
Vol.:(0123456789)1 3

Behavior Research Methods
https://doi.org/10.3758/s13428-022-01864-x

Chatbot Language ‑ crowdsource perceptions and reactions
to dialogue systems to inform dialogue design decisions

Birgit Popp1 · Philip Lalone1 · Anna Leschanowsky1

Accepted: 22 April 2022
© The Author(s) 2022

Abstract
Conversational User Interfaces (CUI) are widely used, with about 1.8 billion users worldwide in 2020. For designing and
building CUI, dialogue designers have to decide on how the CUI communicates with users and what dialogue strategies to
pursue (e.g. reactive vs. proactive). Dialogue strategies can be evaluated in user tests by comparing user perceptions and
reactions to different dialogue strategies. Simulating CUI and running them online, for example on crowdsourcing websites,
is an attractive avenue to collecting user perceptions and reactions, as they can be gathered time- and cost-effectively. How-
ever, developing and deploying a CUI on a crowd sourcing platform can be laborious and requires technical proficiency from
researchers. We present Chatbot Language (CBL) as a framework to quickly develop and deploy CUI on crowd sourcing
platforms, without requiring a technical background. CBL is a library with specialized CUI functionality, which is based
on the high-level language JavaScript. In addition, CBL provides scripts that use the API of the crowd sourcing platform
Mechanical Turk (MT) in order to (a) create MT Human Intelligence Tasks (HITs) and (b) retrieve the results of those HITs.
We used CBL to run experiments on MT and present a sample workflow as well as an example experiment. CBL is freely
available and we discuss how CBL can be used now and may be further developed in the future.

Keywords  Chatbot · Conversational user interface · CUI · Dialogue system · Speech assistant · Dialogue strategy ·
Dialogue design · Survey · Simulation · Survey · JavaScript · Crowdsourcing · Crowd source · Mechanical Turk

Introduction

Users can interact with conversational user interfaces (CUI),
using natural language, by posing questions like “Who was
the first president of the United States?” or by giving com-
mands like “Play some classical music please.” CUI then
respond in turn using natural language, like “The first
president of the United States was George Washington”, or
“Okay, here is a playlist that you may like: Relaxing Clas-
sical Music.”

User interfaces that can be controlled conversationally,
have become more popular over the past decade (Richter,
2016; Kinsella, 2019; Kuligowska, 2015; Mordor Intelli-
gence, 2020). This is particularly pronounced in the rise of
speech assistants (Richter, 2016; Kinsella, 2019) and chat-
bots (Kuligowska, 2015, 2020). In fact, commercial speech

assistants were introduced in 2011 with Siri (Schonfeld,
2010) and in 2020 it is estimated that more than 1.6 billion
people world-wide use speech assistants like Siri, Alexa,
Google Assistant, Cortana and YuDian (Richter, 2016).
Moreover, chatbots have been on the rise too (Mordor Intel-
ligence, 2020). The conversational aspect is similar for
chatbots and speech assistants. Companies use chatbots for
example to support customers (Adamopoulou & Moussia-
des, 2020) and business interest is reflected in the expected
growth of chatbots: In 2019 the chatbot market was valued
at around 17 billion US dollars (USD) and the market is
expected to reach a size of about USD 102 billion by 2025
(Mordor Intelligence, 2020). The broad adoption and growth
of CUI suggests both business and societal interest in CUI.
In addition, it emphasises the importance and timeliness of
research into them. CUI involve human-computer interac-
tions that are modelled after human-human conversations.
There are many aspects of such conversational interactions
with machines, that are of potential interest to social science
research, including behavior, emotions, perceptions, linguis-
tics, memory, usability, privacy and trust.

 *	 Birgit Popp
	 birgit.popp@iis.fraunhofer.de

1	 Fraunhofer IIS, Am Wolfsmantel 33, 91058 Erlangen,
Germany

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-022-01864-x&domain=pdf

	 Behavior Research Methods

1 3

COVID-19 restricted personal contact throughout
the world and affected the ability of social scientists
to conduct their work by inviting participants to labs
and interacting with them in person. Crowdsourcing
platforms, like Amazon Mechanical Turk (MT), con-
nect experimenters to participants remotely and allow
them to gather behavioral data without inviting partici-
pants to the lab. Such platforms come with drawbacks
and an in-detail discussion of the benefits and draw-
backs of Mechanical Turk can be found in Chandler,
Rosenzweig, Moss, Robinson, and Litman (2019) and
in Buhrmester, Kwang, and Gosling (2016). Benefits
of remote crowdsourcing include the ability to con-
duct experiments while observing social distancing,
cost-efficiency and time-efficiency (Buhrmester et al.,
2016).

MT is a platform for connecting requesters, who are
customers of MT that create tasks for so-called work-
ers, who are payed by requesters for completing their
tasks. As a service to requesters, MT provides templates
for quickly creating common tasks on MT, like writing
a text-description of an image, or transcribing speech
recordings. However, at the time of writing this article,
there is no MT template for simulating CUI. Therefore,
if researchers want to simulate CUI and deploy them on
MT, they need to develop a custom solution. Developing
such a bespoke solution requires technical proficiency
that social science researchers may not have. With that in
mind, we, a team consisting of a social and life scientist,
an engineer and a software developer, have designed,
developed and tested a framework for simulating chatbots
and deploying them on MT, that can be used by research-
ers in the social sciences, like psychologists, sociologists
and Human-Computer Interaction (HCI) professionals.
We call this framework Chatbot Language (CBL) as it
is a simple computer language based on JavaScript, that
serves the specific purpose of simulating chatbots. CBL
is client-based, that is it runs in the browser of users.
CBL supports deployment of simulated chatbots on MT,
but CBL chatbots can also be run offline, e.g. on a lab
computer, or online on a private server. Thus CBL does
not depend on MT, but MT is supported and can be used
to quickly gather data.

In this article, we compare tools that are used by the
dialogue system community with CBL to identify simi-
larities and differences with CBL (see Section 2), then
we give an overview on what researchers can do with
CBL (see Section 3) and how they can set up experi-
ments (see Section 4). Moreover, we present an exam-
ple study with CBL (see Section 5). We end with a
discussion on possibilities and limitations of CBL (see
Section 6).

How does CBL compare to other tools used
by the dialogue system community?

Tools that are used by the dialogue system community can
be compared along multiple dimensions. One dimension
suggested by Papangelis et al., (2020) is whether their focus
is on research, on production or both. Another dimension
of system comparison are supported features. Finally, we
find a distinction in terms of what the system is designed
to achieve useful. Thus, in this section, we will compare a
selected number of systems with CBL in terms of (1) focus
on research and production, (2) features and (3) what the
system is designed to achieve.

We compare the following tools:

–	 DialCrowd (Lee, Zhao, Black, & Eskenazi, 2018)
–	 ConvLab (Lee et al., 2019)
–	 ParlAI (Miller et al., 2017)
–	 Plato Dialogue System (Papangelis et al., 2020)
–	 Dialogflow (Cloud, 2017)
–	 Lex (Amazon AWS, 2017)
–	 AIML (Wallace, 2011)

This is not a comprehensive list of tools used by the dialogue
system community and we chose these tools to lay out the
landscape of tools used by the dialog system community
and position CBL in that landscape. For this, we chose tools
that are similar to CBL and, at the same time, may differ in
type, in features (see Table 1) and intended purpose. Our
selection of tools is not exhaustive and we did not conduct a
systematic literature review of tools in the dialogue system
community.

The tools that we chose for comparison are popular and
some have been compared previously (Papangelis et al.,
2020).

Table 1   This table shows selected features of tools used by the dia-
logue system community. In the table the abbreviation “DS” stands
for dialogue system and the abbreviation “MT” stands for Mechanical
Turk. A “✓” indicates that this feature is supported by a tool and a
“✕” means that a feature is not supported by a tool

Tools Build DS Surveys MT

DialCrowd ✕ ✓ ✓
ConvLab ✓ ✕ ✓
ParlAI ✓ ✕ ✓
Plato Dialogue System ✓ ✕ ✕
DialogFlow ✓ ✕ ✕
Lex ✓ ✕ ✕
AIML ✓ ✕ ✕
CBL ✓ ✓ ✓

Behavior Research Methods	

1 3

DialCrowd is a toolkit for dialogue system assessment
(Lee et al., 2018). ConvLab (Lee et al., 2019), ParlAI (Miller
et al., 2017), Plato Dialogue System (Papangelis et al.,
2020), Dialogflow (Cloud, 2017) and Lex (Amazon AWS,
2017) are platforms for dialog system research or produc-
tion. A more detailed distinction of intended production and
research purposes of these systems can be found in Papange-
lis et al., (2020).

AIML is a markup language and CBL is a programming
language. AIML is a subset of the markup language XML
(Wallace, 2011) and designed for describing chatbots. The
capabilities of AIML are limited to what can be described
using that XML subset. CBL is based on JavaScript and
JavaScript is a turing-complete language whereas XML is
not turing-complete. This means that CBL is more expres-
sive and powerful as it has access to all JavaScript func-
tionality and is not limited to an XML schema. In addition,
JavaScript possesses a large library ecosystem and access to
functionality from the browser (e.g. playing audio, text-to-
speech, access to external APIs etc.). For example, JavaS-
cript provides open-source Natural Language Processing
(NLP) packages (Graype Systems 2017; AXA Group Opera-
tions Spain S.A. 2018; Kiro Risk 2014) that enable – among
others – fuzzy matching, intent and slot recognition. CBL is
not designed to be used with external NLP packages. How-
ever, it is possible to use NLP packages in CBL, for exam-
ple by using the function s.match_if (for an example of
usage see Table 4 in the Appendix). Note, that using NLP
packages would require a level of expertise beyond that of
the average intended user, which include social scientists.

Note that AIML interpreter exist in JavaScript (e.g.
https://​www.​npmjs.​com/​packa​ge/​aimli​nterp​reter) and they
could be used to provide AIML with the ability to execute
JavaScript code and access functionality from the browser.
This means that chatbots designed with AIML could be used
in the CBL framework. CBL is the only tool based on JavaS-
cript from the tools that we compare.

Unlike the other tools, AIML and CBL do not provide
Graphical User Interfaces (GUI). Importantly, neither AIML
nor CBL are designed as platforms or toolkits with a GUI,
but as scripting languages.

Section 3 gives a detailed overview of features supported
by CBL. In contrast, Table 1 picks out three features to
compare across tools used by the dialogues system com-
munity. We chose these three features to highlight differ-
ences between tools and introduce the concept of intended
purpose. The three features we selected are: (1) allows
users to build a dialogue system, (2) supports the creation
of surveys and (3) supports crowd-sourcing via Mechani-
cal Turk. CBL supports these three features as they help to
meet it’s intended purpose: informing dialogue design deci-
sions. CBL was designed to assess user behavior and per-
ceptions in response to interactions with dialogue systems

(Brüggemeier, & Lalone, 2022a). Specificially, CBL was
designed to present users with dialogue systems that dif-
fer only in the design of the dialogue to assess if and how
dialogue design might affect users. In a recent study that we
conducted with CBL, we found that differences in dialogue
design affect behavior and perceptions significantly. There-
fore, we believe that CBL will be useful for the dialogue
system community. Importantly, none of the other tools
that have similarities with CBL, supports all of these three
features. We argue that this is because they differ in their
intended purpose.

One can roughly distinguish two purposes for tools used
by the dialogue system community: production and research
(see e.g. Papangelis et al., 2020). ParlAI, Plato, DialogFlow,
Lex and AIML support building and deploying production
systems, whereas DialCrowd, ConvLab and CBL do not.
Notably, the tools that support production can be used for
research also. Research can be further differentiated to
include collection and validation of training data, testing of
different system architectures and testing of dialogue design.
This is not a comprehensive list of research focuses for dia-
logue systems, but we found these three categories useful to
distinguish research purposes of the compared tools. Impor-
tantly, this is also not an overview of what can be achieved
with tools. For example, tools that are not designed for col-
lection of training data for Machine Learning (ML), can be
used to collect such data nevertheless. However, dialogue
data that are collected with tools not designed for data col-
lection for ML, may provide data in a format that requires
post-processing to make it usable in a ML pipeline. In con-
trast, tools, that are designed for collecting data for ML train-
ing, may already include the necessary post-processing steps
and a connection to a ML pipeline. DialCrowd, ConvLab,
ParlAI and Plato are designed for collecting training data for
ML. DialogFlow, Lex, AIML and CBL are not designed for
collecting training data for ML. However, it may be possible
to use these tools for collecting training data for ML also,
by adding post-processing and connection to a ML pipeline.

ConvLab, ParlAI and Plato are designed for testing effects
of different system architectures. For example, different
Natural Language Understanding (NLU) models may affect
user perceptions and behavior. These tools are designed
to allow researchers to easily implement and compare dif-
ferent system architectures. Other tools could be used for
such research also. For example, CBL allows researchers
to implement different NLU models that are supported in
JavaScript. Effects of those NLU models could be compared
using CBL. However, CBL is not optimized for this type of
research and lacks support functions.

Notably, CBL is the only tool, except DialCrowd, that
meets the intended purpose of dialogue design research.
While both CBL and DialCrowd can be assigned the pur-
pose of dialogue design research, they differ in the means

https://www.npmjs.com/package/aimlinterpreter

	 Behavior Research Methods

1 3

they provide for such research: CBL is designed to evaluate
user behavior and perceptions after interactions with dia-
logue systems, whereas DialCrowd is designed to evaluate
system responses without interacting with dialogue systems
(Lee et al., 2018). Note that DialCrowd supports connection
to interactive dialogue systems, however they can not be
build within DialCrowd. Instead, dialogue systems have to
be build with other tools and deployed on servers so they can
be accessed within experiments build with DialCrowd. This
design has implications for crowd sourcing data on interac-
tions with dialogue systems with DialCrowd. Workers have
to follow a link to access the dialogue system that is to be
evaluated and, after finishing their interaction, have to go
back to the crowd-sourcing platform and verify, e.g. with
a code, that they interacted with the dialogue system, so
that they can get paid. This can create at least two issues:
(1) workers may fail to transition successfully between the
crowd-sourcing platform and the dialogue system and (2)
researchers may fail to correctly assign data from the crowd-
sourcing platform to interactions with the dialogue system.
CBL is designed to avoid these issues. CBL lets users build
an HTML page with an interactive dialogue system. CBL
then uses an iframe to embed the HTML page with the dia-
logue system into the HTML page of Mechanical Turk. This
means that workers see and interact with the CBL dialogue
system within Mechanical Turk. They stay on the Mechani-
cal Turk webpage throughout the experiment and all data,
including interaction data and data from Mechanical Turk
like HIT ID and worker ID, are gathered in one place.

Notably, other tools could be used for dialogue design
research also. For example in Plato, one could tweak reward
functions for reinforcement learning which will lead to vari-
ations of the same system. For example, one version could be
trained to avoid confirmations by implementing a negative
reward when the system confirms. Another version could be
designed to request and confirm information before moving
to the next piece of information by implementing a penalty
for attempting to ask for something new without confirma-
tion. Thus, one could test whether users prefer a system that
could be annoying because it asks for confirmation in every
interaction versus a system that may be less annoying but
can lead to an incorrect and potentially detrimental result by
collecting the erroneous information. The same is true for
other tools. Importantly, external surveys would have to be
used to assess user perceptions.

What can I do with CBL?

CBL is an open source framework for simulating chatbots.
We intend CBL to be used for research and development of
CUI. For example, CBL makes it possible to source sam-
ple dialogues for designing or training a system. Moreover,

CBL can be used to create multiple experimental conditions
that are randomly sampled and then presented to MT work-
ers, which allows controlled experimental design. In addi-
tion, CBL can be utilized to create instruction pages that are
presented to MT workers before interacting with chatbots.
Such instructions can inform MT workers about data protec-
tion and their rights as participants, thereby abiding to data
protection regulations and to ethical standards of research
(European Data Protection Supervisor, 2020). In addition,
instructions can inform participants about the task that they
are to complete. Note, that both instructions and chatbot
interactions can be experimentally exploited, by randomly
assigning different conditions to workers. Furthermore, CBL
can create surveys that are presented after chatbot interac-
tions and can collect data on user perceptions and reactions to
chatbot interactions and instructions. By open-sourcing CBL,
we make it available for the developer community for contri-
butions and modifications (https://​github.​com/​audio​labs/​cbl).
CBL is published under a modified BSD license and is com-
patible with commercial as well as non-commercial usage.
CBL makes use of third-party open-source software (OSS)
components. The OSS components are libraries that are
installed when the user follows the installation instructions
and they interact directly with CBL. Some scripts included
with CBL communicate with external services such as Ama-
zon Web Services (AWS). This is relevant when intending to
use CBL – especially for commercial purposes – the third-
party OSS licenses should be checked, as they might affect
usage obligations. We provide the used third-party licenses
in our repository (Lalone & Brüggemeier, 2021).

In it’s current state, CBL can be used in a lot of differ-
ent applications and we outline here parameters that can be
modified with CBL.

Choose language

CBL can be used to simulate chatbots in any language that
can be encoded with UTF-8, which essentially means any
naturally spoken language. We have tested CBL in English
and in German.

Show introduction text

CBL users can create custom introduction texts, to inform
participants about their rights and their tasks. Importantly,
CBL can present multiple introduction sites consecutively.
For example, experimenters may choose to show data pro-
tection information on a first introduction screen, followed
by a second introduction site with instructions about the
task. When participants accept the data protection agree-
ment, they can click a continue button and then see the task
instructions. Moreover, experimenters can choose to present
different instructions to different participant groups, thereby

https://github.com/audiolabs/cbl

Behavior Research Methods	

1 3

testing effects of instructions on interactions and perceptions
of chatbots.

Implement chatbots

With CBL, experimenters can control what a chatbot says
and what key words the bot reacts to, thereby controlling the
dialogue flow. Notably, MT workers can respond freely to
every chatbot utterance, thus providing varied dialogue data.

CBL uses regular expressions to detect keywords in
worker input. Consider for example, a banking scenario in
which workers are asked to use a chatbot to check credit
balance. In this use case, experimenters can define expected
keywords like ‘check’, ‘balance’ and ‘credit’ (Brüggemeier,
& Lalone, 2022a). If one of these keywords is detected, the
dialogue progresses and a chatbot response is triggered.

However, not every user input can be expected, there-
fore we included the CBL command unknown that enables
experimenters to deal with unknown user input (for more
information see Appendix A.2.2). With this CBL command
experimenters can define how a chatbot should react to an
unexpected participant query or command. For example, we
may expect participants to check credit balance, however
instead they may attempt to do small talk with the chat-
bot and ask “Hey, how are you today?”. In that case, the
unknown command in CBL can be used to define a response
like “Sorry, I can’t help you with that. Try checking your
credit balance.” Notably, this approach allows unexpected
input and at the same time guides participants to success-
fully completing an interaction. Participants can be guided
with instructions, with a task prompt and with the chatbot
dialogue, which can all be defined by experimenters.

Choose output modality

CBL includes an optional text-to-speech (TTS) feature, that
supports reading out-loud of text with an artificially gener-
ated voice that is presented to MT workers. This text can
be instruction text, or chatbot utterances. Currently, CBL
supports text-only presentation or combined text and audio
presentation of chatbot utterances and instructions. CBL
users may choose to give their chatbots a voice and maintain
instructions in text-only mode, and vice versa. By adding a
voice to a chatbot, researchers can investigate effects voice
may have on user experience and user trust (Burri, 2018).

Choose voice

CBL supports two types of voice generation: (1) pre-gener-
ating voices, that is generating voice audio files before run-
ning the chatbot interaction on MT and (2) real-time voice
generation, that is creating voice output at the time when a
worker interacts with the CBL experiment. In this second

case, voices are generated on the computer of the worker
by the browser the worker uses. Importantly, browser-based
voices depend on the browser and on browser settings and
therefore can vary from worker to worker. Thus, if an experi-
menter wishes to control what voice workers will hear, they
may want to opt for pre-generated voices.

For pre-generating voices, CBL connects with one of two
TTS services: Google translate TTS and Amazon Polly. Note
that these services may charge for voice generation and may
require the creation of an account. In addition, other TTS
services can be used to create voices and use them with
CBL. Thus, CBL does not require its users to utilize the
supported TTS services. Note, that the supported services
provide voices in a number of languages and dialects. For
example Amazon Polly supports 29 languages and dialects
(Amazon AWS 2020).

Playback audio

In addition to supporting reading out loud of text with
artificial voices, CBL also supports playback of any mp3
file, including music. For playing back audio files that are
not artificial voices, experimenters can use the command
play_audio (see Appendix A.2.2). Conversely, ‘stop_
audio’ stops playback. This playback function can be
useful for use cases in which participants are supposed to
control media (e.g. music, radio, podcasts) with a chatbot.

Implement survey

Experimenters can create surveys with CBL that are inte-
grated in the experimental flow. After completing an interac-
tion with a chatbot, workers can be automatically forwarded
to a survey page.

CBL currently supports four types of survey items: (1)
text-entry boxes, (2) drop-down lists, (3) semantic differential
scales and (4) Likert scales. For more details see Appendix
A.2.2. Experimenters can choose a custom number of points
for both Likert and semantic differential scales. Moreover,
workers are required to select points for each scale item to
complete the survey. In contrast, by default text-entry is not
required to complete a survey in CBL. Other types of survey
items and survey design can be implemented with CBL,
however this requires some programming knowledge.

Randomize presentation of experimental conditions

For randomized controlled trials, experimenters need to assign
participants randomly to control and experimental conditions.
This can be achieved manually, e.g. in lab settings, by alternat-
ing conditions participants are presented with. When running
experiments on the third-party service MT, the MT requester
User Interface (UI) allows requesters to assign workers

	 Behavior Research Methods

1 3

automatically to conditions. However, this is only true for
experiments that can be set up with the MT requester UI.
Currently, chatbot interactions can not be set up with the MT
requester UI. CBL bypasses this, by constituting a framework
to set up chatbots and leveraging MT API to run these chat-
bots on the crowdsourcing platform. CBL supports random
assignment to experimental conditions. Note, that CBL can
be used not only for randomized controlled trials, but also for
observational studies and for gathering training data.

Run online or offline

CBL experiments can run online and offline. In it’s current state,
CBL supports online data collection via Mechanical Turk APIs.
It is possible to extend CBL to support other crowdsourcing
platforms like Prolific (2021). Currently, APIs of these sites
are not supported in CBL. Moreover, CBL experiments can be
run on a private server and distributed with links. Thus, running
CBL online does not require using a third-party service.

In addition, CBL experiments can be implemented on a
local computer and used for local data collection. This means,
that it is not necessary to set up CBL experiments online, but
a local computer is sufficient. This may be useful for studies
that are planned in a lab setting. CBL files required for run-
ning the experiment (compiled HTML-file and, where appli-
cable, audio files) need to be stored on a computer that can
be accessed by participants (e.g. a laboratory laptop). In this
local mode, the results of the experiment can be printed at the
end of the experiment for the experimenter to copy and save.
Moreover, a compiled HTML version of a CBL experiment
can be sent to participants to run on their personal computers.
In that case, participants need to be instructed to send back
the results to the experimenter. If a compiled HTML version
is sent to participants, experimenters need to make sure that
audio files used by CBL are publicly available. Running CBL
experiments locally may be attractive for enhancing privacy of
participants, as data may not be stored on third-party servers.

How can I set up CBL experiments?

This section includes an exemplary walk-through for run-
ning an experiment with CBL in Section 4.1. Moreover,
we present takeaways from interviews with practitioners of
CBL in Section 4.2. A detailed overview of CBL syntax and
semantics can be found in Appendix A

After reading this section, it should be possible to evalu-
ate the use of CBL for a research project, plan a CBL experi-
ment and to implement and run it.

Example walk‑through

Here we showcase a typical workflow of running experi-
ments with CBL. An example of results gathered with CBL
can be found in Section 5 and in Brüggemeier, & Lalone,
(2022a). While the results in Section 5 and in Brüggemeier,
& Lalone, (2022a) give practical insight in how CBL can
be used for research, we deem it useful to present a generic
workflow of experimentation with CBL: A description of a
workflow from design to technical implementation to data
analysis is not typically part of research papers, however it
is useful to practitioners who want to use CBL as a research
method.

A typical workflow of an experimenter using CBL
includes (see Fig. 1):

1.	 planning the chatbot experiment,
2.	 implementing the chatbot experiment with CBL,
3.	 deploying the CBL file on MT,
4.	 collecting data from MT using CBL,
5.	 analysing the data.

Notably, only points 2 to 4 are completed with CBL. How-
ever, as planning experiments with CBL (point 1) benefits
from insights into CBL, we will briefly discuss this point
also.

Fig. 1   Simplified illustration of a workflow involving Chatbot Language (CBL)

Behavior Research Methods	

1 3

Planning

When designing an experiment with CBL, researchers
should consider the three distinct parts of a CBL experi-
ment: instructions, chatbot interaction and survey. Each of
these parts is optional. Note, however, that the order of these
three parts can not be changed.

If experimenters plan to run a study with multiple con-
ditions, they may want to make use of the CBL set and
random_item command, that enable users to set condi-
tions that are then randomly selected in the course of each
chatbot interaction.

Importantly, when designing chatbot interactions, exper-
imenters should follow best practices of conversational
design that are for example discussed in Pearl (2016) and
Moore, Arar, Ren, and Szymanski (2017). Similarly, when
designing the post-interaction survey, designers may wish to
follow survey design principles as outlined in Blair, Czaja,
and Blair 2013.

When designing experiments with CBL, experimenters
may want to consult Section 3 in this article, as it describes
which experimental elements can be modified using CBL.

Implementing

As CBL is a high-level programming language, implementing
experiments with CBL requires usage of a code or text editor,
such as Visual Studio Code, Atom or Vim. Our CBL GitHub
repository (Lalone & Brüggemeier, 2021) includes sample
code that showcases how to include instructions, define dia-
logue flows, set voices and design surveys with CBL.

If experimenters pre-generate voice files or want to play
back other mp3 files (see Section 3.6), these sound files need to
be made accessible online. This is because CBL experiments
are client-based, that is they run in the browser of the client, in
this case MT workers. In order for the MT workers to be able
to hear sound files, their browser needs to be able to access the
files via the Internet. To enable online access of sound files,
experimenters can for example create an Amazon Web Ser-
vices (AWS) server instance and upload the sound files there,
then copy the link to the server instance into their CBL script,
thus indicating where to find the sound files. A detailed step-
by-step instruction for this process is given in the Readme of
our GitHub repository (Lalone & Brüggemeier, 2021).

Code Example 1 shows a sample implementation of a
simple chatbot interaction. For a more detailed overview of
syntax and semantics of CBL see Appendix A. In Appen-
dix A you also find Code Example 2 which shows a simple
implementation of a questionnaire.

Deploying

Once an experiment is implemented in CBL, it can be com-
piled into an HTML page. Detailed instructions for building
and deploying a CBL script can be found in our repository
(Lalone & Brüggemeier, 2021).

The HTML file can be opened and tested locally,
which enables experimenters to evaluate their experiment
before publishing it on MT. After testing the experiment
locally, the HTML file can be uploaded either directly
to MT, or to the MT Sandbox environment. MT Sand-
box lets requesters run and test their applications on MT

	 Behavior Research Methods

1 3

servers, prior to publishing them for MT workers (Ama-
zon Mechanical Turk, 2020). Testing CBL experiments
in the MT Sandbox environment is optional, as is testing
them locally.

Eventually, when experimenters are satisfied with
their CBL experiment, they can deploy it on MT and
thus publish it to the MT worker community. Experi-
menters need to define the number of workers that can
take part in the experiment, the compensation MT work-
ers receive for participating in their experiment, as well
as keywords that may help workers to find the experi-
ment on the MT platform. In addition, experimenters
need to specify worker inclusion or exclusion criteria.
For example, we excluded workers who took part in
prior chatbot experiments. One can also include work-
ers who are based in a specific country only, for exam-
ple the United States. More information on how certain
worker groups can be excluded or included and how
to specify this with CBL, can be found in our Readme
(Lalone & Brüggemeier, 2021).

Figure 2 shows a sample introduction, a chatbot interac-
tion and a survey created with CBL.

Collecting data

When a CBL experiment is published on MT it is assigned a
HIT ID. This HIT ID is a unique identifier that can be used
by CBL to pull results from the experiment, even while it
is still running. To pull data with CBL, experimenters are
required to use a command line interface and instructions are
provided in our GitHub repository (Lalone & Brüggemeier,
2021).

CBL saves results as CSV file. Data include the
HIT ID, the worker ID, which is a unique identifier
for MT workers, and an assignment ID which is a
unique identifier that links workers to HITs. This
information can be useful for accepting or rejecting
HITs or giving rewards to specific workers. Resources
on how to do this are linked in our Readme (Lalone &
Brüggemeier, 2021).

Moreover, data include timestamps of when a worker
accepted the HIT and when they submitted the completed
HIT. This information can be used to compute the aver-
age duration until completion of the experiment. Other
relevant data are the transcript of the interaction, which
is saved as string with labels indicating whether the user,
i.e. the worker, or the chatbot are speaking, and survey
results. For a detailed description and presentation of
data collected with CBL see Brüggemeier, & Lalone,
(2022a).

Takeaways from test runs

CBL was tested by two psychologists and one HCI
researcher with no prior knowledge in JavaScript and no
formal training in programming. In addition, CBL was tested
by one computer scientist and two engineers with minimal
prior experience in JavaScript. All testers were between 20
and 35 years of age. Testers were able to create chatbots with
CBL within one afternoon up to a week of casual attempts
using CBL.

Thus, we conclude that CBL can be used by researchers
with no prior knowledge of JavaScript and little background
in programming.

We asked three testers about what they used CBL for
and what CBL’s purpose was in their opinions. CBL
was described as a tool to evaluate dialogue strategies
with behavioral and attitudinal measures. Interviewee I3
gives a concise summary of CBL’s purpose from their
point of view: “I would use CBL for studies where you
want to look at dialogues and compare dialogue strate-
gies. It is a testing tool.” We ran the experiments, that
we created with CBL, with more than 3500 MT work-
ers, who successfully completed them. This suggests
that experiments created with CBL are sufficiently usa-
ble that MT workers can complete them. In addition, it
is notable that 100 to 400 MT workers completed online
experiments within six hours of putting an experiment
online on MT, which speaks to the time-efficiency of
collecting data with CBL and MT. Interviewees also
highlighted efficiency of CBL. Note, we did not restrict
worker participation based on their region, but excluded
workers that previously took part only. If experiment-
ers require participants to be based in certain regions
this would reduce the number of workers that can take
part and thus may affect the time-efficiency of data
collection.

Practitioners also remarked on the process of building
and testing experiments with CBL. Interviewee I2 men-
tioned that they found working with CBL intuitive. As CBL
is JavaScript based, JavaScript can be used within CBL to
customize experiments, as described by I3 “I found it com-
forting that I could go into the framework and implement my
own stuff, like that we capture time stamps, or that I adjust
the button size.”. Moreover, CBL experiments are compiled
as HTML files and run in the browser. Interviewee I1 noted:
“Being able to run experiments on a web browser in differ-
ent environments helped me to identify potential errors, like
audio not being heard by people who switch off their audio.
Then I was able to control for it by introducing a Yes/No
question to the survey saying ‘I was able to hear the audio in

Behavior Research Methods	

1 3

the interaction’.” Interviewees I3 and I1 highlighted ease of
iteration with CBL. I1 noted: “It is very very easy for iterat-
ing, for updating. You can correct errors in your experiment
right away.”

What is more, I1 highlighted that CBL provides all
parts of experiments, including data protection statement,
introduction, dialogue system interaction and survey in
one place.

Fig. 2   Screenshots of a sample implementation in HTML of a CBL experiment, showing (a) an introduction screen, (b) an ongoing interaction
with a chatbot and (c) survey questions

	 Behavior Research Methods

1 3

Practitioners also commented on where they saw poten-
tial for improvement for CBL, including more extensive
documentation, which we added. Moreover, I3 noted that
JavaScript can be used to expand functionalities of CBL,
however this requires a level of expertise that extends that
of the intended user. CBL has potential to be expanded by
adding functions that make customisation easy for people
without programming background. We open source CBL
and hope that the dialogue system community will add func-
tions that cater to their needs.

Example study with CBL

We present an example study to illustrate how CBL can be
used to inform dialogue design decisions empirically, based
on user behaviour and perceptions. Our study aims to iden-
tify dialogue strategies that allow designers to ask for per-
sonal data in a dialogue while respecting users’ privacy and
maintaining system usability.

Users are regularly asked to disclose personal infor-
mation to devices. Some CUI let users enter their infor-
mation and other CUI ask for access to users’ devices
and data. In both cases, forcing the user to disclose
can frustrate users and may lead to rejection of the
service (Leschanowsky, Brüggemeier, & Peters, 2021).
In our experiment we aim to assess user behaviour and
perceptions when a chatbot asks to access data vs when
a chatbot asks users to enter data. We are especially
interested whether the two strategies differ in users’
perception of privacy and their reported levels of frus-
tration. In order to be able to generalize across contexts
we investigate both strategies (enter and access of data)
in two chatbot scenarios, a banking chatbot asking for
users’ credit card number and a chatbot asking for loca-
tion information (see Appendix B.1 for the dialogue
trees of both chatbots). The two scenarios were chosen
with distinct levels of information sensitivity in mind
(Schomakers, Lidynia, Müllmann, & Ziefle, 2019).

In both the access and the enter condition, we give
users the option to refuse sharing their data, for example
by saying “no” to the question of whether data can be
accessed or when asking them to enter personal data.
Additionally, participants can protect themselves in
the enter condition by providing misinformation. To be
able to assess the number of participants who stated
incorrect information, we asked them at the beginning
of the survey whether they shared true information or
misinformation.

We used objective and subjective measures to assess
peoples’ perception and behaviour. Subjective measures
included privacy perceptions and usability that were
used before in experiments with CBL on conversational

privacy (Brüggemeier, & Lalone, 2022b). Moreover, we
assessed frustration. Our dialogues are designed such that
no service is provided due to technical difficulties or clo-
sure of the restaurant (see Appendix B.1). This is based on
the assumption that a positive ending (e.g. providing a fake
balance in the banking scenario or telling the user that the
pizza is on its way) might confuse or even upset users. The
users might be unsure whether the fake credit card balance
is actually correct or whether a pizza will be delivered
to their location. To avoid this, we end the interaction by
saying that no services will be provided. However, failure
to provide a service could leave users with a feeling of
frustration (Smith & Ellsworth, 1985). Thus we measure
user frustration.

In addition, we are interested in timing of user decisions.
Taking time to make a decision can lead to better and more
informed decision making (Kahneman, 2011). Thus, we
adapted CBL to capture users’ reaction and completion times
during the interaction with the chatbot.

Moreover, we included three screening questions in our
survey to check the reliability of submitted responses and
whether participants paid attention to the survey questions.
The survey of the study including the individual items and
scales can be found in Appendix B.2.

We set up our experiment in CBL following the work-
flow suggested in Fig. 1 and deployed the experiment on
Mechanical Turk. We show dialogue flows for both sce-
narios and both conditions in Appendix B.1. Before the
interaction with the chatbot, workers saw an instruction
page that informed them about their rights as participants
and introduced them to the task. After the interaction
with the dialogue system, workers completed our sur-
vey (see Appendix B.2). We give an overview of demo-
graphic and experimental data in Table 2. Workers were
paid $2 for their participation and took an average of 12
minutes to complete the experiment. This translates to
an average hourly pay of $10. Participants who failed
one or more screening questions were excluded from the
analysis.

In Figure 3 one can see that most of the partici-
pants exposed to the access condition gave access to
their data while only roughly 40% shared true infor-
mation in the enter condition. Interestingly, this is
true for both scenarios. Further, we analyzed the tran-
scripts from the enter condition manually and found
that none of the participants in the location scenario
explicitly stated “no” to providing information. How-
ever, more than 25% of participants exposed to the
enter condition in the banking scenario specifically
expressed that they did not want to enter personal
information. Sometimes they even stated that credit
card information is personal information as a reason
for non-disclosure.

Behavior Research Methods	

1 3

We find that the odds of disclosure are 3.35 times greater
for the access condition than for the enter condition. Moreo-
ver, the odds of participants being frustrated in the access
condition were 3.45 higher than in the enter condition. No
significant effect was found for measures on privacy percep-
tion and usability.

We captured timestamps whenever the chatbot sent
responses and when participants started typing. We
compared the time participants took to answer to the
question to disclose information and the average time
they needed to reply to the remaining questions asked
by the chatbot. The time difference Δt , the difference
between this baseline and the time taken to respond to
the condition-specific question, was computed for the
sets available and results are shown in Fig. 4. Posi-
tive values indicate that participants took more time
to respond to the chatbot’s prompt to enter or access

data than to prior prompts, while negative values indi-
cate that participants took less time to respond to data
access or enter prompts than to prior prompts (see
Appendix B.1). We find that in the access condition
participants took less time before typing their response
than in the enter condition.

We find that when participants are asked to enter
personal data, they take more time before responding,
they are more likely to choose not to share their data
and they are less frustrated after an interaction with
a dialogue system that asked for data. Moreover, we
find that asking people to enter their data does not
affect the perceived usability of a dialogue system.
Hence, we conclude that dialogues that require per-
sonal information can be designed to be both usable
and privacy-friendly by asking users to enter their per-
sonal information rather than asking for data access.

Table 2   Summary of demographic and experimental data for the banking and location scenario

Demographic and experimental data Banking Location

conditions 2 2
participants 100 100
excluded participants 7 16
accepted participants in the access condition 50 41
accepted participants in the enter condition 43 43
Mean (SD) age of workers in years 32 (9) 33 (9)
Gender (female/male/diverse/not provided) 62/31/0/0 37/47/0/0
Native English speakers (yes/no) 92/1 83/1
Usage (weekly/monthly/less than once a month/never) 6/41/25/21 16/31/22/15

Fig. 3   Percentage of participants providing misinformation and true information in the enter condition and granting or denying access in the
access condition, displayed for both scenarios

	 Behavior Research Methods

1 3

Discussion

Chatbot Language (CBL) is an open-sourced framework
under modified BSD licence for running interactive chat-
bot experiments. CBL supports deployment on Mechanical
Turk. This is particularly useful (1) when wanting to obtain
data remotely, (2) when choosing to diversify the partici-
pant base for experiments (Buhrmester et al., 2016) and
(3) when needing to gather data quickly. For example, in
a recent study (Brüggemeier, & Lalone, 2022a), conducted
with CBL, we were able to gather data of about 400 partici-
pants in less than a day.

CBL can be used for a range of research projects,
including

–	 designing dialogues of conversational user interfaces, for
example by testing one dialogue design versus another in
A/B testing,

–	 comparing effects of input modalities, e.g. by running an
experiment with a text-based chatbot and comparing user
perceptions or behavior to running the same experiment
with a speaking chatbot,

–	 investigating effects of errors on user experience (Yuan,
Brüggemeier, Hillmann, & Michael, 2020),

–	 examining effects of privacy violations (Sannon, Stoll,
DiFranzo, Jung, & Bazarova, 2020) or conversational
privacy (Brüggemeier, & Lalone, 2022a),

–	 studying effects of different voices on user behaviour (like
male, female and neutral voices (Lee, Nass, & Brave,
2000); or voices with different accents, e.g. British vs.
American accents (Tamagawa, Watson, & Kuo, 2011)),

–	 and investigating effects of different languages and cul-
tures (Cambre, & Kulkarni, 2019).

This is not a comprehensive list of research projects that
can be approached with CBL, but is intended to showcase
application examples. However, we believe that the research
community will come up with more applications than what
we consider in this listing.

An open research question that is of interest both to
researchers and practitioners is: Are results gathered with
CBL comparable with real-life chatbot interactions? The
answer to this question will likely depend on the real-life
chatbot application that CBL chatbots are compared with.
For example, a chatbot application that is running on a web-
site that users can access from home, may be more compa-
rable to CBL chatbots that are accessed via a website from
home, than a chatbot application, that is running on a UI
of an ATM, that can be accessed only within a bank. Use
context likely matters. Moreover, there are roughly two types
of chatbot systems: rule-based and machine-learning-based
systems. CBL is a rule-based system and thus may render
more similar results to other chatbots that are also rule-based
than to machine-learning-based systems.

Fig. 4   Times users take to respond to chatbot prompts in access and
enter conditions. Times are displayed relative to the baseline response
to prior chatbot prompts. 17 outliers are not visible in this figure in
order to allow a close-up comparison of group differences. Median

values are indicated by colored lines. Condition differences high-
lighted with an asterisk have a p-value lower than 0.025 in the pair-
wise comparison of conditions in each scenario as we apply Bonfer-
roni correction to account for multiple testing

Behavior Research Methods	

1 3

CBL chatbots are designed as simulations and embed-
ded in an experimental framework that designates them
as experimental, namely an instruction page and ques-
tionnaires. User behavior may differ when users know
that they interact with a system in an experimental con-
text rather than in a real-life context. Thus, we expect
that CBL chatbots may render different results to real-
life chatbots, even when use context and system type are
matched. This means, that CBL chatbots can not replace
experiments with real-life systems, however they may be
an avenue to conduct conversational interaction experi-
ments for researchers that do not have access to real-life
chatbot data or do not have the resources to build real-life
applications themselves. It remains to be investigated how
comparable results from CBL interactions are to different
real-life applications.

CBL supports real-time generation of audio. That
means that it is not necessary to generate audio files
in advance of running the experiment, but instead have
them generated by the browser of the participants taking
part in the study. However, this real-time generation of
audio bears the caveat of providing no experimental con-
trol of the generated voice. For example, an experimenter
may wish to conduct an experiment in English. When
they run their experiment with real-time generation of
audio, some of the participants may have browser set-
tings that produce voices with a German Text-to-Speech
(TTS) engine, thereby generating English sentences that
might sound like a speaker with a heavy German accent.
Importantly, having a German TTS generate audio of
English text files may not sound like a speaker with an
accent, but might be unintelligibly. This is true for other
language combinations also. Therefore, we advise experi-
menters who want to control voice output to use audio
files that were generated before running the experiment.
CBL does support this option also (see Section 3.5 and
Appendix A.2).

Moreover, other extensions to CBL are conceivable. For
example, CBL currently detects user intents with regular
expressions. Regular expressions are commonly used in
Natural Language Processing (NLP), however they do not
take into account the grammar or context of speech, which
restrict their performance (Nadkarni, Ohno-Machado, &
Chapman, 2011). Instead of using regular expressions for
detecting user intents, it has become common in NLP to use
artificial neural networks. Such Natural Language Under-
standing (NLU) models could interface with CBL to test
them with users remotely. Moreover, it might be possible to

extend CBL with support for Automatic Speech Recognition
(ASR). ASR would allow users to communicate with CBL
by using their voice instead of having to type text. Such
interaction would be closer to interactions with speech assis-
tants such as Amazon Alexa, Google Assistant and Apple’s
Siri. Speech data that would be collected with CBL could be
used to improve ASR models. However, both the integration
of NLU and ASR models might impede real-time processing
with CBL. CBL is client-based and runs in the browsers of
participants. Custom NLU and ASR models might take too
much processing to run in real-time on browsers. Thus, such
models would either have to be optimized for running on
browsers, or CBL would have to be extended to offer cloud
support. Offering cloud support would be a major change
to the current software layout of CBL. However, we would
like to highlight that CBL can be used with existing JavaS-
cript Natural Language Processing (NLP) packages (Graype
Systems 2017; AXA Group Operations Spain S.A. 2018;
Kiro Risk 2014).

Conclusion

We present Chatbot Language (CBL), a high-level program-
ming language based on JavaScript that enables researchers
to crowdsource perceptions and reactions to dialogue sys-
tems in order to inform dialogue design decisions. Unlike
other tools used in the dialogue system community, CBL is
designed to inform dialogue design decisions and supports
this with three main features: (1) building dialogue systems,
(2) creating surveys and (3) supporting crowdsourcing via
Mechanical Turk. We provide an overview of what can be
done with CBL, explain semantics and syntax of CBL, dem-
onstrate a sample walkthrough of running experiments with
CBL, cite feedback from users of CBL and show results
from an example study.

Appendix A: Syntax and semantics

CBL is an embedded domain-specific language with JavaS-
cript as the host language. CBL is implemented as a JavaS-
cript library and any JavaScript code can be used within CBL
scripts. However, CBL is designed in such a way that pre-
existing knowledge of JavaScript is not necessarily required
in order to write useful CBL scripts. Since CBL is valid
JavaScript, it can run in most web browsers. In the following
we will give an overview of CBL syntax and semantics.

	 Behavior Research Methods

1 3

A.1 Syntax

CBL syntax is similar to JavaScript syntax. A detailed
overview of JavaScript syntax can be found for example in
Flanagan and Ferguson (2011). CBL differentiates between
global methods, called “CBL methods” and local methods,

so called “Script methods”. CBL methods allow develop-
ers to name, start and run scripts, that determine chatbot
behavior with script methods. An overview of CBL methods
and script methods and their respective meaning is given in
Appendix A.2 Examples of syntax of CBL are given in Code
Examples 1 and 2.

Table 3   CBL methods with descriptions of their workings and examples of usage

Method Description and Examples

cbl.script(”scriptname”, fun) This method defines a CBL chatbot script. Within the function, script methods – as described in the next
section – are used.

cbl.instructions(fun) This method defines an instruction page. Within the function HTML is emitted which describes the layout and
content of the instructions. Multiple instructions pages can be defined by using this method multiple times.

cbl.survey(”surveyname”, fun) This method defines a survey script. Within the function, survey methods – as described in a later section –
are used.

cbl.start(”scriptname”) This method starts the chatbot interaction that is defined by cbl.script. If any instructions are defined
they will be displayed first. This method should only be called once, usually at the end of the script.

cbl.run(”scriptname”) This method lets you switch to another script. No instructions are displayed.
cbl.completed(fun) This method defines a page that communicates to participants that they completed the experiment.
cbl.random_item([a, b, c, ...]) This method returns a random item from an array. This can be used for automatically assigning experimen-

tal conditions to participants.
cbl.random_num(min, max) This method returns a random number between two numbers min and max. The interval defined by min

and max is inclusive. This method is another way to randomly assign conditions, in this case numbered
conditions.

cbl.set(”varname”, value) This method sets a system variable to a value. For example, the system variable “audio_prefix” is used to
determine where to search for audio files. The variable “audio_prefix” can be set to search for the audio
files locally under a specified path or on a publicially accessible server specified by an URL.

cbl.set_result(”colname”, value) This method sets a survey result column to a value. This can be used to collect behavioral data in runtime,
e.g. when a user puts in a specified keyword, for example “Yes” or “No”, this can be logged in runtime as
a value in a column of the dataset.

cbl.play_audio(”filename”) This method starts playback of an audio file if that audio file can be accessed via the path specified in cbl.set.
cbl.stop_audio() This method stops playback of an audio file.

Behavior Research Methods	

1 3

A.2 Semantics

Here we describe methods specific to CBL, how they are
used and what effect they have. Importantly, the listed meth-
ods are not a comprehensive overview of methods that can
be used within CBL, as CBL accepts any JavaScript method.
Methods that are listed here, are specifically designed for
simulating chatbots with CBL in order to make chatbot simu-
lation and data collection of simulated chatbots easier. We
differentiate between CBL methods and script methods. CBL
methods are global and script methods are local methods.

A.2.1 CBL methods

CBL methods can be thought of as the backbone of
designing experiments with CBL. They allow researchers
to define the temporal succession of what users see during
an experiment, e.g. instructions, followed by a chatbot,
followed by a questionnaire. Moreover, CBL methods
enable definition and randomization of conditions. In
addition, CBL methods allow researchers to define vari-
ables that should be recorded and saved. For example,
researchers may want to record which condition(s) a par-
ticipant was assigned to, or which response a user gave

Table 4   Script methods with descriptions of their workings and examples of usage

Method Description and Examples

s.begin(fun) This method executes a function (e.g. the chatbot saying “Hi!”) when the script begins.
This is in contrast to the methods s.match and s.match_if that expect a user
input before executing a function.

s.match(str|regexp, fun) This method executes a function when the user input matches the defined string or
regular expression. An example JavaScript regular expression is /hello/i which will
match the word hello regardless of case (hello, Hello, HeLLO, etc.)

s.match_if(str|regexp, expr_fun, fun) This method conditionally executes a function when user input matches the defined
string or regular expression and expr_fun returns true. This gives dialogue design-
ers additional control over chatbot behavior. For example, a chatbot designer may
want a chatbot to react in one way when a user says “Yes” and they are in the control
condition, than when a user says “Yes” and they are in the experimental condition.
This is possible with expr_fun.

s.unknown(fun) This method executes a function when the user input is not matched. This is an impor-
tant method for dialogue design, as it is impossible to predict everything users may
say. Hence experimental design should account for unexpected user behavior, which
is possible with this method.

s.do(”text”) This method simulates receiving user input and attempts to match the simulated input with
the s.match or s.match_if definitions. You can think of s.do as a housekeep-
ing method that allows researchers to write code with less redundancies by letting them
“jump” to sections code defined by match methods. The example scripts conditions.js,
gender-modes.js and gender-subscript.js in the CBL repository showcase usage of s.do.

s.sub(”subname”, fun) This method defines a subscript, a child script with it’s own context.
s.ret() This method returns from a subscript to the parent script without executing the func-

tion defined in s.begin again.
s.run(”subname”, args) This method runs a subscript and is useful for implementing turn-taking in the chatbot interac-

tion. There are example scripts in the CBL installation folder showcasing use of this method.
s.set(”varname”, value) This method sets a script variable to a value.
s.play_voice(”voice”, ”text”, opts) This method speaks text defined in the method. For this the method using either

browser-specific speech synthesis functions or pre-recorded audio.
s.get(”varname”) This method gets the value of a script variable. This can be used to refer to a previously

set variable, e.g. the condition a participant is assigned to.
s.say(”text”, opts) This method sends a message to the user. If the text is an array of strings then one

string is randomly selected. The voice can be supplied in the options, for example
s.say(”hello”, {”voice”: ”Mary”}). The text of the message is also spoken.

s.pause(ms) This method pauses the script for the defined number ms of milliseconds before saying
more text. This can be used to assess user experiences and behavior depending on
different wait times.

s.ready(fun) This method executes a function when all pending say and pause commands are completed.
s.restart() This method restarts the current script. An example of an application is given in the

CBL repository in the example script conditions.js.

	 Behavior Research Methods

1 3

at a particular turn of the dialogue. This is possible with
CBL methods. Finally, CBL methods permit control of
audio files. For example, an experimenter may be inter-
ested in how users control music playback with CUI. With
CBL, music files can be played back and stopped upon
user request, like “Play music” or “Stop music”. Note that
any kind of audio file can be thus controlled and CBL
methods are not limited to music playback. In Table 3
we list CBL methods and describe how they can be used.

A.2.2 Script Methods

In CBL, scripts can be thought of as detailed implementa-
tions of dialogues. While CBL methods control the flow
of the experiment, script methods control the flow within
a dialogue. That is, script methods allow experimenters to
define a dialogue flow for a chatbot interaction.

From a programming perspective, script methods do not
exist outside the context of a given script. Scripts are objects
and script methods are methods of that object. In Table 4
we list script methods used within CBL and describe their
usage.

A.2.3 Survey methods

In CBL, survey scripts can be thought of as detailed imple-
mentations of questionnaires. Survey methods define the
presentation of the questionnaire, by determining question-
naire sections, questionnaire items and scales (e.g. semantic
differential scale, Likert scale, drop-down menu or input
range).

In Table 5 we list script methods used within CBL and
describe their usage.

Table 5   Survey methods with descriptions of their workings and examples of usage

Method Description and Examples

s.section(”text”) This method structures the layout of the survey by vertical spacing and shows users
a title or instruction for filling out a section within the survey, which is defined in
”text”.

s.select(”colname”, ”text”, list, opts) This method generates a drop-down menu, with items defined in list. The
variable ”colname” defines the name of the column in the dataset, the
user selection is saved under. The variable ”text” determines text shown
next to the dropdown menu, e.g. a question like “What is your gender?”. The
variable ”opts” defines layout aspects of the drop-down menu, like it’s
width.

s.textarea(”colname”, ”text”, opts) This method generates a free text entry box for multiple lines of text.
s.input_text(”colname”, ”text”, opts) This method generates a free text entry box for a single line of text.
s.input_range(”colname”, ”text”, min,
max, opts)

This method generates a text entry box for numeric values that accepts entries
in a determined range. This is useful when asking for age. The variables are
analogous to the method s.select. The variables min and max set the mini-
mum and maximum values of the accepted range respectively. The values are
inclusive.

s.sem_diff_scale(list, opts) This method generates a semantic differential scale, useful for presenting ques-
tionnaires like AttrakDiff (Hassenzahl, Burmester, & Koller, 2003) or UEQS
(Schrepp, Hinderks, & Thomaschewski, 2014). The list variable is a list of
lists. Each item in list is constructed as follows: [”colname”, ”left
word”, ”right word”]. The ”left word” represents the left word of
the semantic differential and the ”right word” describes the right word. The
variable opts determines the scale range, e.g. 7 selection options between left
and right word.

s.likert_scale(list, opts) This method generates a Likert scale, useful for presenting questionnaires like
System Usability Scale (SUS) (Brooke, 1996). The variables work analogous to
what is described for s.sem_diff_scale with the exception of list items that
are constructed as follows: [”colname”, ”text”], with the ”colname”
determining the column name of the item and ”text” depicting the text of the item,
e.g. ”I feel very confident using the system”.

Behavior Research Methods	

1 3

Appendix B: Example study with CBL

We used CBL to set up an example experiment. Therefore,
dialogue flows were designed to test different dialogue
strategies that allow to ask for personal information while
respecting users’ privacy. The dialogue trees are shown in
Appendix B.1. We investigated users perceptions using the
survey shown in Appendix B.2.

B.1 Dialogue trees

We show dialogue trees for the example experiment for
both scenarios and conditions. In Figs. 5 and 6 we visualize

the dialogue flow for the banking scenario for the enter and
access condition. In Figs. 7 and 8 we show dialogue trees
for the location scenario for the both conditions.

B.2 Survey

Appendix B.2 shows the questionnaire items used in
the example experiment. We show the items together
with the corresponding construct they were supposed
to measure. Those were not presented to the partici-
pants as it might have influenced their responses. The
three screening questions which are here shown after
one another were distributed over the questionnaire.

Fig. 5   Dialogue Tree for the banking scenario in the enter condition, blue circle show the chatbot, orange circles show the possible inputs for the
user

	 Behavior Research Methods

1 3

Fig. 6   Dialogue Tree for the banking scenario in the access condition, blue circle show the chatbot, orange circles show the possible inputs for
the user

Behavior Research Methods	

1 3

Fig. 7   Dialogue Tree for the location scenario in the enter condition, blue circle show the chatbot, orange circles show the possible inputs for the
user

	 Behavior Research Methods

1 3

Fig. 8   Dialogue Tree for the location scenario in the access condition, blue circle show the chatbot, orange circles show the possible inputs for
the user

Behavior Research Methods	

1 3

Questionnaire used in the example experiment

Screening Questions

1a. It is important that you pay attention to the state-
ments. Please agree by choosing ‘strongly agree’ from
the options.

1b. To ensure that you are paying attention, please select
‘strongly disagree’ from the options

1c. I recognize the importance of paying attention to the
questions in the questionnaire. Please select ‘strongly
agree’ to confirm your agreement.

Frustration

Indicate to what extent you have felt this way while interact-
ing with the chatbot

2a. frustrated

Privacy perception

Indicate to what extent you agree with the following
statements.

3a. I think this chatbot shows concern for the privacy of
its users

3b. I feel safe when I send personal information to this
chatbot

3c. I think this chatbot abides by personal data protec-
tion laws

3d. I think this chatbot only collects user personal data
that are necessary for its activity

3e. I think this chatbot respects the user’s rights when
obtaining personal information

3f. I think that this chatbot will not provide my personal
information to other companies without my consent

Usability

4a. With this chatbot everything is easy to understand

4b. This chatbot is simple to use, even when using it for
the first time

4c. It is easy to find the information I need from this
chatbot

	 Behavior Research Methods

1 3

4d. The structure and contents of this chatbot are easy to
understand

4e. It is easy to move within this chatbot

4f. When I am using the chatbot I feel I am in control of
what I can do

4g. I would like to use the chatbot frequently

Questions about you:;

5. Gender

◦	� Male
◦	� Female
◦	� Diverse
◦	� I prefer not to say

6. Age:

7. Are you a native English Speaker?

◦	� Yes
◦	� No

8. How often do you use chatbots on average?

◦	� Not at all
◦	� Less than once a month
◦	� 2-4 times a month
◦	� more than once a week

9. You can leave comments here (optional):

Thank you for your participation in our research! If you did
not enter personal information during the interaction, no
personal data of yours was accessed.

Acknowledgements  We want to thank Martin Richthammer, Dennis
Korolevych, Prachi Govalkar and Sihan Yuan for testing CBL.

Funding  Open Access funding enabled and organized by Projekt
DEAL. Our work is funded by the German Federal Ministry for Eco-
nomic Affairs and Energy as part of their AI innovation initiative (fund-
ing code 01MK20011A).

Declarations 

Conflicts of interest  The authors declare no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Adamopoulou, E,. & Moussiades, L. (2020). An overview of chatbot
technology. In: I. Maglogiannis, L, Iliadis, E, Pimenidis (Eds.)
Artificial intelligence applications and innovations (pp. 373–383).
Cham: Springer International Publishing

Amazon AWS (2017). Lex. https://​aws.​amazon.​com/​lex/
Amazon AWS (2020). Languages supported by amazon polly
Amazon Mechanical Turk (2020). Developer sandbox
AXA Group Operations Spain SA (2018). Nlp.js. https://​www.​npmjs.​

com/​packa​ge/​node-​nlp
Blair, J., Czaja, R.F., & Blair, E.A. (2013). Designing surveys: A guide

to decisions and procedures. Sage Publications
Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability

Evaluation in Industry, 189(194), 4–7.
Brüggemeier, B., & Lalone, P. (2022). Perceptions and reactions to

conversational privacy. Journal of Computer Speech and Lan-
guage,71. https://​doi.​org/​10.​1016/j.​csl.​2021.​101269

Brüggemeier, B., & Lalone, P. (2022). Perceptions and reactions to
conversational privacy initiated by a conversational user interface.
Computer Speech & Language, 71, 101269.

Buhrmester, M., Kwang, T., & Gosling, S.D. (2016). Amazon’s
mechanical turk: A new source of inexpensive, yet high-quality
data? Perspectives on Psychological Science

Burri, R. (2018). Improving user trust towards conversational chatbot
interfaces with voice output. Master’s thesis, KTH. http://​urn.​kb.​
se/​resol​ve?​urn=​urn:​nbn:​se:​kth:​diva-​240585

Cambre, J., & Kulkarni, C. (2019). One voice fits all? social impli-
cations and research challenges of designing voices for smart
devices. Proc ACM Hum-Comput Interact 3(CSCW). https://​doi.​
org/​10.​1145/​33593​25

http://creativecommons.org/licenses/by/4.0/
https://aws.amazon.com/lex/
https://www.npmjs.com/package/node-nlp
https://www.npmjs.com/package/node-nlp
https://doi.org/10.1016/j.csl.2021.101269
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240585
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240585
https://doi.org/10.1145/3359325
https://doi.org/10.1145/3359325

Behavior Research Methods	

1 3

Chandler, J., Rosenzweig, C., Moss, A. J., Robinson, J., & Litman, L.
(2019). Online panels in social science research: Expanding sam-
pling methods beyond mechanical turk. Behavior Research Meth-
ods, 51(5), 2022–2038. https://​doi.​org/​10.​3758/​s13428-​019-​0127

Cloud, G. (2017). Dialogflow. https://​cloud.​google.​com/​dialo​gflow/
European Data Protection Supervisor. (2020). SA Preliminary Opinion

on data protection and scientific research. https://​edps.​europa.​eu/​
data-​prote​ction/​our-​work/​publi​catio​ns/​opini​ons/​preli​minary-​opini​
on-​data-​prote​ction-​and-​scien​tific_​en

Flanagan, D., & Ferguson, P. (2011). JavaScript: The Definitive Guide.
O’Reilly and Associates

Graype Systems (2017). winknlp. https://​winkjs.​org/​wink-​nlp
Hassenzahl, M., Burmester, M., & Koller, F. (2003). AttrakDiff: Ein

Fragebogen zur Messung wahrgenommener hedonischer und prag-
matischer Qualität. In: Mensch & computer 2003 (pp 187–196).
Springer

Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus and Gir-
oux, New York. https://​www.​amazon.​de/​Think​ing-​Fast-​Slow-​
Daniel-​Kahne​man/​dp/​03742​75637/​ref=​wl_​it_​dp_o_​pdT1_​nS_​
nC?​ie=​UTF8&​colid=​15119​3SNGK​JT9&​coliid=​I3OCE​SLZCV​
DFL7

Kinsella, B. (2019). Smart Speaker Sales to Rise 35% Globally in
2019 to 92 Million Units, 15 Million in China, Growth Slows
- Voicebot. AI https://​voice​bot.​ai/​2019/​09/​24/​smart-​speak​er-​
sales-​to-​rise-​35-​globa​lly-​in-​2019-​to-​92-​milli​on-​units-​15-​milli​
on-​in-​china-​growth-​slows/

Kiro Risk (2014). Fuse.js. https://​fusejs.​io/
Kuligowska, K. (2015). Commercial Chatbot: Performance evaluation,

usability metrics and quality standards of embodied conversa-
tional agents. Professionals Center for Business Research, 2(02),
1–16. https://​doi.​org/​10.​18483/​pcbr.​22

Lalone, P., & Brüggemeier, B. (2021). Chatbot language cbl. https://​
github.​com/​audio​labs/​cbl. Accessed 26 July 2021

Lee, E.J., Nass, C., & Brave, S. (2000). Can computer-generated speech
have gender? an experimental test of gender stereotype. In: CHI
’00 Extended abstracts on human factors in computing systems
(pp. 289–290). Association for Computing Machinery, New York,
NY, USA, CHI EA ’00. https://​doi.​org/​10.​1145/​633292.​633461

Lee, K., Zhao, T., Black, A.W., & Eskenazi, M. (2018). DialCrowd:
A toolkit for easy dialog system assessment. In: Proceedings of
the 19th annual sigdial meeting on discourse and dialogue (pp.
245–248). Association for Computational Linguistics, Melbourne,
Australia. https://​doi.​org/​10.​18653/​v1/​W18-​5028

Lee, S., Zhu, Q., Takanobu, R., Li, X., Zhang, Y., Zhang, Z., Li, J.,
Peng, B., Li, X., Huang, M., & Gao, J. (2019). Convlab: Multi-
domain end-to-end dialog system platform. arXiv:​1904.​08637

Leschanowsky, A., Brüggemeier, B., & Peters, N. (2021). Design impli-
cations for human-machine interactions from a qualitative pilot
study on privacy. In: Proc. 2021 ISCA symposium on security and
privacy in speech communication (pp. 76–79). https://​doi.​org/​10.​
21437/​SPSC.​2021-​16

Miller, A.H., Feng, W., Fisch, A., Lu, J., Batra, D., Bordes, A., Parikh,
D., & Weston, J. (2017). Parlai: A dialog research software plat-
form. arXiv:​1705.​06476

Moore, R.J., Arar, R., Ren, G.J., & Szymanski, M.H. (2017). Conver-
sational ux design. In: Proceedings of the 2017 CHI conference
extended abstracts on human factors in computing systems (pp.
492–497). Association for Computing Machinery, New York, NY,
USA, CHI EA ’17. https://​doi.​org/​10.​1145/​30270​63.​30270​77

Mordor Intelligence (2020) Chatbot market - growth, trends, and fore-
cast (2020 - 2025)

Nadkarni, P.M., Ohno-Machado, L., & Chapman, W.W. (2011). Natural
language processing: An introduction. Journal of the American
Medical Informatics Association, 18(5):544–551. https://​doi.​org/​
10.​1136/​amiaj​nl-​2011-​000464, https://​acade​mic.​oup.​com/​jamia/​
artic​le-​pdf/​18/5/​544/​59626​87/​18-5-​544.​pdf

Papangelis, A., Namazifar, M., Khatri, C., Wang, Y.C., Molino, P., &
Tur, G. (2020). Plato dialogue system: A flexible conversational
ai research platform. arXiv:​2001.​06463

Pearl, C. (2016). Designing voice user interfaces: Principles of conver-
sational experiences, 1st edn. O’Reilly Media Inc., 1005 Graven-
stein, Highway North, Sebastopol, CA 95472

Prolific (2021) Prolific academic. https://​www.​proli​fic.​co/. Accessed
15 July 2021

Richter, F. (2016). Anzahl der Nutzer virtueller digitaler Assistenten
weltweit in den Jahren von 2015 bis 2021 (in Millionen). https://​
de.​stati​sta.​com/​stati​stik/​daten/​studie/​620321/​umfra​ge/​nutzu​ng-​
von-​virtu​ellen-​digit​alen-​assis​tenten-​weltw​eit

Sannon, S., Stoll, B., DiFranzo, D., Jung, M.F., & Bazarova, N.N.
(2020). “I just shared your responses”: Extending communication
privacy management theory to interactions with conversational
agents. Proc ACM Hum-Comput Interact 4(GROUP), https://​doi.​
org/​10.​1145/​33751​88

Schomakers, E. M., Lidynia, C., Müllmann, D., & Ziefle, M. (2019).
Internet users’ perceptions of information sensitivity – insights
from Germany. International Journal of Information Manage-
ment,46, 142–150. https://​doi.​org/​10.​1016/j.​ijinf​omgt.​2018.​11.​
018, https://​linki​nghub.​elsev​ier.​com/​retri​eve/​pii/​S0268​40121​
83076​92

Schonfeld, E. (2010). Siri’s IPhone app puts a personal assistant in
your pocket. https://​techc​runch.​com/​2010/​02/​04/​siri-​iphone-​perso​
nal-​assis​tant

Schrepp, M., Hinderks, A., & Thomaschewski, J. (2014). Applying
the user experience questionnaire (UEQ) in diffirent evaluation
scenarios. In: Design, user experience, and usability. Theories,
methods, and tools for designing the user experience. DUXU
2014. Lecture Notes in Computer Science, vol 8517. Springer.
https://​doi.​org/​10.​1007/​978-3-​319-​07668-3_​37

Smith, C., & Ellsworth, P. (1985). Patterns of cognitive appraisal in
emotion. Journal of Personality and Social Psychology, 48, 813–
38. https://​doi.​org/​10.​1037//​0022-​3514.​48.4.​813

Tamagawa, R., Watson, C., & Kuo, I. (2011). The effects of synthesized
voice accents on user perceptions of robots. International Jour-
nal of Social Robotics, 3(3), 253–262. https://​doi.​org/​10.​1007/​
s12369-​011-​0100-4

Wallace, R. (2001) Artificial intelligence markup language (aiml).
https://​github.​com/​AIML-​Found​ation

Yuan, S., Brüggemeier, B., Hillmann, S., & Michael, T. (2020). User
preference and categories for error responses in conversational
user interfaces. In: Proceedings of the 2nd Conference on Conver-
sational User Interfaces, Association for Computing Machinery,
New York, NY, USA, CUI ’20. https://​doi.​org/​10.​1145/​34057​55.​
34061​26

Open Practices Statement  We open-source CBL under a modified BSD
license. CBL can be accessed on GitHub: https://​github.​com/​audio​
labs/​cbl. The data and materials for the example study reported here
is not openly available, and the example study was not preregistered.

Publisher’s note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3758/s13428-019-0127
https://cloud.google.com/dialogflow/
https://edps.europa.eu/data-protection/our-work/publications/opinions/preliminary-opinion-data-protection-and-scientific_en
https://edps.europa.eu/data-protection/our-work/publications/opinions/preliminary-opinion-data-protection-and-scientific_en
https://edps.europa.eu/data-protection/our-work/publications/opinions/preliminary-opinion-data-protection-and-scientific_en
https://winkjs.org/wink-nlp
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://voicebot.ai/2019/09/24/smart-speaker-sales-to-rise-35-globally-in-2019-to-92-million-units-15-million-in-china-growth-slows/
https://voicebot.ai/2019/09/24/smart-speaker-sales-to-rise-35-globally-in-2019-to-92-million-units-15-million-in-china-growth-slows/
https://voicebot.ai/2019/09/24/smart-speaker-sales-to-rise-35-globally-in-2019-to-92-million-units-15-million-in-china-growth-slows/
https://fusejs.io/
https://doi.org/10.18483/pcbr.22
https://github.com/audiolabs/cbl
https://github.com/audiolabs/cbl
https://doi.org/10.1145/633292.633461
https://doi.org/10.18653/v1/W18-5028
http://arxiv.org/abs/1904.08637
https://doi.org/10.21437/SPSC.2021-16
https://doi.org/10.21437/SPSC.2021-16
http://arxiv.org/abs/1705.06476
https://doi.org/10.1145/3027063.3027077
https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1136/amiajnl-2011-000464
https://academic.oup.com/jamia/article-pdf/18/5/544/5962687/18-5-544.pdf
https://academic.oup.com/jamia/article-pdf/18/5/544/5962687/18-5-544.pdf
http://arxiv.org/abs/2001.06463
https://www.prolific.co/
https://de.statista.com/statistik/daten/studie/620321/umfrage/nutzung-von-virtuellen-digitalen-assistenten-weltweit
https://de.statista.com/statistik/daten/studie/620321/umfrage/nutzung-von-virtuellen-digitalen-assistenten-weltweit
https://de.statista.com/statistik/daten/studie/620321/umfrage/nutzung-von-virtuellen-digitalen-assistenten-weltweit
https://doi.org/10.1145/3375188
https://doi.org/10.1145/3375188
https://doi.org/10.1016/j.ijinfomgt.2018.11.018
https://doi.org/10.1016/j.ijinfomgt.2018.11.018
https://linkinghub.elsevier.com/retrieve/pii/S0268401218307692
https://linkinghub.elsevier.com/retrieve/pii/S0268401218307692
https://techcrunch.com/2010/02/04/siri-iphone-personal-assistant
https://techcrunch.com/2010/02/04/siri-iphone-personal-assistant
https://doi.org/10.1007/978-3-319-07668-3_37
https://doi.org/10.1037//0022-3514.48.4.813
https://doi.org/10.1007/s12369-011-0100-4
https://doi.org/10.1007/s12369-011-0100-4
https://github.com/AIML-Foundation
https://doi.org/10.1145/3405755.3406126
https://doi.org/10.1145/3405755.3406126
https://github.com/audiolabs/cbl
https://github.com/audiolabs/cbl

	Chatbot Language - crowdsource perceptions and reactions to dialogue systems to inform dialogue design decisions
	Abstract
	Introduction
	How does CBL compare to other tools used by the dialogue system community?
	What can I do with CBL?
	Choose language
	Show introduction text
	Implement chatbots
	Choose output modality
	Choose voice
	Playback audio
	Implement survey
	Randomize presentation of experimental conditions
	Run online or offline

	How can I set up CBL experiments?
	Example walk-through
	Planning
	Implementing
	Deploying
	Collecting data

	Takeaways from test runs

	Example study with CBL
	Discussion
	Conclusion
	Acknowledgements
	References

