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Abstract

The gastrointestinal tract harbors trillions of microbial species, collectively termed the microbiota, 

which establish a symbiotic relationship with the host. Decades of research have emphasized the 

necessity of microbial signals in the development, maturation, and function of host physiology. 

However, changes in the composition or containment of the microbiota have been linked to the 

development of several chronic inflammatory diseases, including inflammatory bowel diseases. 

Intestinal epithelial cells (IECs) are in constant contact with the microbiota and are critical for 

maintaining intestinal homeostasis. Signals from the microbiota are directly sensed by IECs 

and influence intestinal health by calibrating immune cell responses and fortifying intestinal 

barrier function. IECs detect commensal microbes through engagement of common pattern 

recognition receptors or by sensing the production of microbial-derived metabolites. Deficiencies 

in these microbial-detecting pathways in IECs leads to impaired epithelial barrier function and 

altered intestinal homeostasis. This Review aims to highlight the pathways by which IECs sense 

microbiota-derived signals and the necessity of these detection pathways in maintaining epithelial 

barrier integrity.

Introduction

The mammalian gastrointestinal tract requires a constant balance of power between 

immune activation and tissue homeostasis. A monolayer of intestinal epithelial cells 

(IECs) separate the mucosal immune system from the external environment. Remarkably, 

trillions of bacteria, fungi, archaea, and viruses reside within the intestinal lumen and 

constantly interact with host mammalian cells. The sheer abundance and proximity of 

the microbiota, and their foreign antigens, create an immense source of potential immune 

stimuli. However, during homeostatic conditions host immune cells act in a restrained 

manner, balancing inflammatory and regulatory responses to prevent aberrant reactions to 

innocuous commensal antigens. Yet, during pathogenic infections, intestinal immune cells 

are poised to combat and eliminate invading microbes. Extensive work has been devoted 
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to understanding the mechanisms by which the immune system discriminates between 

innocuous commensals and invading pathogens and how it mounts the appropriate immune 

response. Importantly, IECs are uniquely positioned and equipped to play a fundamental role 

in initial microbial sensing that directs downstream immune responses.

Intestinal Epithelium

In addition to providing a physical barrier, IECs coordinate numerous physiological 

processes including nutrient absorption, pathogen defense, and immune regulation. 

Epithelial stem cells reside at the base of intestinal crypts and undergo constant proliferation 

to give rise to diverse differentiated IECs (1). During homeostatic conditions, it is estimated 

that the intestinal epithelium is regenerated every 4 to 5 days (1). The diversity and constant 

renewal of IECs allows for their ability to modulate a variety of biological pathways. IECs 

are broadly separated into absorptive enterocytes, which are responsible for metabolic and 

digestive processes, or secretory lineages that are specialized to maintain digestive or barrier 

functions (1,2). Secretory lineages include goblet cells that produce mucin glycoprotein 

and form mucus, Paneth cells which reside at the base of intestinal crypts and secrete 

antimicrobial peptides (AMPs), microfold (M) cells which are critical for antigen capture 

and presentation to immune cells, enteroendocrine cells which secrete hormones that aid 

in digestion and communicate with the nervous system, and tuft cells that promote type 2 

immune responses. Recent studies have employed single-cell RNA sequencing to further 

define the specific characteristics and behaviors of these distinct IEC subtypes (3,4). 

Together these IECs function to maintain intestinal barrier integrity and instruct downstream 

immune cell functions to regulate tissue homeostasis.

It is well appreciated that the microbiota influence various physiological functions including 

digestion, cellular metabolism, tissue development, and immune cell education. Germ-free 

(GF) mouse models, which lack all microbes, have demonstrated the requirement for 

the microbiota in calibrating IEC differentiation, proliferation, defense mechanisms, and 

immune cells (5). Interestingly, changes in the diversity or localization of the microbiota 

have been associated with several chronic diseases including cancer, diabetes, obesity, and 

inflammatory bowel diseases (IBD) (6). Therefore, it remains critical that immune responses 

to the microbiota be carefully controlled to avoid inappropriate stimulation or inflammatory 

reaction.

The intestinal epithelium provides both a physical and chemical barrier to separate mucosal 

immune cells from commensal microbial stimulation and invading pathogens. This complex 

and dynamic relationship between the host immune system and microbial signals hinges on 

IEC involvement. IECs must sense and decipher microbial stimulation and instruct immune 

cells how to respond. IECs recognize microbial stimuli through a number of different 

mechanisms including engagement of pattern recognition receptors (PRRs) including toll­

like receptors (TLRs), nod-like receptors (NLRs), and inflammasomes (Figure 1A). In 

addition, IECs can sense microbial metabolites via receptors and enzymes that can lead to 

alterations in gene transcription (Figure 1B).
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Microbe/Pathogen-associated molecular patters (PAMPs)

PRRs detect common microbial molecules, termed pathogen-associated molecular patterns 

(PAMPs), during infection and are critical for coordinating immune responses and protection 

against invading pathogens (7). Common PAMPs include bacterial cell walls components 

such lipopolysaccharide (LPS), peptidoglycan, muramyl-dipeptide (MDP), and D-glutamyl­

meso-diaminopimelic acid (DAP), as well as flagella, dsRNA, and DNA molecules. 

However, ligands for PRRs are not exclusive to pathogenic microbes but are abundantly 

produced by the microbiota. Several studies have revealed that ligands from the microbiota 

signal through intestinal PRRs to promote healthy development of host tissues and 

maturation of the immune system (8). Interestingly, PRRs have been identified in both 

vertebrates, as well as invertebrates, suggesting these conserved molecules evolved to 

communicate with commensal microbes to maintain a symbiotic relationship between the 

microbiota and host cells (8).

Toll-like receptors.

Toll-like receptors (TLRs) were one of the first PRRs to be identified and TLR signaling 

has been shown to be critical for maintaining a healthy intestinal barrier. Polymorphisms 

or variants of TLR2, TLR4, TLR5, or TLR9 have been associated with increased incidence 

or severity of IBD (9–12). In mice, loss of TLR2, TLR4, TLR5, or TLR9 or the TLR 

signaling adapter, MyD88, contributed to intestinal inflammation in murine models of IBD 

(13–15). Interestingly, the exacerbated disease observed in these mouse models was not 

due to altered inflammatory responses, but instead, because of defects in IEC proliferation, 

survival, distribution of junction proteins, and overall barrier function (13,16,17). IECs are 

known to express TLR2, TLR3, TLR4, TLR5, and TLR9 (18). A recent study constructed 

five TLR fluorescent reporter mice to visualize the expression and localization of different 

TLRs throughout the gastrointestinal tract (18). This study revealed low expression of 

TLR2, TLR4, TLR5, TLR7 and TLR9 in small intestinal IECs but much higher expression 

in colonic IECs (18), suggesting higher expression of TLRs may be associated with the 

increased abundance of commensal microbes in the colon relative to the small intestine. 

Given the complex PAMPs found within the microbiota and the high potential for immune 

stimulation, the anatomical distribution of TLRs within polarized IECs has often been 

described as a potential mechanism for controlling overt stimulation. Indeed, several studies 

have reported that the majority of TLR expression is localized to the basolateral membrane, 

while TLR3 and TLR9 have also been shown at the apical surface (14,19,20). However, 

through the use of fluorescent reporter mice, TLR2, TLR4, and TLR5 were shown on both 

the apical and basolateral surface of colon IECs, and TLR4 was also observed intracellularly 

(18). Therefore, IECs can detect microbial PAMPs located within the lumen as well as the 

underlaying lamina propria through TLR signaling pathways (Figure 1A).

Once activated by ligand binding, TLR activation initiates a signaling cascade resulting in 

the nuclear translocation of NF-κB. This leads to the expression and secretion of various 

cytokines and chemokines including TNF-α, IL-6, IL-8, IL-18, CXCL2, CXCL2, and 

CCL20, which signal and calibrate underlying immune cells. Additionally, TLR signaling 

and NF-κB activation in IECs can result in induction of innate defense factors including 
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antimicrobial peptides (AMPs), mucus production, and iNOS (21–23). Paneth cells are 

the main source of AMPs including α-defensins REG3β, and REG3γ (24–26). These 

molecules function to directly inhibit or lyse bacteria and are critical for preserving 

intestinal homeostasis. Further, disruption to their production is linked to elevated microbial 

translocation leading to exacerbated intestinal inflammation (25). Several studies have 

reported that induction of AMPs depends on TLR signaling downstream of a wide range 

of TLR agonists. For example, in vivo stimulation of TLR3 and TLR9 initiated rapid Paneth 

cell degranulation and secretion of AMPs (27). In addition, β-defensins were up regulated 

in IECs following TLR2, TLR3, and TLR4 engagement in an NF-κB-dependent manner 

(23,28). Deletion of the TLR signaling adaptor molecule, MyD88, resulted in significantly 

reduced or undetectable levels of AMPs (24,29–32). Furthermore, aged transgenic mice 

that employed an IEC-specific dominate negative MyD88 developed spontaneous intestinal 

inflammation due to a lack of AMP secretion and constant bombardment of bacterial 

antigens (32). However, other studies have not reported the development of spontaneous 

inflammation in other mouse models with MyD88 specifically deleted in IECs (33,34). 

Nevertheless, these papers each found that loss of MyD88 signaling in IECs resulted in 

dysfunctional AMP production and impaired barrier function, highlighting the necessity 

for TLR-MyD88 signaling in IECs. AMP secretion in the intestine is not exclusive to 

Paneth cells. Enteroendocrine cells, which are the main producer of hormones within the 

intestine, sense antigens from the microbiota through TLR4, TLR5, and TLR9. Ligand 

binding to these receptors triggered release of chemokines and β-defensin (35). In the 

colon, goblet cells also required TLR/MyD88 signaling to produce MUC2 and other 

mucin molecules (36,37). Separate from the direct effects on NF-κB activation and AMP 

production, TLR signaling in IECs also increased the expression of canonical and non­

canonical inflammasome components (38). Together numerous studies have illustrated the 

importance of IEC-intrinsic TLR signaling pathways.

Nucleotide binding and oligomerization domain (NOD)-like receptors.

Recognition of microbial PAMPs by TLRs is critical for IEC development and intestinal 

barrier integrity. However, TLR signaling is usually restricted to external or phagosomal 

PAMPs. For detection of intracellular or cytosolic PAMPs, a large family of highly 

conserved proteins called Nucleotide binding and Oligomerization Domain (NOD)-like 

receptors (NLRs) have been described. While NLRs have been largely examined for their 

roles in detection and protection against invading pathogens, these molecules are also 

required for maintaining tissue homeostasis. NOD2 was identified early in gene association 

studies for IBD and remains one of the strongest genetic risks in the development of IBD 

(39–41). Consistently, in mice, deficiencies in NOD1, NOD2, or both NOD1 and NOD2 

rendered mice extremely sensitive to models of IBD (42–46). In addition, deficiencies 

in NOD sensing pathways associate with alterations in the microbiota composition in 

IBD patients (46–48). NOD1 is constitutively expressed in IECs, while NOD2 expression 

is confined to Paneth cells in the small intestine (49). Activation of NOD1 and/or 

NOD2 by peptidoglycans and other bacterial cell wall components trigger downstream 

signaling cascades that elicit the production of a variety of antimicrobial peptides and 

pro-inflammatory cytokines and chemokines (48–52). In contrast to MyD88-deficient mice, 

animals null for NOD2 displayed normal levels of REG3β, REG3γ, and RELMβ, but 
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exhibited reduced expression of α-defensins (30). However, deletion of both NOD1 and 

NOD2 ablated REG3γ expression in these mice thus resulting in elevated intestinal 

inflammation (45). Interestingly, administration of peptidoglycan or other NOD ligands 

in vivo suppressed TLR signaling and protected mice from the development of intestinal 

inflammation, suggesting that microbial sensing by NOD proteins in IECs is critical for 

intestinal homeostasis (43,53).

Aside from NOD1 and NOD2, other NLR molecules can associate and activate caspases 

to form an inflammasome complex with the end goal of cleaving the pro-forms of IL-1β 
and IL-18 into their mature active states. These inflammasome-forming NLRs are unique 

in their ability to sense and respond to diverse ligands thereby playing a critical role in 

regulation of intestinal homeostasis. NLRP3, a well-studied inflammasome-forming NLR 

member, responds to multiple stimuli, including commensal bacteria, as well as microbial 

products and metabolites (54). NLRP3 activation has been shown to play a protective role 

in intestinal homeostasis, as reduction in NLRP3 expression was linked with increased 

susceptibility to Crohn’s disease (55). In mouse models of IBD, deficiency in NLPR3 

resulted in heightened intestinal inflammation, suggesting a protective role for NLRP3 

activation (56,57). Mechanisms attributed to this protective role of NLRP3 activation include 

non-hematopoietic cell production of IL-18 which promoted epithelial barrier integrity (56) 

and secretion of AMP including β-defensin (57,58). Interestingly, mutations in NLRP3 

that induce hyperactivity have been identified in humans with an autoimmune disease 

(59,60). Further, mice with this specific hyperactive NLRP3 mutation were resistant to 

mouse models of IBD (58). NLRP3 hyperactivity promoted IL-1β and AMP secretion 

and improved barrier function to protect mice from intestinal inflammation (58). Another 

well-studied inflammasome-forming NLR is NLRP6, which is predominately expressed in 

mucosal epithelial cells (61–63). Within the intestine, NLRP6 is preferentially expressed in 

enterocytes and goblet cells and is critical for regulating intestinal homeostasis and defense 

against invading pathogens. Deletion of NLRP6 disrupted secretion of mucin by goblet cells 

and rendered mice more susceptible to enteric infection (64). Furthermore, NLRP6 ablation 

has been shown to induce drastic changes to the microbiota composition which has been 

associated with dysregulated immune responses and induction of intestinal inflammation 

(62). Another NLR molecule, NLRP12, functions independent of the inflammasome and 

inhibits NF-κB signaling, and played a protective role in mouse models of colitis (65). 

Furthermore, the potent intracellular flagellin receptor, NLRC4, which is critical for 

host defense against pathogenic bacteria, protected against colitis models (66). Together, 

these studies highlight the importance of NLR signaling molecules on regulating the host­

microbiota relationship (Figure 1A).

Microbiota-Derived Metabolites

In addition to interacting with host cells through PAMP-PRR engagement, the microbiota 

can influence host pathways through metabolites (Figure 1B). Metabolites are small 

molecules that are produced as intermediate or end products of microbial metabolism. 

These metabolites can derive from bacterial breakdown of dietary components, modification 

of host molecules, such as bile acids, or directly from bacteria. Signals from microbial 

metabolites can calibrate immune cell activation, host energy metabolism, IEC barrier 
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integrity, and overall intestinal homeostasis. The importance of bacterial-derived metabolites 

in mediating host physiology has been illustrated by GF mice, and rodents exposed to 

broad-spectrum antibiotics, which have both shown dramatic alterations in the systemic and 

tissue profiles of metabolites (67–70). Mono-association studies where a single microbe 

was used to colonize GF mice have further demonstrated how specific microbes and 

their metabolites modulate intestinal homeostasis. For example, association of Clostridium 
sporogenes alone resulted in detectable levels of the metabolite, indole-3-propionic acid, 

which was absent in GF mice (67). Further, deletion of the gene responsible for indole-3­

propionic acid production in C. sporogenes led to increased barrier permeability and 

intestinal inflammation compared to the wild-type C. sporogenes strain (71), highlighting 

the influence of a single metabolite on host physiology. Reintroduction of a single 

metabolite can have profound effects on the epithelial barrier integrity. Moreover, changes 

in the diversity or functionality of the microbiota can influence the metabolite profile, 

or metabolome, which has been associated with development of inflammatory conditions. 

Indeed, specific classes of metabolites, including bile acids, short-chain fatty acids (SCFAs), 

and tryptophan metabolites, have been implicated in the pathogenesis of IBD (72). Below 

we will discuss the role of bacterial-derived metabolites in mediating epithelial barrier 

integrity and intestinal homeostasis.

Short-chain fatty acids.

Short-chain fatty acids (SCFA), including acetate, propionate, and butyrate, are produced 

when dietary fiber is fermented by the microbiota and are among the most abundant 

microbial metabolite present within the intestine. SCFAs are a main energy source for 

colonocytes (73), and are crucial for intestinal epithelial homeostasis. In fact, dysbiosis 

observed in IBD patients was associated with the loss of SCFA-producing bacteria including 

Faecalibacterium prausnitzii (74) and Roseburia hominiswith (75). This was consistent with 

an overall trend of reduced intestinal levels of SCFA in IBD patients (72,76). Moreover, 

although still under investigation, some evidence suggests that increased intake of dietary 

fibers, or SCFAs, could be clinically beneficial in the treatment of IBD (77–80). In 

addition, supplementation of SCFAs improved chemically-induced intestinal inflammation 

in conventional as well as GF mice (81,82). SCFAs have been shown to have diverse 

effects on mucosal immune cell function and are essential for maintaining and fortifying 

epithelial barrier function. Stimulation with SCFAs enhanced expression of tight junction 

proteins and other claudin molecules (83–87), promoted AMP secretion in Paneth cells 

(88), and upregulated mucus production in goblet cells (89–91). Furthermore, SCFAs play 

an important role in regulating IEC proliferation and turnover. GF or antibiotic-treated 

mice exhibited reduced IEC proliferation, however, upon colonization with SCFA-producing 

bacteria or supplementation with SCFAs, IEC turnover was restored (92). Conversely, 

butyrate has also been shown to inhibit intestinal epithelial cell proliferation (73,93), 

suggesting SCFAs, and butyrate in particular, may exert cell type-specific effects on IECs 

that may be linked to local SCFA concentrations (73).

SCFAs mediate cellular functions through activation of cell surface G-protein coupled 

receptors such as GPR43 and GPR109A, which are expressed on IECs as well as immune 

cells. Deletion of GPR43 and GPR109A, specifically in non-hematopoietic cells, enhanced 
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host susceptibility to mouse models of colitis (81,82), indicating an important role for 

GPR signaling in maintaining intestinal homeostasis. Furthermore, loss of GPR43 reduced 

Paneth cell production of AMPs including REG3γ and β-defensin (88), and GPR109A 

expression was required for butyrate to exert anti-inflammatory effects by suppressing 

LPS-induced NF-κB activation (94). In addition to signaling through cell surface GPRs, 

SCFAs can freely diffuse into cells or can be taken up through specific transporters (95). 

SCFAs, butyrate particularly, inhibit histone deacetylase (HDAC) enzymatic activity thereby 

promoting histone acetylation and regulating gene expression. SCFA inhibition of HDAC 

activity has been shown to influence immune cell function and promote anti-inflammatory 

or tolerogenic immune responses (95). In addition, the use of HDACs inhibitors reduced 

disease severity in experimental mouse colitis models (96). However, loss of HDAC activity 

in IECs resulted in dysregulated intestinal homeostasis. Specifically, mice with loss of 

IEC expression of the class I HDAC, HDAC3, exhibited reduced Paneth cells, impaired 

epithelial barrier function, and exacerbated intestinal inflammation (97), suggesting HDAC3 

activity is essential for intestinal homeostasis. IEC expression of other HDACs, including 

HDAC1 and HDAC2, have also been found to be important for maintaining epithelial cell 

differentiation and intestinal barrier function (98–100). Given the necessity for IEC-intrinsic 

HDAC activity in promoting intestinal homeostasis, SCFA inhibition of HDAC activity 

must be carefully calibrated. A recent study demonstrated that wild-type mice containing 

abundant SCFAs, actually displayed increased HDAC activity in IECs relative to GF mice, 

suggesting that other microbiota-derived metabolites may counter SCFA-mediated inhibition 

of HDAC activity (93). Indeed, digestion of dietary phytate by the microbiota into inositol 

phosphate derivatives increased HDAC activity in IECs and promoted stem cell proliferation 

and epithelial repair (93). Thus, SCFAs and inositol phosphates fine-tune HDAC activity in 

IECs.

Secondary Bile Acids.

Bile acids are small molecules that are synthesized from cholesterol by liver hepatocytes. 

Primary bile acids are secreted into the small intestine after eating and are critical for 

lipid digestion and absorption. The vast majority of primary bile acids are reabsorbed by 

the time they reach the terminal ileum. In the colon, the remaining bile acids dynamically 

interact with commensal microbes where they exert mutual effects on each other. Bile acids 

can be toxic to some microbial species and therefore can directly influence microbiota 

composition and diversity (72). Bile acid signaling through the bile-responsive receptor, 

farnesoid X receptor (FXR), can prevent bacterial overgrowth and microbial translocation 

(101,102) as well as induce host production of AMPs (103–105). Moreover, direct FXR 

stimulation induced anti-inflammatory effects and protected mice against models of colitis 

(105,106), demonstrating the importance of bile acid signaling on regulating intestinal 

homeostasis. However, these results were obtained through the use of FXR-null mice, thus 

the specific contribution of bile acid sensing by IECs remains to be determined. Several 

commensal microbes have developed mechanisms to counteract bile toxicity (107), and can 

chemically modify bile acids into deconjugated secondary bile acids by expressing bacterial 

bile salt hydrolases (108,109). In fact, GF mice lack secondary bile acid production and 

mice mono-associated with a bile salt hydrolase-expressing Escherichia coli demonstrated 

improved host metabolism, increased production of AMPs, and altered epithelial barrier 
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(110). Furthermore, intestinal biopsy samples from patients with active IBD demonstrated 

reduced FXR expression (106) and altered bile acid profiles characterized by increased fecal 

primary bile acids and reduced serum and fecal secondary bile acids (111).

Tryptophan metabolites.

Tryptophan, an essential amino acid acquired through the diet, is a precursor for the 

synthesis of several important molecules including serotonin, melatonin, and vitamin B3 

(72). The intestine is the primary location for dietary tryptophan metabolism which can 

occur through one of three distinct pathways (72). One pathway depends on the microbiota 

to metabolize tryptophan into a variety of indole metabolites that can signal through the 

aryl hydrocarbon receptor (AhR). AhR is a widely expressed transcription factor that is 

required for immune and epithelial cell development and homeostasis. AhR signaling in T 

cells and innate lymphoid cells promotes intestinal barrier integrity and AMP production 

via regulation of IL-22 production (112,113). In IECs, AhR is required for the proliferation 

of colonic stem cells as well as tight junction integrity and IL-10 receptor expression (114–

116). Indeed, IEC-specific loss of AhR rendered mice highly susceptible to mouse models of 

colitis (117), highlighting the importance of IEC-intrinsic AhR signaling. In addition, AhR 

expression was sensitive to the presence of microbiota in IECs (118). AhR expression was 

also reduced in inflamed mucosal tissues from IBD patients (119) and IBD patients display 

reduced indole derivates, including indole-3-propionic acid serum levels (120), which have 

been shown to promote intestinal barrier integrity (71).

In addition to breakdown directly by the microbiota, tryptophan can be metabolized through 

the kynurenine pathway, which is mediated by the enzyme, indoleamine 2,3-dioxygenase-1 

(IDO1), to produce kynurenine. Kynurenine concentrations are known to increase along 

the intestinal tract and play barrier protective and immunoregulatory roles (112). IDO1 

was upregulated by the presence of the microbiota and mice deficient for IDO1 expression 

were highly susceptible to colitis models (112), suggesting an important role for IDO1 

in mediating intestinal inflammation. Lastly, tryptophan can be metabolized by tryptophan 

hydroxylase 1 to produce serotonin within specialized IECs called enterochromaffin cells. 

While serotonin can be produced within the brain, the majority of serotonin is actually 

generated in the intestine (112). Serotonin is critical for neuron signaling in the central 

nervous system as well as in the enteric nervous system where it coordinates intestinal 

motility, secretion, and nutrient absorption. The microbiota regulates serotonin production 

as GF mice have reduced intestinal and systemic serotonin levels (112); however, the 

mechanism of how the microbiota mediates serotonin production remains unknown. 

Together, these studies highlight the multifaceted effects of tryptophan metabolism by 

microbiota in the intestine.

Succinate.

Succinate is an intermediate of the citric acid cycle and is produced by host cells as well 

as the microbiota. Many microbial commensals and pathogens have evolved metabolic 

pathways to thrive in the nutrient-rich, oxygen-deprived environment of the intestine; thus, 

production of succinate is a frequent by-product. Recent studies have demonstrated the 

necessity of succinate signaling by epithelial tuft cells for induction of type 2 immunity 
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and protection against parasitic infections (121,122). Interestingly, succinate metabolism has 

recently been linked with IBD. IBD patients exhibited elevated fecal and serum levels of 

succinate and increased expression of the succinate receptor within the intestine (123). 

Similarly, loss of succinate signaling in mice was protective against the development 

of colitis (123), suggesting succinate may promote pro-inflammatory immune responses. 

However, further research will be needed to unravel the role of succinate metabolism in 

intestinal homeostasis.

Conclusion and future perspectives

The microbiota plays a significant role in regulating health and disease. IECs are non­

hematopoietic cells that are uniquely positioned to receive signals from the microbiota 

and direct intestinal homeostasis. Increasing evidence demonstrates that IECs are well 

equipped to detect and respond to microbial products, and defects in these sensing pathways 

are commonly associated with inflammatory conditions, stressing the importance of these 

mechanisms. This Review highlights pathways by which IECs sense microbial signals to 

enhance epithelial barrier integrity and promote intestinal homeostasis. Beyond sensing 

and fortifying barrier functions, IECs play critical roles in orchestrating downstream 

immune responses to the microbiota and evading pathogens. IECs can direct immune 

responses through the secretion of numerous cytokines and chemokines. However, the exact 

role IECs play in promoting immune education and tolerance to the microbiota remain 

under investigation. Several studies have focused on understanding microbiota-immune cell 

interaction in early life. However, few have investigated how IECs incorporate signals 

from the developing microbiota to educate immune cells. Further understanding of the 

contribution of IECs in promoting intestinal tolerance to the microbiota may have profound 

consequences for intestinal homeostasis.

While numerous sensing pathways have been uncovered in IECs, the field of microbiota­

derived metabolites and their role in intestinal health is still evolving. Studies have 

commonly focused on the contribution of a single metabolite, or a class of metabolites, 

on intestinal homeostasis. However, how different metabolites, or the whole metabolome, 

function in concert to mediate health and disease remain unknown. Future studies 

investigating how fluctuations in the microbiota diversity and overall metabolome affect 

IECs and intestinal integrity, and how these pathways can be therapeutically targeted will 

have wide-reaching implications for human health.
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Figure 1. Microbial surveillance pathways in intestinal epithelial cells.
A) Common microbial/pathogen associated molecular patterns produced by the microbiota 

are detected by pattern recognition receptors, including TLRs and NLRs, expressed in 

IECs. B) Metabolites generated by microbial digestion of dietary components can be sensed 

through various pathways in IECs to alter intestinal health. Created with BioRender.com.
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