is found in circulating 
blood is actually localized in exosomes isolated from plasma. This 
opens new avenues for further TSE research. Since exosomes are 
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known to participate in cell-to-cell communications and are also 
able to cross the blood–brain barrier, the association of PrPTSE 
with exosomes may well serve to spread TSE from the periphery 
to the CNS (92).

Therapy of Pathogen infection
Exosomes can be useful as novel targets to develop new drugs. 
For example, it has been observed that Trypanosome EVs can 
cause changes in the physical properties of cell membranes 
which lead to the phagocytosis of erythrocytes, therefore, being 
a cause of anemia during acute trypanosomiasis. The possibility 
is then opened of developing inhibitors of the fusion of trypa-
nosomal EVs with host cells which will reduce the likelihood of 
developing anemia (50). Researchers have shown that exosomes 
secreted from umbilical cord MSCs (Umsc) exhibit a potent 
anti-HCV activity by targeting the replication of the virus. The 
fact that a series of miRNAs (let-7f, miR-145, miR-199a, and 
miR-221) are specifically transported by exosomes illustrates a 
promising method of anti-HCV therapy (68). Exosomes loaded 
with Interferon-induced transmembrane protein 3 can transmit 
antiviral activities from one cell to another during dengue virus 
infection (93).

Exosomes can also transfer antiviral molecules, such as 
APOBEC3G from non-permissive liver non-parenchymal cells to 
permissive hepatocytes during HBV infection (94). In brief, new 
antiviral strategies could be developed with exosomes serving as 
nano shuttle vehicles for drug delivery.

Exosomes could act as vaccines to prevent infections. For 
instance, del Cacho et  al. found that exosomes derived from 
dendritic cells infected with the parasite Eimeria convey protec-
tion in a poultry model (95). Research by Martin-Jaular et  al. 
has indicated that exosomes derived from reticulocytes could 
be explored to develop vaccines against malaria infections 
(96). However, problems can be envisaged regarding the use 

of exosomes in therapies. As potential vaccines, the fact that 
exosomes contain various proteins as well as other molecules 
could represent a shortcoming. While exosomes no doubt are 
plastic entities, many additional clinical tests will be necessary to 
apply them in therapeutics. As research into exosomes deepens, 
new strategies are likely to emerge leading to valid approaches in 
the fight against infections.

CONCLUSiON

Exosomes are membrane-bound vesicles measuring 50–100 nm 
present within late endosomes and containing proteins and 
RNAs. They are secreted from both pathogens and host cells and 
can be used by both pathogens and hosts to affect and modulate 
infection processes. Exosomal vesicles can transmit signals 
between pathogens and hosts regarding various aspects of host 
defense.

In this review, we have focused on exosome functions in 
relationship with infection and anti-infection. On the one hand, 
exosomes derived from pathogens containing pathogenic pro-
teins and RNAs can promote infection in three ways: (1) causing 
further infection by transmitting pathogen-related molecules; 
(2) participating in pathogen immune escape mechanisms; (3) 
inhibiting immune responses by inducing immune cell apop-
tosis. On the other hand, exosomes can play anti-infective roles 
by (1) inhibiting pathogen proliferation and infection directly; 
(2) inducing immune responses including an enhancement of 
the function of monocyte-macrophages, NK  cells, T  cells, and 
B cells (Figure 4). There must be a balance between infection and 
anti-infection processes, with exosomes being crucial messengers 
modulating this balance in different ways, as discussed in the 
present review. A close connection exists between exosomes and 
the immune system which involves immune induction, evasion, 
and inhibition. Conversely, the immune system has an impact on 

FiGURe 4 | Exosomes in infection and anti-infection. Exosomes participate in both infection and anti-infection processes ranging from pathogen infection to the 
regulation of immune responses.
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