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Abstract: Melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24), a secreted
protein of the IL-10 family, was first identified more than two decades ago as a novel gene differentially
expressed in terminally differentiating human metastatic melanoma cells. MDA-7/IL-24 functions as
a potent tumor suppressor exerting a diverse array of functions including the inhibition of tumor
growth, invasion, angiogenesis, and metastasis, and induction of potent “bystander” antitumor
activity and synergy with conventional cancer therapeutics. MDA-7/IL-24 induces cancer-specific
cell death through apoptosis or toxic autophagy, which was initially established in vitro and in
preclinical animal models in vivo and later in a Phase I clinical trial in patients with advanced cancers.
This review summarizes the history and our current understanding of the molecular/biological
mechanisms of MDA-7/IL-24 action rendering it a potent cancer suppressor.

Keywords: MDA-7/IL-24; cytokine; apoptosis; bystander antitumor activity; combinatorial therapy

1. Introduction

Melanoma differentiation associated gene-7/Interleukin-24 (MDA-7/IL-24) is a unique
cytokine belonging to the IL-10 gene family that was cloned using subtraction hybridization
in the early-nineties [1,2] (Figure 1). Based on a conserved stretch of amino acids, chromo-
somal location and cytokine-like properties, MDA-7/IL-24 was considered a member of the
IL-10 gene family which consists of IL-19, IL-20, IL-22, and IL-26 [3]. Protein expression of
MDA-7/IL-24 is decreased during progression from melanocyte to melanoma and remains
undetectable in metastatic melanoma lending to its classification as a putative tumor sup-
pressor. The research completed previously has shown that ectopic expression of mda-7/IL-
24 using transfection of tumor cells with plasmid cDNA or adenovirus-mediated delivery,
or exposure to a purified protein results in the suppression of tumor cell growth [1,2,4–7].
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Although our understanding of the molecular actions of mda-7/IL-24 have been clarified
over the years, we still have much to learn [6,7]. Initial studies in a Phase I clinical trial
in patients with advanced cancers confirmed that intratumoral injection of an adenovirus
(Ad) expressing mda-7/IL-24 (Ad.mda-7; INGN 241) is safe and clinically effective in in-
ducing cancer cell-specific apoptosis. Future studies using diverse ways of administering
mda-7/IL-24 as a single agent, including viral administration [8–10] and T cell mediated
delivery [11], and in combination with other therapeutic agents are planned for the near
future and suggest that this therapeutic cytokine will provide significant clinical benefit in
patients with diverse cancers.
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Figure 1. Subtraction hybridization identifies MDA-7/IL-24. Schematic of DISH (differentiation
induction subtraction hybridization), an approach for identifying and cloning genes associated
with the induction of terminal differentiation in human melanoma cells. Treatment of HO-1 human
melanoma cells with a combination of IFN-β + mezerein results in a rapid and irreversible loss of
proliferation, extinction of tumorigenic potential, and terminal differentiation [12–16]. The DISH
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approach was developed to identify and clone genes associated with and causative of the physiologic
changes associated with terminal differentiation. mRNAs were isolated from actively proliferating
and IFN-β + mezerein (2000 units/mL + 10 ng/mL)-treated HO-1 cells that span the first 24 h of
treatment, and were converted into cDNAs. Subtraction hybridization was then done between
differentiation inducer-treated and control-proliferating cancer cells resulting in the production of a
subtracted cDNA library enriched for melanoma differentiation associated (mda) genes. Probing of
clones isolated from this cDNA library permitted cloning of mda genes involved in critical cellular
processes, some are listed here [12–16]. Reprinted by permission from Fisher, 2005 [17].

The expression profile of mda-7/IL-24 suggests a versatile gene whose normal physio-
logical functions are associated with certain aspects of immunoregulation. The adenovirus-
mediated delivery of mda-7 (Ad.mda-7) selectively inhibits growth and induces apoptosis
and toxic autophagy in a wide-range of human cancer cells without inducing harmful
effects in normal cells [6,7,16–21]. In this review, we review specific aspects of MDA-7/IL-
24 function including its anti-cancer properties, combinatorial effects with other agents,
early Phase I clinical trial and future prospects.

2. Identification and Structure of MDA-7/IL-24

mda-7 was first identified in a human melanoma cell line (HO-1) using a subtraction
hybridization technique applied to HO-1 metastatic human melanoma cells irreversibly
stimulated to lose their capability of cell division and terminally differentiate after the
combination treatment with IFN-ß plus Mezerein (Protein Kinase C activator) [1,2]. This
technique identified the mda-7 cDNA from temporal cDNA libraries produced from IFN-
ß + MEZ-treated HO-1 cells after subtracting the temporal cDNA libraries of actively
proliferating HO-1 melanoma cells. This distinctive cDNA encodes a unique protein of
206 amino acids with a 23.8 kDa molecular weight. Later, Wang et al. reported that
MDA-7/IL-24 acts as potent ligand for two heterodimeric receptors IL-20R1/IL-20R2 and
IL-22R1/IL-20R2 [22]. Subsequent studies by our research team demonstrated that MDA-
7/IL-24 can also signal through the IL-22R2/IL-21R1 receptors [23].

MDA-7/IL-24 was found to be evolutionarily conserved among species. Southern blot
analysis revealed that the orthologous sequences of the human mda-7 gene can be identified
in murine, canine, feline, simian, bovine, and yeast genomes [2,5,6]. In a rat wound healing
model, Soo et al. identified and cloned a rat ortholog of MDA-7/IL-24, the expression
of which was elevated in fibroblast-like cells during the inflammatory and granulation
phase of wound healing [24]. In 2000, Zhang et al. cloned Rat IL-24 (MOB-5) by differential
display as a differentially expressed gene induced by oncogenic Ha-Ras in non-transformed
Rat-1 cells [25]. MOB-5 encodes a cytokine-like secreted protein, shares sequence identity
at both the DNA and a protein level to human MDA-7/IL-24 [26]. Human MDA-7/IL-
24 and rat C49A/MOB-5 only share ∼58.7% homology in their amino acid sequences
and display diverse growth-related functions, which suggest that they may be related
molecules, rather than actual homologues [18]. Schaefer et al. identified a murine ortholog
of human mda-7, which is known as FISP (Interleukin 4-induced secreted protein) [27]. FISP
is shown to be expressed in Th2 cells during their differentiation, exhibits 93% and 69%
amino acid similarity to rat c49a and human MDA-7, respectively, and possesses antitumor
properties [18,27]. Sandey and colleagues studied the genomic structure and expression
profile of the canine ortholog of the human mda-7/IL-24 gene and found that the mda-7
locus is evolutionarily conserved in dogs, but it has a more restrictive pattern of tissue
expression than in humans [28]. Five splice variants of canine mda-7 were reported that
encode four protein isoforms of the canine MDA-7. Similar to human MDA-7/IL-24, canine
MDA-7 has a potential signal peptide and conserved IL-10 signature motif [28]. Due to
the high amino acid sequence similarity with human MDA-7/IL-24, canine MDA-7 is also
predicted to have similar antitumor properties which currently are under investigation. In
summary, although mouse (FISP), rat (MOB-5) and canine MDA-7 display wide-ranging



Int. J. Mol. Sci. 2022, 23, 72 4 of 26

sequence homologies with human MDA-7/IL-24 the functions of these proteins vary
between species [18–20,22,24–28].

The human IL-24 gene contains 6 introns and 7 exons, and is located within the
1q32-33 chromosome in the cluster region of IL-19 and IL-20 cytokine genes [29–31]. Nearly
24–33% amino acid sequence homology has also been reported with other IL-20 cytokine
family members [22]. Interestingly, despite its long history of interesting and novel func-
tions, the structural details have only recently been revealed by determining the crystal
structure of the ternary complex of IL-24 and its receptors IL-22R1 and IL-20R2 at 2.15Å
resolution [32]. Lubkowski et al. also reported on the low stability of the IL-24 protein
due to lack of disulfide structural restraint [32]. This study also clarified the higher affinity
of IL-20R2 than IL-22R1 receptor for the MDA-7/IL-24 cytokine [32]. Notwithstanding
the structural details, studies suggest that although, by sequence similarity, IL-24 belongs
to the subfamily of IL-10, its specific arrangement of disulfide bonds and unique surface
properties renders it a special identity as a one of its kind unique antitumor cytokine. Its
cytokine activity, secretion and stability are partially dependent upon its post-translational
modifications including glycosylation (for solubility and bioavailability) and disulfide
bonds (for secretion from host cells) [33].

3. Transcriptional Regulation of MDA-7/IL-24

The gene promoter region of the mda-7/IL-24 gene was initially characterized in
HO-1 cells in the Fisher laboratory, and upon IFN-ß + Mezerein treatment, its expres-
sion was dependent upon C/EBP-β (member of CEBP family) and c-Jun (member of
AP-1 family) transcription factors. These transcriptional regulators directly bind to the
MDA-7/IL-24 promoter to elevate gene expression [34]. The mechanism underlying a
gradual decrease in expression during melanoma progression involves AU rich 3′ UTR
elements (ARE) in the MDA-7/IL-24 transcript, which renders the MDA-7/IL-24 mRNA
very unstable. This loss of mRNA stability can be rescued by IFN-ß + Mezerein treatment,
resulting in the expression of mda-7/IL-24 [35]. Although the principal factor regulating the
expression of mda-7/IL-24 is its mRNA stability, a major pathway reported to be involved
in the induction of mda-7/IL-24 expression due to IL-1ß treatment in keratinocytes is the
p38 MAPK signaling pathway. Furthermore, inhibition of this pathway leads to decreased
MDA-7/IL-24 protein expression due to the destabilization of mda-7/IL-24 mRNA [36].
MDA-7/IL-24 expression was also reported at elevated levels in the inflamed mucosal
tissue of inflammatory bowel disease patients and similar regulatory mechanisms, i.e.,
AP-1 and CEBP, mediated activation of the mda-7/IL-24 promoter region due to IL-1ß
stimulation in human colonic subepithelial myofibroblast (SEMF) cells [37].

Epigenetic processes are important modulators of the transcriptional regulation of tu-
mor promoting and tumor suppressor genes, including mda-7/IL-24 transcriptional control.
In human melanoma (A375) cells, the HDAC inhibitors, sodium butyrate and Tricho-
statin A (TSA), upregulate MDA-7/IL-24 expression and downregulation is observed
upon overexpression of the HDAC4 enzyme [38]. Recently, our group has shown that
MDA-7/IL-24 delivery, either by means of a type 5 adenovirus (Ad.5-mda-7) or with puri-
fied MDA-7/IL-24 protein, inhibits the DICER regulatory mechanism that is essential for
microRNA (miRNA) processing in cells [39]. miRNAs are small noncoding RNAs that func-
tion as major players of posttranscriptional gene regulation in diverse species. In mammals,
the biogenesis of miRNAs is executed by cooperation of multiple biochemical reactions
including processing of miRNA precursors by two central endoribonucleases, Drosha and
Dicer [40]. These studies suggest a unique relationship between mda-7/IL-24 and miRNA
production The process of DICER downregulation was specific for only mature miRNA-221
(not for pri-miRNA-221) and this effect was very specific against all cancer cells, without
effecting normal prostate epithelial cells (Figure 2). Additionally, no adverse effects or
changes in miRNA were observed relative to other miRNA processing cofactors, including
Argonaute or DROSHA [39]. Several previous reports also establish the use of MDA-7/
IL-24 and epigenetic therapeutics as a combination treatment against cancer [41–43]. An
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Ad expressing both MDA-7/IL-24 and miRNA-34a under an endogenous E3 promoter dis-
played higher antitumor activity than the individual therapeutic activity of these molecules
when used alone in hepatocarcinoma (HCC) cells [44].
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Figure 2. mda-7/IL-24-mediated DICER regulation is controlled by the transcription factor MITF.
mda-7/IL-24 downregulates MITF in different cancer cell lines (A,B), but not in normal RWPE-1 cells
(A). DU-145 (C) and MDA-MB-231 cells (D) were transfected with vector or MITF, and then treated
with Ad.null or Ad.mda-7. RNA was isolated 72 h post infection, and real-time quantitative PCR was
done to check the level of DICER. DU-145 (E) and MDA-MB-231 cells (F) were treated as described in
(C,D), total protein was isolated, and Western blotting was done with DICER and MITF antibodies.
Actin was used as a loading control. (G) Schematic representation of regulation of the miRNA
processing enzyme DICER by mda-7/IL-24. MDA-7/IL-24 downregulates the transcription factor
MITF in a ROS-dependent manner, which in turn downregulates DICER. RWPE-1 (immortalized
human prostate epithelial cell line); DU-145 (human prostate cancer cell line); MDA-MB-231 (human
breast cancer cell line); and A549 (human lung cancer cell line). Reprinted by permission from
Pradhan et al., 2019 [39]. *: p < 0.05.

4. Tumor Suppressor Role of MDA-7/IL-24
4.1. Apoptosis and Autophagy

The tissues of multicellular organisms consist of multiple cell types that are organized
into a highly organized hierarchy and complex structure. The regulation of this hierarchy is
not only regulated by cell-division, but also through cell death. The process of programmed
cell death, also known as apoptosis, occurs due to activation of an intracellular death pro-
gram removing non-essential and damaged cells (Figure 3). Autophagy is a self-regulatory
process that is important for balancing sources of energy in evolving situations such as
stress (nutrient, hypoxia) [45]. A group of intracellular proteases called caspases are present
as inactive pro-enzymes, activated by proteolytic cleavage.
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Figure 3. The relationship between apoptosis and autophagy. The schematic model of autophagy-
apoptosis crosstalk during ER stress. The autophagy inducer, the apoptosis inducer, and the ER stress
sensor (ERSS) are denoted by isolated green, red, and blue boxes, respectively. Dashed line shows
how the molecules can influence each other, while blocked end lines denote inhibition. Reprinted by
permission from Holczer et al., 2015 [46].

The mitochondria are central communication command centers for both caspase-
dependent and caspase-independent death pathways. Mitochondria respond to multiple
death stimuli including those in which pro-apoptotic Bcl2 family proteins, such as Bax/Bak,
induce mitochondrial membrane permeabilization and cause the release of apoptotic
molecules [47–51]. Multiple death stimuli with or without the involvement of the classical
Bcl family proteins converge on the mitochondria to trigger the release of pro-apoptotic
molecules to initiate the death cascade [47,50,52].

MDA-7/IL-24 regulates mitochondrial apoptotic pathways and oxidative stress
(Figure 4) [7,17–20,53–55]. Direct anti-cancer effects are evident when MDA-7/IL-24 is
overexpressed in cancerous cells [4–7,17–20,55]. MDA-7/IL-24 overexpression leads to
up-regulation of pro-apoptotic genes such as Bax, Bad and others and downregulation
of anti-apoptotic genes such as Bcl-xL and Bcl-2 in cancer cells. This alteration in expres-
sion levels of pro-apoptotic genes and anti-apoptotic genes tilts the balance toward cell
death. MDA-7/IL-24 induces cell-death/apoptosis by promoting endoplasmic reticulum
(ER) stress-induced apoptosis and toxic autophagy (Figure 4) [6,7,16–21,55]. Induction of
ceramide production contributes to ER stress-induced apoptosis in cancer cells [56–58]. The
interaction of MDA-7/IL-24 occurs with its receptors IL-20/IL-22, leading to the activation
of downstream signaling cascades operated by reactive oxygen species (ROS) (Figure 5).
The modulation by ROS further regulates the miRNA processing enzyme DICER. The sub-
class of miRNAs, miRNA-221 is considered to be downregulated by MDA-7/IL-24 which
activates transcriptional target Beclin-1 [59,60]. The upregulation of Beclin-1 induces toxic
autophagy leading to apoptotic death (Figure 5) [59].



Int. J. Mol. Sci. 2022, 23, 72 7 of 26

Int. J. Mol. Sci. 2022, 22, x FOR PEER REVIEW 7 of 27 
 

 

 
Figure 4. Model of mda-7/IL-24-induced apoptosis in cancer cells. Outline of proposed selective 
cytotoxic effects of mda-7/IL-24 on cancer versus normal cells. When ectopically overexpressed, 
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secretory signal in the protein. Accumulation of MDA-7/IL-24 protein in transformed/tumor cells in 
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transduction pathways and/or potentially enters cancer cells and activates pro-apoptotic pathways 
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dysfunction. A combination of pathways triggered by mda-7/IL-24 results in transformed cell-spe-
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Figure 4. Model of mda-7/IL-24-induced apoptosis in cancer cells. Outline of proposed selective
cytotoxic effects of mda-7/IL-24 on cancer versus normal cells. When ectopically overexpressed,
MDA-7/IL-24 localizes in the ER/Golgi compartments, regardless of the presence or absence of a
secretory signal in the protein. Accumulation of MDA-7/IL-24 protein in transformed/tumor cells in
this compartment triggers apoptosis, toxic autophagy and induction of ceramide that could involve
induction of ER stress and/or reactive oxygen species in mitochondria. MDA-7/IL-24 activates signal
transduction pathways and/or potentially enters cancer cells and activates pro-apoptotic pathways
by localization and accumulation in the ER/Golgi compartment and/or by inducing mitochondrial
dysfunction. A combination of pathways triggered by mda-7/IL-24 results in transformed cell-specific
apoptosis (or toxic autophagy). Adapted by permission from Dash et al., 2010 [55].
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signaling pathway mediated by reactive oxygen species (ROS). ROS regulates DICER and through this
molecule MDA-7/IL-24 downregulates miR-221, which in turn upregulates Beclin-1 to induce toxic
autophagy leading to cell death. The transition of protective to toxic autophagy is explained by the
cleavage of ATG5 by Calpain, which is also mediated by ROS induced from MDA-7/IL-24 treatment.
Reprinted by permission from Emdad et al., 2020 [7].

4.2. Anti-Angiogenesis

Angiogenesis is the process of new growth of blood vessels from the existing vas-
culature. It occurs throughout life in both health and disease, beginning in utero and
continuing through old age. No metabolically active tissue in the body is more than a few
hundred micrometers from a blood capillary, which is formed by the process of angiogene-
sis. Capillaries are needed in all tissues for diffusion exchange of nutrients and metabolites.
Changes in metabolic activity lead to proportional changes in angiogenesis and, hence,
proportional changes in the number and distribution of capillaries. Oxygen plays a pivotal
role in this regulation. Angiogenesis critically regulates the growth of cancer because solid
tumors need a blood supply if they are to grow beyond a few millimeters in size. Tumors
can actually cause this blood supply to increase by secreting chemical signal molecules
that stimulate angiogenesis [61]. Tumors express molecules such as vascular endothelial
growth factor (VEGF), a signaling protein that promotes the growth of new blood vessels
and interleukin-8 (IL-8), which facilitates the production of tumor blood vessels [62]. The
regulation of tumor angiogenesis occurs through a regulated balance between angiogenic
and anti-angiogenic processes. Many clinical studies have tested various anti-angiogenic
drugs designed to inhibit tumor growth by blocking tumor angiogenesis. The regulation
of angiogenesis in a tumor is defined at multiple levels, either by obstructing new vessel
formation or blocking the vessel itself.

MDA-7/IL-24′s anti-angiogenic effect is evident in human umbilical vascular endothe-
lial cells, also known as HUVEC [63]. Infection of HUVEC cells with Ad.mda-7 inhibits
endothelial cell differentiation [63,64]. MDA-7/IL-24 protein secreted from Ad.5-mda-7
infected HEK293 cells has potent anti-angiogenic activity and can inhibit the differentiation
of endothelial cells more potently than endostatin [63]. This cytokine also inhibits the
migratory potential of endothelial cells [63]. Experimental evidence suggests that MDA-
7/IL-24 treatment inhibits blood vessel formation in a dose-dependent manner in vitro [65].
Similarly, treatment of tumor xenografts with MDA-7/IL-24 reduces expression of angio-
genesis markers [66]. MDA-7/IL-24 protein results in the inhibition of pro-angiogenic
factors such as VEGF and basic fibroblast growth factor [67]. The PI3K/Akt signaling
cascade plays a seminal role in the regulation of angiogenesis, and the downregulation of
phosphor-Akt by MDA-7/IL-24 can therefore negatively modulate angiogenesis [63,65].
Combined treatment of mda-7/IL-24 gene therapy with radiotherapy resulted in better
outcomes in NSCLC than only radiotherapy [67]. The inhibitory effect of MDA-7/IL-24 on
VEGF regulation is mediated by Src kinase [68]. A study by Inoue et al. revealed that
MDA-7/IL-24 inhibits c-Src kinase activity and abrogates STAT-3 binding to the VEGF
promoter, which ultimately results in a decrease in VEGF mRNA and protein levels [68].

4.3. Anti-Metastasis and Anti-Invasion

Cell migration is a pivotal component of cell invasion where motile cells can navigate
through the extracellular matrix within a tissue or infiltrate into adjacent tissues. Can-
cer cells that become invasive may disseminate to secondary sites and form metastases
(Figure 6). There is evidence that mda-7/IL-24 blocks the migration and invasion of can-
cerous cells [69]. This anti-cancer outcome directly correlates with downregulation of
various signaling cascades such as expression of PI3K (phosphatidylinositol 3-kinase), FAK
(focal adhesion kinase), and MMP-2 and MMP-9 (matrix metalloproteinase-2 and 9) [69].
mda-7/IL-24 induces potent anti-invasion and anti-metastasis activities in cancers of the
cervix, lung, liver and prostate [69–73]. The pathways involved in regulating invasion and
metastasis include both receptor-independent as well as receptor-dependent processes [19].
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4.4. Bystander Effect

An important component of mda-7/IL-24′s broad-spectrum antitumor activity involves
cytokine secretion that mediates “bystander” anticancer activity [6,7,17–21,33,55,65]. This
activity is displayed by both normal and cancer cells, while only the cancer cells die
when mda-7/IL-24 is expressed [75]. The process is initiated through secreted MDA-7/IL-
24 protein interacting with dimeric IL-20/IL-22 receptors and operates through an au-
tocrine/paracrine loop [75–77]. With very few exceptions, most normal and cancer cells
contain either IL-20R1, IL-20R2 and/or IL-22R1 receptors, which can form dimeric receptor
complexes, allowing them to respond to exogenous MDA-7/IL-24 resulting in autocrine
induction of MDA-7/IL-24 production, the autocrine/paracrine loop [76]. The concept of
“bystander” antitumor effect of MDA-7/IL-24 was first observed in pancreatic carcinoma
cells [78,79] and later shown to be the result of an autocrine/paracrine loop [76]. Although,
mda-7/IL-24 mRNA is actively expressed in a wide array of human cancers when infected
with a replication incompetent Ad expressing mda-7/IL-24 (Ad.mda-7), pancreatic cancer
cells display a unique resistance phenotype involving the inability to translate mda-7/IL-24
mRNA into protein [78,79]. After infection of human pancreatic cancer cells with Ad.mda-7,
at doses effective in other cancers, growth was not suppressed, and apoptosis was not
induced. Pancreatic cancer is a complex disease without any currently effective therapy [80].
A predominant genetic change in 85 to 95% of pancreatic cancers is activation of the K-Ras
oncogene [81]. When K-Ras expression was abolished using pharmacological or genetic
approaches in combination with Ad.mda-7 induction of growth suppression and apoptosis
with production of MDA-7/IL-24 protein was evident [78,79]. Though a small number of
cells received both agents, the combination treatment resulted in the killing of the majority
of the pancreatic cancer cells, for the first time supporting the concept of a “bystander”
antitumor effect.

Chada et al. studied the ‘bystander’ activity of MDA-7/IL-24 in melanoma cells
where the glycosylated MDA-7/IL-24 produced cell death in a dose-dependent manner,
which was mediated through the IL-24 receptors [82]. MDA-7/IL-24 protein induced
phosphorylation and nuclear translocation of STAT3 in melanoma cells via both type 1 and
type 2 IL-20R and induced dose-dependent cell death in melanoma tumor cells. The effect
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of MDA-7/IL-24 receptor engagement resulted in the up-regulation of BAX and subsequent
apoptosis induction mediated by STAT3-independent signaling. In normal cells, MDA-
7/IL-24 can bind to its cognate receptors and induce phosphorylation of STAT3, without
cytotoxic sequelae. This study defined a tumor-selective cytotoxic “bystander” role for
secreted MDA-7 protein and identified a novel receptor-mediated, STAT3-independent, and
PKR-independent death pathway [82]. These results support the hypothesis that in specific
contexts and cell types, tumor suppression with mda-7/IL-24 can be promoted by a subset of
cancerous cells producing and secreting MDA-7/IL-24 that suppress adjacent tumor cells,
inhibiting survival and tumor development, i.e., “bystander” anti-cancer activity [75–77,82].

Su et al., showed that when the cancer cells cocultured with MDA-7/IL-24 secreted
from Ad.mda-7-infecetd normal cells, it resulted in the suppression of their growth, invasion
and induction of apoptosis [75]. Additionally, the combination of secreted MDA-7/IL-
24 and radiation induced a potent “bystander” antitumor effect in both sensitive and
resistant prostate cancer cells. Sauane et al. documented that recombinant MDA-7/IL-
24 protein could robustly induce expression of endogenous mda-7/IL-24, which induced
the signaling events necessary for “bystander” antitumor action [76]. This elegant study
showed that blocking endogenous mda-7/IL-24 by siRNA inhibited exogenous MDA-7/IL-
24-mediated apoptosis. Mechanistically it was shown that MDA-7/IL-24 protein induced
its own mRNA stabilization without activating the promoter and this posttranslational
modification depended on de novo protein synthesis [76].

Further confirmatory evidence of MDA-7/IL-24′s “bystander” activity emerged from
in vivo animal studies [59,83,84]. In these studies, tumor cells were injected to form tumors
in both flanks of nude mice and only the tumor on one side received treatment. Interestingly,
a decrease in tumor size was evident not only in the treated tumor but also in the untreated
tumor. The inhibitory action on distant tumors was attributed at least in part to the
direct “bystander” antitumor activity of the secreted MDA-7/IL-24 which, upon receptor
engagement located in the untreated/distant tumors, was able to elicit the signaling events
and antitumor response.

4.5. Immunogenic Cell Death

MDA-7/IL-24 is expressed in various tissues of the immune system including the
spleen, peripheral blood leukocytes (PBL), thymus, and normal melanocytes and func-
tions as a cytokine [6]. MDA-7/IL-24 was shown to play important roles in infectious
diseases, wound healing and autoimmune diseases [6,85]. As an anti-cancer agent, MDA-
7/IL-24 controls multiple types of tumors, by inducing apoptosis and toxic autophagy,
anti-invasion, anti-angiogenesis, sensitizing cancer cells to radiation therapy and
chemotherapy [6,7,16–21,55,65]. Recent studies also document an immune modulating
role of MDA-7/IL-24 as an alternate (or likely additive) mechanism mediating antitumor
effects. Caudell et al. demonstrated that treatment of peripheral blood mononuclear
cells (PBMC) with MDA-7/IL-24 protein potently induced secretion of several immune
modulatory cytokines including IL-6, TNF-α, IFN-γ, IL-1β, and GM-CSF, indicating that
MDA-7/IL-24 can function as a pro-Th1 cytokine [64,86]. The same research group also
reported that the treatment of melanoma cells with Ad.mda-7 induced secretion of IL-6 and
IFN-γ [64].

Since its discovery, most MDA-7/IL-24-related in vivo studies were performed in
immune deficient nude mice xenograft models, hence the function of MDA-7/IL-24 as
an immune modulator in vivo in an intact immune-competent setting required further
evaluation. Using a syngeneic murine model of fibrosarcoma (UV2237m) Miyahara et al.
showed that adenoviral-mediated mda-7/IL-24 transfer induced anticancer immunity [87].
They found immunocompetent mice injected with Ad.mda-7-transduced UV2237m failed
to develop any tumors and when these tumor-free mice were challenged with parental
tumor cells, no tumor growth was apparent, suggesting a potential vaccine effect of MDA-
7/IL-24 [87]. Ma et al. used a murine model of colon cancer with an intact immune system
and reported that MDA-7/IL-24 could inhibit colon cancer progression by exerting immune
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stimulatory effects [88]. Specifically, they observed that MDA-7/IL-24 promoted IFN-γ
secretion from CD4 + and CD8 + T cells and enhanced the cytotoxicity of CD8 + T cells
in vivo. The studies by Gao et al. investigated the therapeutic efficacy of Ad.mda-7 in
combination with Ad.sgrp170 (grp170, an ER resident chaperone) in a TRAMP-C2 prostate
cancer model [89]. The study found that the combination treatment of MDA-7/IL-24 and
grp170 was more efficient in inhibiting prostate tumor growth as compared to either agent
alone. The combined administration of secretable grp170 and MDA-7/IL-24 significantly
enhanced the antigen-specific CD8 + T-cell frequency and tumor-specific cytolytic activity,
which was further supported by an in vivo antibody depletion study [89]. However,
CD8 + depletion did not completely nullify the anticancer effects mediated by the combined
therapies, indicating the involvement of other immune effector cells. To further comprehend
the role of MDA-7/IL-24 in vivo and elucidate the immune-modulating role in syngeneic
breast cancer models with an intact immune system, Menezes et al. performed in vivo
experiments using several transgenic models [90]. The results documented that MDA-
7/IL-24 expression could delay tumor onset in MMTV-MDA-7/MMTV-Erbb2 compound
transgenic mice, and could also suppress tumor growth and exhibit “bystander” antitumor
effects in MMTV-PyMT mice. Interestingly, the investigators found that the intra-tumoral
injection of Ad.5-CTV (replication competent cancer-selective adenovirus expressing MDA-
7/IL-24; a cancer terminator virus) resulted in increased CD8 + T cell infiltration and a
marked increase in IFN-γ expression in MMTV-PyMT transgenic mice [90]. The enhanced
immune activation was observed in both MDA-7/IL-24-treated as well as non-treated
tumors, suggesting that a systemic immune response was induced by MDA-7/IL-24 in
animals with an intact immune system.

5. MDA-7/IL-24 as a Single Therapeutic

Published studies over the last 20 years have validated the finding that forced ex-
pression of MDA-7/IL-24, either by transfection of tumor cells with an mda-7/IL-24 cDNA
containing plasmid, or by use of a recombinant adenovirus (Ad.mda-7) expressing mda-7/IL-
24, significantly inhibits the growth of a diverse spectrum of cancer cells, both in vitro and
in vivo in animal models as a single therapeutic [4–7,16–21,55,65]. Although mda-7/IL-24
has consistently proven efficient in inducing antitumor effects in multiple types of cancers
when delivered by Ads. or plasmid transfection, there is always room for better and more
efficient and specific delivery both in vitro and in vivo. Accordingly, studies have focused
on improving the delivery of mda-7/IL-24 to tumor cells and defining ways to enhance
anti-cancer effects.

5.1. Virus-Mediated Gene Delivery

The majority of studies have utilized a replication incompetent Ad expressing mda-
7/IL-24 (Ad.mda-7) for delivering MDA-7/IL-24 to cancer cells. Several modifications have
been explored to improve selective delivery to cancer cells, which we will briefly discuss in
this section.

5.1.1. Tropism Modification

The Ad.mda-7 virus tested in most studies employ serotype 5 Ads (Ad.5), which utilize
coxsackie-adenovirus receptors (CARs) on the cell surface as the prime means of infecting
cells and the efficiency of infection is dependent upon the level of CAR expression on target
cells [91]. To mitigate this issue related to poor infectivity of low-CAR cells, several research
groups, including ours, used “tropism modification” techniques which incorporate type
3 Ad sequences within the Ad type 5 virus knob. This modification (Ad.5/3) promotes
high infectivity in low as well as high CAR expressing tumor cells showing equal efficacy
when compared with the original Ad.5 [58,92,93]. The improved transgene delivery and
efficacy of an Ad.5/3 recombinant virus expressing mda-7/IL-24, has been demonstrated in
prostate cancer, glioma, colorectal, and renal cancer [58,92–94].
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5.1.2. Conditionally Replication Competent Ad (CRCA)

A common obstacle often encountered when using Ad-mediated gene therapy is the
stimulation of immune responses resulting in viral neutralization and clearance following
multiple Ad injection. Considering these drawbacks, CRCAs were engineered that induce
oncolysis by cancer-specific replication and were evaluated in clinical trials [8–10,95]. To
improve the therapeutic efficacy and cancer-specific delivery of MDA-7/IL-24, Sarkar et al.
created a bipartite CRCA expressing mda-7/IL-24 [10,83,84,96], in which E1A and E1B (repli-
cation component) expression is regulated by a cancer-selective minimal active region of
the promoter of progression elevated gene-3 (PEG-3), which functions selectively in diverse
cancer cells with limited activity in normal cells [97,98]. This virus, also called a cancer
terminator virus (CTV), induces cancer-specific replication and a second CMV promoter in
the virus promotes MDA-7/IL-24 expression uniquely in cancer cells as a consequence of
virus replication [83,84,96]. The robust and superior cancer selective activity of the CTV
(developed both in serotype 5 ad 5/3 Ads) was validated in diverse cancers including
prostate, glioma, melanoma, breast, pancreatic and neuroblastoma both in vitro and in vivo
using established cancer cell lines, patient-derived cancer cells, human tumor xenografts
in nude mice, murine tumor xenografts in immune competent mice and genetically en-
gineered transgenic mouse models of several cancers [8–10,83,84,90,96,99–101]. Another
CRCA (ZD55-IL-24) was created to deliver mda-7/IL-24 using the ZD55 vector, in which
the adenoviral E1B 55-kDa gene was deleted to control replication in cancer cells with
p53 dysfunction. The efficacy of the virus was tested in colorectal cancer and infection of
colorectal cancers with ZD55-IL-24 showed a greater antitumor effect than observed with
Ad.mda-7/IL-24 or ONYX-015 (a virus that preferentially replicates in cells with defective
p53) [102]. The efficacy of ZD55-IL-24 was also confirmed in other cancer indications,
including B-lymphoblastic leukemia, leukemia, breast cancer and melanoma. [103–106].
These profound results with CTV and other CRCAs expressing mda-7/IL-24 support their
use as a potential therapeutic for diverse cancer indications.

5.1.3. Ultrasound-Targeted Microbubble-Destruction (UTMD): A Strategy for Targeted
Delivery of Therapeutic Agents

Major hurdles limiting efficient Ad gene therapy in the clinic include the host’s antivi-
ral immune responses, which can limit multiple administration, and viral entrapment in
the liver, when delivered systemically using the intravenous route [107]. Ultrasound (US)
contrast agents (microbubbles) have recently emerged as a potential agent for effectively
delivering therapeutics to target tissues [108–110]. Microbubbles (MB) containing thera-
peutics (Ads/small molecule drugs/chemotherapeutic drugs) can be injected in peripheral
veins, and when sonoporated using ultrasound causing the focal release of entrapped
materials in the targeted region (UTMD; ultrasound targeted microbubble destruction).
Greco et al. showed that Ad.mda-7 complexed in MBs when injected and sonoporated,
efficiently reduced tumor size in tumor-bearing mice [111]. Dash et al. tested the efficacy of
Ad.5/3-mda-7 and BI-97C1, an MCL-1 inhibiting small molecule, in a spontaneous model
of prostate cancer using the Hi-Myc mouse [112]. The Hi-Myc mice received intravenous
injections of complement-treated MBs containing Ad.5/3-mda-7 virus, followed by sonopo-
ration in the prostatic region. This study revealed that the sizes of the prostates of Hi-Myc
mice treated with the combination of Ad.5/3-mda-7 and the Apogossypol derivative BI-
97C1 were significantly smaller compared with treatment with either agent alone or the
vehicle control [112,113]. A study by Sarkar et al. further refined the UTMD approach
using a decorated MB (D-MBs), in which biotinylated anti-V-CAM-1 was complexed with
streptavidin microbubbles resulting in D-MBs [114]. These D-MBs accumulated in the
tumor vasculature and, after sonoporation in the prostate region in the Hi-Myc mice, the
therapeutic viruses were released. These studies support the use of MB/D-MBs and UTMD
as a novel systemic delivery modality to deliver viruses (such as Ad.mda-7/CTV) to internal
tumors (such as prostate tumors in Hi-Myc mice), resulting in profound anti-cancer activity.
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5.2. T Cells Expressing MDA-7/IL-24

One recent study by Liu et al. evaluated the therapeutic activity of tumor-reactive
or antigen-specific T cells genetically engineered to express human MDA-7/IL-24 [11].
Current cellular immunotherapies that use tumor-infiltrating lymphocytes or engineered
chimeric antigen receptor (CAR)-T cells, have shown limited efficacy in the treatment of
solid cancers, which are known to be highly heterogenous and display variable antigen
expression [115,116]. Liu et al. used multiple clinically relevant mouse syngeneic tu-
mor models, including a transgenic spontaneous prostate cancer model. MDA-7/IL-24-
expressing T cells (T-MDA-7) were superior to unmodified T cells in suppressing primary
mouse prostate cancer and melanoma as well as inhibiting cancer metastases [11]. Hi-Myc
transgenic mice that spontaneously develop prostate cancer were also used to evaluate
the therapeutic potency of human MDA-7/IL-24-producing T cells. Different cohorts of
Hi-Myc mice were treated with tumor-sensitized T cells that were engineered to produce
human MDA-7/IL-24. Examination of the prostates after euthanizing animals at 6 months
showed that T cell-MDA-7 therapy was more effective than mock engineered T cells at
inhibiting prostate cancer progression. Administration of MDA-7/IL-24-producing T cells
was associated with elevation of mRNA levels of human MDA-7/IL-24, and mouse TNF-
α, and IFN-γ in prostate tissues, as a result of T-cell trafficking to the tumor sites and
homing to lymphoid organs [11]. Histological analysis of prostate tissues showed that treat-
ment with MDA-7/IL-24-producing T cells significantly reduced progression of prostate
cancer. Altogether, these findings suggest that MDA-7/IL-24-engineered T cells exhibit
superior anticancer activity by offsetting multiple immune limiting factors in the tumor
microenvironment and targeting cancer cells beyond an antigen-specific fashion [11].

5.3. Recombinant MDA-7/IL-24 Protein

Initial studies by Sauane et al., indicated that recombinant MDA-7/IL-24 protein (His-
MDA-7) induced endogenous mda-7/IL-24 expression, which then instigated signaling
events necessary for “bystander” antitumor effects [76]. Using recombinant His-MDA-7 pro-
tein, Dash et al. observed that MDA-7/IL-24, after binding to its cognate receptors, induced
intracellular SARI (suppressor of AP-1, regulated by IFN) expression [23]. Activation of
cognate IL-20/IL-22 receptors by MDA-7/IL-24 resulted in phosphorylation of p38 MAPK
(mitogen activated protein kinase) signaling pathways, which in turn activated GADD
(growth arrest and DNA damage inducible) genes, subsequently leading to apoptosis.
One recent study by Pradhan et al. suggests that recombinant His-MDA-7 downregulated
miR-221, exclusively in IL-20/IL-22 receptor positive cancer cells [59]. When the complete
sets of cognate receptors were reconstructed in receptor negative cells, these cells then dis-
played sensitivity to His MDA-7 treatment that resulted in the downregulation of miR-221.
Further studies by our group elucidated the underlying mechanism of regulation of miR-
NAs by MDA-7/IL-24 [39]. We found that MDA-7/IL-24 (either by Ad-mediated delivery
or with pure recombinant protein) downregulated DICER in a reactive oxygen species-
dependent manner and the overexpression of DICER partially rescued MDA-7/IL-24-
mediated cell death in cancer cells. Additionally, we observed that MDA-7/IL-24-mediated
DICER regulation was mediated by MITF (transcription factor melanogenesis-associated
transcription factor).

5.4. Nanoparticle-Mediated Delivery

Nanoparticle-mediated gene delivery is an alternative methodology that is suitable
for systemic applications in the clinic [117,118]. Recently, nanoparticles have emerged as
a powerful tool to deliver therapeutic payloads to disease sites, which include nucleic
acids, pure proteins, virus-like particles, small molecule drugs, chemotherapeutic agents,
etc. Nanoparticles can also be delivered as biodegradable microspheres, bioresorbable
solid implants, injectable gels, and drug-eluting coatings. Ramesh and colleagues eval-
uated nanoparticle-mediated delivery of mda-7/IL-24 in primary and disseminated lung
cancer [119]. The results of the study revealed that DOTAP:chol (DOTAP:Cholesterol)
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nanoparticles efficiently deliver mda-7/IL-24 to human lung tumor xenografts, resulting in
growth suppression in both primary and metastatic tumors and they also inhibited tumor
angiogenesis. Additionally, they found that DOTAP:Chol–mda-7/IL-24 nanoparticles also
inhibited growth of murine tumors in syngeneic mouse cancer models [119]. Future studies
using the nanoparticle technology to deliver MDA-7/IL-24 are definitely warranted.

6. Combination Effects of MDA-7/IL-24 with Other Therapeutic Agents

Cancer is a complex, heterogenous, multi-factorial disease that occurs as a result of dys-
regulated epigenetic and genetic events controlling critical signaling mechanisms involved
in cell growth, resistance to apoptosis and other physiological processes [120]. Cancer
patients frequently develop resistance to a targeted therapy due to the activation of com-
pensatory pathways that cancer cells exploit to survive. As such, combination approaches
with multiple targeted agents may provide superior therapeutic benefit as compared to a
single agent alone, which continues to be observed in pre-clinical studies and in the clinic.
Although MDA-7/IL-24 is effective when delivered as a single therapy, antitumor activity
is further augmented in a synergistic manner when this cytokine is combined with other
therapies, including, chemotherapy, radiation, antibody-based therapies, small molecule
therapies, and immunotherapies (summarized in Table 1) [6,7,16–21,55,65].

Table 1. Combinatorial therapy of combining mda-7/IL-24 with other therapeutic modalities.

COMBINATION
TREATMENT CANCER TYPE MECHANISM REF

Ad.5mda-7 +
bevacizumab Lung tumor xenograft

Treated lung tumor cells showed
lower VEGF ligand-receptor
binding, lower cell survival,
significant growth arrest and

apoptosis.

[121]

Ad.5/3mda-7 +
HDAC inhibitor Renal cell carcinoma

This combination led to activation
of CD95,

dihydro-ceramide/ROS/Ca2 +
generation and ER stress.

[43]

Ad5.mda-7 +
trastuzumab
(Herceptin)

Breast cancer
Inhibited the β-catenin and AKT

pathway in HER-2/neu
overexpressing breast cancer cells.

[122]

Ad5.mda-7 +
radiotherapy Breast cancer

Mda-7 expressing cells showed
synergistic cytotoxicity and
apoptosis due to decreased

Bcl-2 expression and Bax
upregulation.

[123]

Ad5.mda-7 +
cox-2 inhibitor

(celecoxib)
Breast cancer

Mda-7 treatment downregulated
AKT and simultaneously inhibited

Cox-2 expression, promoting
apoptosis.

[124]

Ad.5/3.mda-7 +
cisplatin/paclitaxel Ovarian cancer

Combination of paclitaxel
significantly enhanced (additive
effect) the tumor cell killing by

Ad5/3.mda-7 + cisplatin
treatment.

[125]

Ad5.mda-7 +
sabutoclax (BI-97C1) Prostate cancer

Sabutoclax inhibited mcl-1 and
synergized with mda-7, preventing
tumor growth, angiogenesis and

regulating immune responses.

[112]
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Table 1. Cont.

COMBINATION
TREATMENT CANCER TYPE MECHANISM REF

F5/35-Zd55-IL-24 +
temozolomide Melanoma

F5/35-zd55-IL-24 and TMZ
increased the level of

pro-apoptotic proteins and
decreased anti-apoptotic proteins.

[126]

IL-24 + cisplatin Cervical cancer

IL-24 (mda-7) enhanced the tumor
chemosensitivity to cisplatin by

downregulating the VEGF, VEGF-c
and PDGF-b expression.

[127]

Zd55-IL-24 +
dichloroacetate Liver cancer

This combination treatment
promoted translocation of Bax

from the cytoplasm to
mitochondria and promoted
apoptosis, without altering

bcl-2 expression.

[128]

IL-24 + Erlotinib Melanoma
IL-24 (mda-7) sensitized melanoma

cells to Erlotinib by modulating
apaf-1 and AKT pathways.

[129]

Tat-IL-24-kdel +
survivin inhibitor

(ym155)
Melanoma

Inhibition of survivin promoted
the apoptosis promoting efficiency

of tat-IL-24-kdel in melanoma
cells.

[130]

vv-IL-24 + luteolin Hepatic cancer

Luteolin promoted vv-IL-24 gene
expression in liver cancer cells

using in vitro and in vivo
experiments.

[131]

Ad.mda-7 + gefitinib Non-small cell lung
cancer

This combination inhibited
p-EGFR, p-ERK and p-AKT levels

in NSCLC cells.
[132]

MDA-7/IL-24 has the unique ability to efficiently kill almost all types of cancer cells,
but pancreatic cancer cells having K-Ras mutations, show an inherent resistance to MDA-
7/IL-24 treatment [78,79,133]. This type of resistance can be successfully reversed by
combining mda-7/IL-24 with antisense K-Ras treatment or inhibition of K-Ras-downstream
ERK1/2 signaling [78]. Subsequent studies by Lebedeva et al. reported that a dietary
monoterpene, perillyl alcohol (POH), at low doses significantly improved the efficacy
of Ad.mda-7 therapy in resistant pancreatic carcinoma cells [134,135]. The mechanism
of the synergistic effects observed in combination therapy involving MDA-7/IL-24 and
POH was attributed to the generation of reactive oxygen species (ROS) blocking of which
with the ROS inhibitor (N Acetyl l Cysteine-NAC) significantly mitigated the growth
inhibitory effects induced by the combination treatment. Other ROS generating therapeutic
agents, including arsenic trioxide, 4-hydroxyphenyl-retinamide (4-HPR), have also been
shown to augment the therapeutic effect of MDA-7/IL-24 in cancers of the pancreas and
kidney [136,137].

Radiotherapy is a standard of care (SOC) treatment option for many cancers. Several
research groups have established that MDA-7/IL-24 can radiosensitize a diverse array of
cancer cell lines both in vitro and in vivo [21,65,67,123,138–143]. The underlying mecha-
nisms involved in this radiosensitization effect include generation of ROS and ceramide
and signaling pathways such as activation of c-Jun NH2-terminal kinase (JNK), p38MAPK-
GADDs. Non-small cell lung cancer (NSCLC) cells are radiosensitized by Ad.mda-7 via
JNK1/2 signaling [67]. Yacoub et al. demonstrated that in glioma, Ad.mda-7 caused ra-
diosensitization in vitro and in vivo, documenting that this sensitization was dependent
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on JNK1/2/3 activation [139,144]. The radiosensitization effect of MDA-7/IL-24 has also
been reported in ovarian, prostate, breast and nasopharyngeal cancers [123,141,142,145].

Ceramide is an important component in MDA7/IL-24-mediated induction of cancer
cell-specific apoptosis. Accordingly, Carmofur (an acid ceramidase inhibitor) promotes
ceramidase accumulation in cells after MDA-7/IL-24 treatment inducing cancer-specific
apoptosis [56]. In combination with trastuzumab/herceptin, Ad.mda-7 has also been re-
ported to decrease the tumor size in pre-clinical animal models containing breast cancer
cells overexpressing Her-2/neu receptors as a result of inhibition of the Wnt signaling
pathway, a promoter of cancer progression [122]. In another study, Ad.mda-7 was used
in combination with bevacizumab in a lung cancer model and the combination treatment
significantly enhanced apoptosis induction in vitro. When used in a lung cancer xenograft
model, tumors receiving Ad.mda-7 plus bevacizumab showed complete tumor regres-
sion at the completion of the study [121]. The combination effect of MDA-7/IL-24 with
temozolomide, an alkylating agent, was investigated in human melanoma and glioma
cells [146,147]. In both cancer contexts, addition of MDA-7/IL-24 helps overcome resis-
tance to temozolomide. In temozolomide-resistant melanoma cells, MDA-7/IL-24 caused
inhibition of O6-methylguanine-DNA methyltransferase (MGMT) resulting in enhanced
temozolomide-induced cell killing [146]. Emdad et al. investigated the efficacy of the
combination of Ad.mda-7 with a selective EGFR inhibitor, gefitinib, in NSCLC [132]. The
investigators found that combination treatment resulted in enhanced apoptotic cell death
in the treated cells by increasing the expression of a downstream effector molecule, RNA-
activated protein kinase. This observation was further extended by Gupta et al. who
demonstrated that combination treatment of either GST-MDA-7 or GST-M4 (a truncated
version of MDA-7/IL-24) and Tarceva (erlotinib) at sub-optimal doses synergistically in-
hibited non-small cell lung carcinoma (NSCLC) cell growth and enhanced apoptosis as
compared to either agent alone [148]. mda-7/IL-24 incorporated in ZD55-IL-24 (an oncolytic
adenovirus) was used in combination with cisplatin in a panel of cancer cells and the com-
bination treatment markedly enhanced the cytotoxicity and apoptosis in all of the cancer
cells tested [149]. Intriguingly, no harmful toxic effect was evident in the normal cellular
counterparts. MDA-7/IL-24 also acted synergistically in colorectal cancer and prostate
cancer cells when combined with the Apogossypol derivatives, BI-97C1 and BI-97D6, which
are pharmacological inhibitors of Mcl-1 [94,112,114]. Combined treatment with Ad.5/3-
mda-7 and BI-97C1 significantly enhanced toxicity in human prostate cancer cells, inhibited
the growth of prostate cancer xenografts in vivo and controlled cancer development in a
transgenic immune-competent mouse model of prostate cancer (Hi-Myc model) [112]. The
combination treatment of Ad.5/3-mda-7 and BI-97C1 caused up-regulation of NOXA, Bax,
Bak and Bim, resulting in toxic autophagy and apoptosis induction. Sorafenib tosylate
(a potent multi kinase inhibitor and a clinically proven FDA approved drug in hepatocel-
lular carcinoma) treatment in combination with MDA-7/IL-24 has also been reported to
kill renal carcinoma cells in vivo in animal models resulting in prolonged survival [150].
MDA7/IL-24 induces cell death by enhancing endoplasmic reticulum (ER) stress and also
leads to an increase in DNA acetylation. Consequently, HDAC inhibitors have also been
reported to work synergistically with MDA7/IL-24 in killing renal carcinoma cells and
glioblastoma [42,43]. The future of MDA-7/IL-24 combination treatments is rife with op-
portunities that need to be explored further, based on its multidimensional therapeutic
ability and cancer cell-specific killing properties. These traits establish MDA-7/IL-24 as
one of the most promising therapeutic cytokines in the cancer research field.

7. Phase I Clinical Trial of MDA-7/IL-24 (Ad.5-mda-7:INGN-241)

The efficacy of MDA-7/IL-24 as a cancer therapeutic has been established in pre-
clinical studies using multiple tumor models, including nude mice, syngeneic mice and
transgenic animals [6,7,16–21,55,65]. Based on profound and selective antitumor activity
in vitro and in animal models, a replication incompetent type 5 Ads expressing MDA-
7/IL-24 (Ad.5-mda-7; INGN-241) was tested in a Phase I clinical trial in patients with
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advanced cancers, including melanomas and carcinomas [17,21,65,151–156]. The virus was
delivered via intra-tumoral injections to 28 patients diagnosed with melanoma, colorectal
cancer, breast cancer, squamous cell carcinoma of the head and neck (SCCHN), lymphoma,
adenocarcinoma, non-small cell lung cancer, hepatoma, sarcoma and carcinomas of the
bladder adrenal gland and parotid gland. The patients enrolled in this clinical study
received prior treatment with radiation, chemotherapies and/or surgery. A dose-escalation
approach was employed, and patients received 2 × 1010 to 2 × 1012 viral particles INGN-
241 (Ad.5-mda-7) injected into the central region of the target tumor. At different time points
(24 h to 30 days post injection), the tumors were resected and evaluated for vector-specific
DNA and RNA, transgenic MDA-7/IL-24 expression, and biological effects. DNA and
RT-PCR analysis revealed a successful gene transfer in 100% of patients that received
the INGN-241 (Ad.5-mda-7) injection. The tumor lesions received INGN 241 (Ad.5-mda-
7) injections showed high levels of MDA-7/IL-24 protein expression, which correlated
well with the apoptotic activity as evidenced by TUNEL assay. Tumor sections were also
evaluated for the expression of β-catenin, iNOS (inducible nitric oxide synthase) and CD31
(angiogenesis marker), all of which were reduced post INGN-241 (Ad.5-mda-7) treatment.
Patients who received multiple injections of INGN-241 (Ad.5-mda-7) did not show any sign
of overt toxicity and a durable clinical response rate (~44%) was observed in a subset of
patients. The most promising response was observed in a patient with metastatic melanoma
with more than 10 distinct lesions. Initially, a lesion in the supraclavicular node (2 × 2 cm)
was injected with INGN-241 (Ad.5-mda-7) and after the sixth injection, a gradual decrease
in the lesion size was evident which continued over the following 2 weeks with no clinical
evidence of the disease (Figure 7). A lesion on the dorsum of the right hand (1.8 × 2.3 cm)
was treated next and with five injections, there was an 84% reduction in the lesion area with
microscopic lymphoplasmacytic infiltrations and extensive coagulative necrosis. A third
lesion in the anterior right thigh (3.5 × 3 cm) showed 35% reduction [152]. This patient
survived more that 600 days post INGN 241 (Ad.5-mda-7) treatment.
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Figure 7. Objective clinical response to INGN 241 (Ad.5-mda-7) in cohort 8 patient with metastatic
melanoma (patient 83). Injected lesion was on right clavicle (dashed circle in (A)). (B) by day 4, the
region is inflamed. (C) At the end of cycle 1 (day 30), the lesion has completely regressed. This
patient was alive > 600 days post INGN 241 treatment. Reprinted by permission from Lebedeva et al.
2007 [65].

The “bystander” activity of MDA-7/IL-24 was also demonstrated in this clinical
trial [151,152]. As an example, a single injection of INGN 241 (Ad.5-mda-7) resulted in
the transduction of only 10% to 30% of the tumor mass, however, intriguingly, 70% of
the tumor cells exhibited signs of apoptosis, supporting the antitumor ‘bystander’ ef-
fect observed in vitro and in vivo in animal models. The immune modulating role of
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MDA-7/IL-24 observed in vitro was also recapitulated in these patients following INGN-
241 (Ad.5-mda-7) injection, as evidenced by a transient increase in circulating cytokines,
such as IL-6, IL-10 and TNF-α [150,151]. At day 15 after injection, the majority of patients
also showed marked increases in CD3+ and CD8+ T cells, suggesting that INGN-241 (Ad.5-
mda-7) may be associated with a Th1 response [151]. These initial clinical studies evaluated
the safety profile, pharmacodynamics, pharmacokinetics of vector-specific DNA, mRNA,
MDA-7/IL-24 protein distribution and its biological effects, both locally and systemically.
In all patients, multiple intra-tumoral injections with INGN 241 (Ad.5-mda-7) were found
to be safe, and any adverse events were relatively mild, which is very promising and
paves a path to develop future clinical trials with improved next generation versions
of MDA-7/IL-24 therapeutic, alone and, more profoundly, in combination with other
treatment modalities.

8. Conclusions and Future Prospective

MDA-7/IL-24, a multifunctional cytokine and member of the IL-10 gene family, dis-
played profound anti-cancer activities in pre-clinical studies and in Phase I clinical trials
in patients with advanced cancers. Several research laboratories in the USA and globally
have studied the biological functions and molecular mechanisms of MDA-7/IL-24 for more
than two decades, which has enriched our understanding about the multiple functions
of this potent cancer therapeutic. Although the results of the Phase I clinical trial were
promising, it is obvious that further improvements in many areas indicated below are
required to maximize the enhanced therapeutic benefits of MDA-7/IL-24 in patients. The
cancer cell-specific killing ability of MDA-7/IL-24 cytokine is still an unresolved mystery,
which may involve differences in altered metabolism, inherent biochemical and oxidative
stress conditions between normal and cancer cells. Specific areas of research that may
provide tangible benefits in improving MDA-7/IL-24 therapeutic properties are shown
schematically in Figure 8. Strategies to achieve this objective include: (1) Genetically engi-
neering newer versions of MDA-7/IL-24, rendering it more stable with increased secretion
(which should enhance further “bystander” anti-cancer activity). (2) Developing a newer
next generation of CRCAs (including CTVs) containing second next generation MDA-7/IL-
24 controlled by more specific and robust cancer-selective promoters. (3) Identification
of new molecules/targets/miRNAs/long non-coding RNAs that can enhance or stabilize
the MDA-7/IL-24 protein. (4) Development of effective systemic delivery approaches for
MDA-7/IL-24. Ad-mediated delivery of MDA-7/IL-24/CTV is very efficient in inhibiting
tumor growth when delivered intratumorally, however, systemic administration of these
therapeutic viruses may be necessary to achieve maximum benefit and for better disease
control. Since MDA-7/IL-24 can initiate autocrine/paracrine production of MDA-7/IL-24,
the systemic administration of this purified protein may cause serious adverse effects
to humans, such as nonspecific inflammation and autoimmunity, which would restrict
its therapeutic application as a pure systemically administered protein. In this context,
using UTMD or nanoparticles to deliver MDA-7/IL-24-based therapies, may obviate these
issues of potential “cytokine storm” effects that might occur upon systemic delivery of
MDA-7/IL-24 as a pure protein. (5) Use of cell-based vehicles (such as T cells, embryonic
stem cells, mesenchymal stem cells, etc.) for targeted delivery of MDA-7/IL-24 is also an
area of active research that would be very useful for developing novel MDA-7/IL-24-based
therapies. (6) Some recent studies are using a fusion engineering approach where MDA-
7/IL-24 is fused with cell penetrating peptides (CPPs) or tumor homing peptides [157,158]
to target it to neighboring tumor sites to enhance its therapeutic efficiency. And finally: (7)
Discovering novel combination therapies with other therapeutics (including chemother-
apy, antibody-based therapy, immunotherapy, repurposed FDA-approved drug, etc.) that
would enhance MDA-7/IL-24-mediated anticancer effects. As we have tried to capture,
MDA-7/IL-24 has significant potential as a therapeutic for multiple primary and metastatic
cancers and exploiting these properties has significant potential to lead to effective and
enduring therapies for cancer.
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