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Planarians as a model of aging to study the interaction
between stem cells and senescent cells in vivo
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The depletion of stem cell pools and the accumulation of senescent cells in animal tissues are linked to aging.

Planarians are invertebrate flatworms and are unusual in that their stem cells, called neoblasts, are constantly

replacing old and dying cells. By eliminating neoblasts in worms via irradiation, the biological principles of

aging are exposed in the absence of wound healing and regeneration, making planaria a powerful tool for aging

research.
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P
lanarians have inherent regenerative properties (1,2).

Adult somatic stem cells called neoblasts allow for

amputated fragments of the organism to generate

an entirely new worm (3,4). Breakthroughs in genome

sequencing (5) and development of RNAi technology

for knocking down gene expression (6) have opened up

the possibility of dissecting gene function in planarians.

Because the human aging process is very complex, simple

invertebrate organisms are needed to model the patho-

biology of aging in order to advance understanding of it.

The planarian model is advantageous for the study of

aging due to its size, tractable genetics, easy maintenance,

and ability to recapitulate the aging process. The regenera-

tive capacity of planarians, along with shared senescence-

associated genes with humans, provided the rationale to

study interaction between stem cells and senescent cells

in vivo (7).

The normal function of cellular senescence is tumor

suppression (8,9). This is achieved through cellular repro-

gramming, which inhibits the proliferation of damaged

cells. It is postulated that cellular aging, which overlaps

with cellular senescence, results in a loss of cell identity (10).

If so, a pattern of histone modifications that determine

cell fate also determine cellular aging and could be studied

using irradiated planarians. Histone H3 lysine 27 tri-

methylation (H3K27me3) is a repressive epigenetic mark

known to control stem cell differentiation (11,12). Nota-

bly, the depletion of H3K27me3 has been reported in

senescent cells and implicated in many diseases of aging

(13). This epigenetic mechanism appears to drive the

progression of cellular senescence and ‘inflammaging’

(increased inflammation with aging). We hypothesized

that aging is accompanied by a global decrease in

H3K27me3 levels, which will be reflected in accumulation

of senescent cells in irradiated planarians.

The planarian, Dugesia tigrina, was purchased from

Ward’s Natural Sciences (Rochester, NY) as a mixed

population of unknown genetic background. A standard

maintenance and care protocol was followed (14). Worms

were housed in plastic food storage containers with puri-

fied spring water at room temperature and fed fresh beef

liver every 3�4 days. Worms between 10 and 12 mm long

were selected and starved for 1 week before all experi-

ments. All procedures with animals were followed in

accordance with the Helsinki Declaration of 1975, as

revised in 2008.

To induce aging, worms were treated with one dose

of radiation (100 Gy) and subsequently imaged for 10

days (Fig. 1). Irradiated worms appeared phenotypically

healthy at 1 and 3 days post irradiation (dpi), followed by

a gradual decrease in body size and appearance of lesions

at 5 and 7 dpi. All of the irradiated worms lysed by 10 dpi

due to inability to maintain tissue homeostasis and

eventually all died at 14 dpi (n�10). Similar to previous

reports, the physical appearance, body mass, and size of

the 10 dpi worm compared to the untreated control in
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Fig. 1 suggest that radiation treatment triggered large

amounts of apoptotic cell death (15). In planarians,

apoptosis of differentiated cells has been reported during

regeneration and remodeling of preexisting tissues in

planarians (16). It is unknown if the status of some of the

remaining cell types that evade apoptosis reprogram to

cellular senescence and contribute to the process of

radiation-induced aging in planarians.

We next investigated histone modifications related to

stem cells and aging in a similar time-course experiment.

Neoblasts are the only dividing cells in planarians and

can be tracked using the proliferation marker phospho-

histone H3 serine 10 (H3S10P) (17). Western blot analysis

indicated the complete elimination of neoblasts by 3 and

5 dpi, followed by a decrease in H3K27me3 levels by 5

and 7 dpi (Fig. 2A). These data suggest that depletion of

neoblasts results in accumulation of senescent cells in

irradiated worms.

Cellular senescence is related to the limited prolifera-

tion capacity of stem cells observed during the bio-

logical processes of normal and pathological aging

(18,19). To directly detect the presence of senescent cells

Fig. 1. Images of planaria that were g-irradiated using a 137Cs source (100 Gy).

Fig. 2. (A) Western blot of H3S10P, H3K27me3, and b-actin. The following commercially available antibodies were used at the

indicated concentrations: H3S10P (05-806, Millipore, 1:50,000), H3K27me3 (GTX12184, Genetex, 1:1,000), and b-actin (GTX109639,

Genetex, 1:12,500). Lysates for western blotting were made from five worms that were collected at each time point. (B) SA-b-gal activity

staining in irradiated worm tissues. Black arrows point to positive staining for SA-b-gal activity.
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in the tissues of irradiated planarians, we stained for

senescence-associated beta-galactosidase (SA-b-gal) ac-

tivity, which is a known biomarker of cellular senescence

in human tissues, as described previously (20,21). SA-

b-gal activity was detected at 5 and 7 dpi, but rarely

in untreated and 1 and 3 dpi worm tissues (Fig. 2B).

Altogether, these findings provide a basis and rationale

for further studies in planarians of the basic principles of

aging.

Stem cells are known to build and repair the body, but

the signals that stem cells use to navigate through normal

tissue towards an injury site or to replace old and dying

cells are poorly understood. Accompanying the process of

cellular senescence is the upregulation of select genes

encoding cytokines, proteases and growth factors, collec-

tively known as the senescence-associated secretory phe-

notype (SASP) (22). Our previous work has shown

that the SASP is activated by a specific histone H3K27

demethylase, jumonji domain-containing protein 3

(JMJD3) (23). In cancer, the removal of methyl groups

from H3K27me3 by JMJD3 activates a gene expression

signature which overlaps with inflammaging. This same

mechanism is linked to the migration of stem and other

cell types to tumors (23). Notably, nucleosome loss and a

drop in total histone protein levels are also linked to

cellular aging (24). Future studies are needed to determine

whether the global loss of H3K27me3 observed during

radiation-induced aging in planarians is a mechanism of

histone loss/exchange or of active demethylation.

In planarian worms, senescent cells that accumulate in

healing wounds and aged tissues may secrete chemokines

to recruit neoblasts needed for healing and immortality.

The conservation of senescence-related genes overlapping

with the SASP in planarians may also provide a model to

study the process of inflammaging. In addition, we

speculate that in planarians senescent cells accumulate

in healing wounds and function to curb fibrosis during

tissue repair. RNAi screens in this relatively simple

organism (25,26) can be used to identify additional genes

involved in wound healing and aging. Expression pro-

ducts of these genes could then be evaluated further for

their role in senescence and stem cell migration. Identi-

fication of mechanisms that control cell proliferation and

migration may provide the basis for designing therapeutic

interventions against dysfunctional senescent cells to

inhibit aging as well as tumor progression.
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