
This is a question with practical implications, since CPAP resolves
hypoxic burden, but does not decrease harmful metabolic impacts of
visceral adiposity. In research contexts, we advocate for acquiring lung
volumes and fat distribution imaging to account for effects of VAT on
pulmonary function and CVD, respectively. In clinical settings, we
should recognize that a high hypoxic burdenmarks a patient who likely
requires weight loss (not just CPAP use) to attenuate CVD risk.�
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Metatranscriptomics of Nasopharyngeal Microbiota
and Host Distinguish between Pneumonia
and Health

To the Editor:

Lower respiratory tract infections (LRTI), including community-
acquired pneumonia (CAP), are major contributors to morbidity and
mortality worldwide, especially in children. Major causes of CAP
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�Lung volumes �ERV
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Dying from OSA
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with
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Figure 1. Schematic demonstrating how patients with obstructive sleep apnea (OSA) could be dying with OSA or from OSA. OSA induces
hypoxemia, which, in turn, could contribute to mortality. On the other hand, this pathway may be confounded by the presence of visceral
obesity. Visceral fat 1) predisposes to OSA, 2) decreases lung volumes, particularly expiratory reserve volume, leading to greater hypoxic
burden, and 3) promotes cardiovascular disease and mortality. CVD=cardiovascular disease; ERV=expiratory reserve volume.
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include Streptococcus pneumoniae, Haemophilus influenzae, and
potentiallyMoraxella catarrhalis (1). Viruses are also major drivers of
CAP (2). Determining the microbial cause of nonbacteraemic
pneumonia is difficult in children and relies on nasopharyngeal
samples, but bacteria associated with CAP are also frequent
colonizers of healthy children (3, 4). Most clinical studies using
nasopharyngeal samples are on the basis of culturing or the use of
DNA-based methods such as sequencing the 16S ribosomal RNA
(rRNA) gene (5). Little is known about which bacteria and/or viruses
are actively transcribed during health and LRTI.

Here, we developed a novel metatranscriptomic pipeline with
ultrasensitive sequencing of nasopharyngeal aspirates to map the
expression of the nasopharyngeal microbiota and associated host
responses in 20 healthy children and 20 children with CAP (https://
doi.org/10.6084/m9.figshare.20452026.v2) (6). For each child with
CAP, a matched control subject on age and calendar time was
selected. No control subjects, and only one case, received antibiotics
before sampling. DNA and RNAwere isolated simultaneously from
the aspirates, and deep sequencing was performed using Illumina
Novaseq 6000S1, two lanes with 23 150 bp read lengths with an
estimated output of around 3 billion reads. The metatranscriptomic

sequencing yielded 15–60 million reads per sample of which 50–75%
were human, 25–40% bacterial, and less than 1% viral reads. Because
of sensitivity limitations, we could not capture DNA viruses. The
K-mer–based taxonomic classification method Kraken2 combined
with Bracken estimation was used for the classification of bacterial
and viral species.

This research letter has an online data supplement, which is
accessible online at: https://doi.org/10.6084/m9.figshare.20452026.v2

Bacterial and Viral Transcriptomic Analyses Associated
with Health and Pneumonia and Microbial Properties
Could Be Distinguished
Between 1,114 and 3,084 species found in the cases and healthy
control subjects were corrected for the negative control (57–462
species). However, only one or two species dominated in a sample,
comprising more than 80% abundance (https://doi.org/10.6084/m9.
figshare.20452026.v2). Permanova was calculated on the microbial
composition using the Bray-Curtis method and fourth-root
transformed abundances with adonis2 function from the vegan
R package, using 10,000 permutations. This revealed significance for
CAP cases versus healthy children (P=0.0272). The most commonly
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Figure 1. (A) The top panel shows the total filtered non-rRNA (non-ribosomal RNA) reads (bacterial, viral, and human non-rRNA reads) across the
samples. The bottom panel shows the percentage of reads that belong to the most abundant bacterial taxa identified. (B) The top panel shows the
total filtered non-rRNA reads, and the bottom panel shows the percentage of reads that belong to the most abundant viral species. (C) The
principal component analysis (PCA) was performed on human reads using variance stabilizing normalization from DESeq2, R package using the
plotPCA function that includes the top 500 genes selected by highest row variance. The normalization employed considers the sequencing depth
and the RNA composition and uses the median of ratios method. Blue color circles indicate the control subjects, and red color circles show the
cases. Names have been shortened to read CTRL-BHN1=CT1 and Case-BHN21=CA21, etc. (D) Random forest feature importance averaged
over 20 model runs (left) for the main features in the best-performing classification model, and their corresponding transcription degrees expressed
as z-scores in cases and control subjects. Z-scores were calculated by subtracting the mean and dividing by the standard deviation for each
sample, resulting in samples having a mean of 0 and a variance of 1. PC1=principal component 1; PC2=principal component 2.
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transcribed bacteria in the healthy children wereDolosigranulum
pigrum (17/20),M. catarrhalis (12/20), S. pneumoniae (8/20), and
H. influenzae (4/20) (Figure 1A). In the CAP cases, the most
frequently found bacteria wereM. catarrhalis (13/20), andH.
influenzae (13/20), followed by S. pneumoniae (11/20) (Figure 1A).
A total of 19/20 of the cases and 17/20 of the healthy control subjects
harbored one or more of S. pneumoniae,H. influenzae, and/or
M. catarrhalis. When only these abundant species were included,
permanova analysis yielded P=0.00619 for CAP cases versus control
subjects, and the data suggest thatH. influenzae proliferate more in
the nasopharynx in CAP (P=0.002) and that the reverse is found for
D. pigrum (P=0.042). D. pigrum has been associated with healthy
microbiota and a negative correlation with S. pneumoniae and
Staphylococcus aureus (7, 8).

We identified transcription of bacterial virulence properties such
as the capsular serotype. ForH. influenzae, none of the capsular

regions were detected. For S. pneumoniae,we performed in silico
serotyping by capturing the unique regions of specific serotypes. The
results were in agreement with Quellung serotyping (Table 1).

We also identified RNA viruses/particles down to the species
(Figure 1B). Among the control subjects, six children harbored
viruses, including three children with rhinovirus (BHN5, BHN14,
and BHN15), two with human coronavirus HKU1 (BHN1 and
BHN2), and one with human respirovirus 1 (BHN11). Six cases
showed RNA viruses, of which four are known causes of LRTI:
human respirovirus 3 (BHN23), influenza A (BHN31), and
respiratory syncytial virus (RSV) (BHN33 and BHN39). We obtained
complete genome sequences for two HKU1 viruses and found that
they showed divergent spike mutational profiles and belonged to
different sublineages.

The transcriptomic analyses were validated using 16S rRNA
(12 out of 40 samples) and culturing for bacteria and real-time PCR
for viruses (2), wherein both revealed highly similar taxonomic
profiles (https://doi.org/10.6084/m9.figshare.20452026.v2).

Host Transcriptional Profiles Were Specific for CAP Cases,
and Three Potential Biomarkers Were Identified
Amajority of the RNA sequences corresponded to human-associated
RNA. The global expression profile of the human transcriptome was
analyzed with DESeq2 and principal component analysis and
revealed significant distinct clustering patterns for cases and
control subjects for most children, irrespective of microbial species
(Figure 1C). Permanova was calculated with the adonis2 function
from the vegan R package, using 10,000 permutations, and revealed
significant differences between the two groups (P=9.9993 1025).
The two outliers among the cases (BHN28 and BHN34) that
clustered with control subjects had S. pyogenes andM. catarrhalis or
D. pigrum as dominating bacterial species, and none contained
pathogenic RNA viruses (Figure 1). Of control subjects that clustered
with cases, BHN2 and BHN5 had high reads of S. pneumoniae,
and BHN14 had high reads ofH. influenzae (Figure 1).

Differential gene expression was studied using P-adjusted values
(Wald test) with Benjamini-Hochberg false discovery rate, 0.05
with a twofold difference annotated using gene ontology. A total of
3,635 transcripts were downregulated, whereas 232 were upregulated
in the cases as compared with control subjects. To find predictors for
CAP, we used random forest analysis to classify samples into “case”
and “control” groups using microbial species abundance and human
transcriptome profiles. We found that the highest mean classification
accuracy was achieved using both species abundances and
transcriptome datasets. Specifically, species abundances inferred from
non-rRNAmicrobial reads using Bracken and with contaminant
removal using Recentrifuge resulted in the highest mean accuracy of
0.93. Using the result of the best performing classifier, we identified
three host transcripts, CD177, FCPER1G, and ALPL, among the top
10 most important features in the majority of model runs and
potential predictors to distinguish between CAP and healthy (Figure
1D). The strongest predictor was CD177, a specific marker for
neutrophil activation that was recently shown to be a hallmark for
severe coronavirus disease (COVID-19) and death (9). FCER1G is a
high-affinity IgE receptor involved in integrin-mediated neutrophil
activation. A transcriptomic study of airway neutrophils from infants
with severe respiratory syncytial virus (RSV) showed high activation
of FCER1G (10, 11).

Table 1. Comparison of Traditional Pneumococcal Serotyping
with Serotyping Performed Using Metatranscriptomics

Sample
Culture
Pnc

Metatranscriptomics
Pnc

Culture
Serotype

Meta
Serotype

CTL-BHN1 1 (1) 11A ND*
CTL-BHN2 1 1 19A 19A
CTL-BHN3 — (1) — ND*
CTL-BHN4 — 1 — ND*
CTL-BHN5 1 1 15B 15B/15C
CTL-BHN6 1 1 21 21
CTL-BHN7 — (1) — ND*
CTL-BHN8 — — — —
CTL-BHN9 1 1 35F ND*
CTL-BHN10 — (1) — ND*
CTL-BHN11 — — — —
CTL-BHN12 — — — —
CTL-BHN13 — — — —
CTL-BHN14 1 1 35F ND*
CTL-BHN15 — — — —
CTL-BHN16 — 1 — ND*
CTL-BHN17 — — — —
CTL-BHN18 — (1) — ND*
CTL-BHN19 — — — —
CTL-BHN20 — 1 — ND*
CASES-BHN21 1 1 35F 35F
CASES-BHN22 1 1 21 21
CASES-BHN23 — (1) — ND*
CASES-BHN24 1 1 35B ND*
CASES-BHN25 — 1 — ND†

CASES-BHN26 1 1 15A 15A/15F
CASES-BHN27 1 1 3 3
CASES-BHN28 — (1) — ND*
CASES-BHN29 1 1 22F 22F
CASES-BHN30 — — — —
CASES-BHN31 — — — —
CASES-BHN32 1 1 35F ND*
CASES-BHN33 — — — —
CASES-BHN34 1 (1) 15B ND*
CASES-BHN35 1 1 23B ND*
CASES-BHN36 — (1) — ND*
CASES-BHN37 1 1 35F 35F
CASES-BHN38 — — — —
CASES-BHN39 — — — —
CASES-BHN40 1 1 15B 15B/15C

Definition of abbreviation: Pnc=pneumococci.
(1) indicates low abundance reads.
*Capsular region not determined.
†Only cpsA was captured, and the serotype could not be determined.
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Conclusions
This novel ultrasensitive expression platform can be used for studies
of the microbiota and host signatures in respiratory infections and
pave the way for the identification of new biomarkers and pathways
that can be targeted for treatment.�
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Taking for Granted Conclusions from Studies that
Cannot Prove Causality of Respiratory Symptoms
and Vaping

To the Editor:

In general, cross-sectional analyses of population-based data are
inconclusive with respect to health effects outcomes. Consequently,
we were glad to see the longitudinal study by Xie and colleagues (1)
investigating the respiratory health effect of e-cigarette (EC) use in a
nationally representative cohort of young adults in the United States.
Using data derived from PATH (The Population Assessment of
Tobacco andHealth [PATH] Study)Waves 2, 3, 4, and 5, Xie and
colleagues showed that both former and current EC use was associated
with higher odds of developing any respiratory symptom (adjusted
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