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ABSTRACT

Static and dynamic functional network connectivity (FNC) are typically studied separately,
which makes us unable to see the full spectrum of connectivity in each analysis. Here, we
propose an approach called filter-banked connectivity (FBC) to estimate connectivity while
preserving its full frequency range and subsequently examine both static and dynamic
connectivity in one unified approach.

First, we demonstrate that FBC can estimate connectivity across multiple frequencies missed
by a sliding-window approach. Next, we use FBC to estimate FNC in a resting-state fMRI
dataset including schizophrenia patients (SZ) and typical controls (TC). The FBC results are
clustered into different network states. Some states showed weak low-frequency strength and
as such were not captured in the window-based approach. Additionally, we found that SZs
tend to spend more time in states exhibiting higher frequencies compared with TCs who
spent more time in lower frequency states. Finally, we show that FBC enables us to analyze
static and dynamic connectivity in a unified way. In summary, FBC offers a novel way to unify
static and dynamic connectivity analyses and can provide additional information about the
frequency profile of connectivity patterns.

INTRODUCTION

Functional connectivity and its cross-network analog, functional network connectivity (FNC),
have been the focus of many neuroimaging studies over the past few decades. As the methods
used to estimate FNC can be used to estimate functional connectivity (abbreviated as FC in
some papers) and vice versa in most cases, in this article we will use the term FNC when
talking about connectivity that includes FC too.

Methods developed to estimate FNC can be grouped into two major categories: those that
assume connectivity among different networks of the brain is constant through time (static
FNC; sFNC) and those that assume temporal variation in connectivity (dynamic FNC; dFNC).
The sFNC and dFNC approaches have proven to be extremely informative about both healthy
(Allen et al., 2014; Liegeois et al., 2019; Vidaurre, Smith, & Woolrich, 2017) and disordered
brain function (Damaraju et al., 2014; de Lacy, Doherty, King, Rachakonda, & Calhoun, 2017;
Jin et al., 2017; Kaiser et al., 2016).
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A unified approach for static/dynamic connectivity estimation

While static connectivity has resulted in many interesting findings (Di Martino et al., 2008;

Functional connectivity:
Statistical relationship between two
or more time series, each belonging
to a different brain region.

Static connectivity:
Can be called averaged connectivity.
A statistical relationship that is
calculated using the whole length of
the time series; that is, we have one
single value for each connectivity
pair.

van den Heuvel & Hulshoff Pol, 2010), this view of connectivity is limited to the average
connectivity patterns over the entire experiment. Approaches designed based on dFNC relax
the assumption of static connectivity. The most common way to estimate dFNC uses a slid-
ing window to estimate time-varying connectivity. Typically, a sliding window is paired with
Pearson correlation (SWPC) to estimate time-varying connectivity (Allen et al., 2014; Faghiri,
Stephen, Wang, Wilson, & Calhoun, 2018; Hutchison, Womelsdorf, Gati, Everling, & Menon,
2013; Kucyi & Davis, 2014). Using a sliding window to estimate dFNC has the benefit of being
straightforward but has two major shortcomings. First, we need to choose a window size for
any sliding-window approach. We want to choose a window size that is large enough so that
the standard deviation is as small as possible. At the same time, the window size should be
small enough to allow us to detect faster changes in dFNC (Hutchison, Womelsdorf, Allen,
et al., 2013). The second shortcoming of the sliding-window approach is its low-pass nature,
which has been reported previously (Leonardi & Van De Ville, 2015; Sakoglu et al., 2010;
Thompson & Fransson, 2015). This tells us that, regardless of the chosen window size, the esti-
mated dFNC is subjected to a low-pass filter and therefore the full frequency range of dFNC is
not captured. This may be the reason that Shakil, Billings, Keilholz, and Lee (2018) found that
using a constant window size for SWPC is not a reliable solution to study dynamic connec-
tivity. Note that sliding window can also be used with other estimators such as multiplicationDynamic connectivity:

Or time-varying connectivity.
A statistical relationship that is
calculated using a portion of the
whole length of the time series.
We have several values for each
connectivity pair that changes with
time.

of temporal derivatives (Shine et al., 2015) and weighted average of shared trajectory (Faghiri
et al., 2020; Faghiri, Stephen, Wang, Wilson, & Calhoun, 2019). Another dFNC/FC estimator
that is getting attraction recently is instantaneous phase synchrony, which defines connectivity
as synchrony between two time series (Kaboodvand, Iravani, & Fransson, 2020; Kaboodvand,
van den Heuvel, & Fransson, 2019; Pedersen, Omidvarnia, Zalesky, & Jackson, 2018). A sliding
window will also act as a low-pass filter if used with these and any other estimators.

Another category of methods that aim to explore the frequency profile of connectivity uses
time-frequency analysis ideas. The most well-known methods in this category utilize wavelets
(Mallat, 1999). While these methods have resulted in many interesting findings in functio-
nal magnetic resonance imaging (fMRI; Chang & Glover, 2010; Yaesoubi, Allen, Miller, &
Calhoun, 2015; Yaesoubi et al., 2017), these studies have several limitations. First, the interpre-
tation of the results in these studies can be challenging. The Chang and Glover implementation
of wavelet resulted in a large amount of information without a way to succinctly summarize the
results (Chang & Glover, 2010). To remedy this, Yaesoubi et al. (2015) proposed an approach
using wavelets that can be used to study group differences, but their results are all in the wavelet
domain. This presents a difficulty in comparing the results with other dFNC studies, as most
dFNC studies work in the time domain (the time domain results are typically considered eas-
ier to interpret). In addition, and perhaps more importantly, both wavelet approaches perform
frequency tiling in the activity domain instead of in the connectivity domain. We believe that
to discuss the frequency properties of dFNC, it is important to implement all time-frequency
tiling steps directly in the connectivity domain. The reason behind this statement is that the
relationship between the activity and connectivity domains is unknown (and possibly nonlin-
ear); therefore, the frequency information is distorted when transforming from the activity to
the connectivity domain.

Apart from the two categories of approaches mentioned above, other methods have been
proposed that do not estimate dFNC directly but rather explore different aspects of connec-
tivity dynamics. These methods include hidden Markov models (Ou et al., 2013), hidden
semi-Markov models (Shappell, Caffo, Pekar, & Lindquist, 2019), coactivation patterns using
clustering approaches (Liu & Duyn, 2013), and window-less dictionary learning approaches

Network Neuroscience 57



A unified approach for static/dynamic connectivity estimation

(Yaesoubi, Adali, & Calhoun, 2018). There are also methods that use Bayesian inference
(Andersen, Winther, Hansen, Poldrack, & Koyejo, 2018; Warnick et al., 2018) and graphical
lasso (Cai et al., 2019) for connectivity estimation. Choe et al. (2017) explored the test-retest
reliability of several connectivity estimators. For a detailed comparison of various dFNC esti-
mators in the fMRI field, see Xie et al. (2019). A comprehensive review of connectivity metrics
in the electrophysiological field can be found in O’Neill et al. (2018).

In this work, we emphasize the importance of differentiating the connectivity domain fre-
quency profile from the activity domain frequency profile (more on this in the Discussion
section). As mentioned previously, some studies have implemented frequency tiling in the ac-
tivity domain and use theses tiles to make inferences about the connectivity frequency profile
(which we believe is inaccurate). Here we proposed a new method to estimate connectivity
that aims to implement frequency tiling directly in the connectivity domain. As a central part
of this approach, we use filter banks for frequency tiling in the connectivity domain (unlikeFilter banks:

A combination of several filters that
separate a time series into several
time series, each belonging to a
single frequency sub-band.

wavelet methods, where frequency tiling is implemented in the activity domain). We do this
without making any assumption about the frequency profile of connectivity (unlike SWPC,
where only low-pass connectivity values are estimated). Using filter banks, we are able to esti-
mate any desired connectivity frequency bands without being limited to only low-pass bands.
In addition, our proposed approach enables us to examine specific frequency bands of con-
nectivity that include both static connectivity (connectivity at zero frequency) and dynamic
connectivity (connectivity at nonzero frequencies) in one unifying approach. And, the results
are in the time domain, allowing us to more easily compare our results with other studies
(unlike wavelet approaches, where the final results are in the wavelet domain).

Another advantage of our approach (filter-banked connectivity; FBC) is that this method
removes the impact that incorrect window selection has on the estimated connectivity values.
The reason behind this statement is that here we are looking at the full spectrum of connectivity
instead of limiting ourselves to any given band without strong prior knowledge. To drive this
point home, we did a very simple simulation with two different situations. Assume we have
two different pairs of time series, each extracted from different locations in the brain. The first
pair has low-frequency connectivity, while the second pair has high-frequency connectivity.
Figure 1 illustrates this simulation. For the first scenario, both SWPC and low-pass FBC have
estimated the ground truth very nicely (both have high correlation values with the ground
truth). But for the second scenario, only high-pass FBC has a high correlation with the ground
truth. Therefore, in this situation, the connectivity information is lost if we use SWPC.

To explain the benefits of our proposed approach, we designed a toy example. Furthermore,
to showcase the utilization of the proposed approach, we implemented it on a dataset used to
study sFNC and dFNC previously (Damaraju et al., 2014; Yaesoubi et al., 2017). This dataset
includes both typical controls and individuals diagnosed with schizophrenia.

Schizophrenia is a mental disorder that is associated with functional connectivity abnor-
malities (Damaraju et al., 2014; Pettersson-Yeo, Allen, Benetti, McGuire, & Mechelli, 2011).
There have been a number of studies of functional connectivity in schizophrenia individuals
(SZ) using resting fMRI. For example, Camchong, MacDonald, Bell, Mueller, and Lim (2011)
reported hyperconnectivity between default mode network (DMN) and the rest of the brain.
In another work, Jafri, Pearlson, Stevens, and Calhoun (2008) used a whole-brain approach to
study the differences between typical controls (TC) and SZ. They reported that SZ showed in-
creased connectivity between DMN and visual and frontal functional domains compared with
TC. Damaraju et al. (2014) reported that SZ compared with TC shows increased connectivity
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Figure 1. A toy example, to demonstrate the benefits of our approach. Each box demonstrates one specific situation. The leftmost column
shows the spatial maps of the simulated time series pair (this is just for demonstration). The middle column shows the activity times series pairs
themselves. The true and estimated connectivity for all methods is shown in the rightmost column. The correlation between each is estimated
time series and the ground truth is in parentheses. In the top row, connectivity has a low frequency and both SWPC and FBC have managed to
estimate it (FBC in its first band estimates), while in the second row, connectivity has a higher frequency. Therefore, SWPC has not managed
to estimate the connectivity, while FBC has estimated it (in its second band this time).

between thalamus and sensory functional domains. Damaraju et al. also reported decreased
static connectivity in sensory domains when comparing SZ with TC. Decreased connectivity
in SZ compared with TC has been reported in other studies, as well (Dong, Wang, Chang,
Luo, & Yao, 2018; Erdeniz, Serin, Ibadi, & Tas, 2017; Friston & Frith, 1995; Lynall et al., 2010;
Skudlarski et al., 2010).

A few studies have evaluated the dynamic aspect of connectivity in SZ population. Using
SWPC, Damaraju et al. (2014) found that SZ compared with TC tend to stay less time in
states that show strong overall connectivity while they tend to spend more time in states show-
ing weak connectivity between different domains. Other studies also reported transient re-
ductions in both functional connectivity and network activities (Iraji, Deramus, et al., 2019;
Iraji, Fu, et al., 2019). Miller et al. (2016) reported less dynamism (e.g., less change in tran-
sient connectivity patterns) in SZ compared with TC. For a recent review on connectivity-
related findings (both static and dynamic findings) in SZ population, see Mennigen, Rashid,
and Calhoun (2019).

A different set of studies have explored the spectral properties of fMRI time series between
SZ and TC. An earlier study found that the frequency profile of default mode is altered in
SZs compared with TCs (Garrity et al., 2007). In addition, Fryer et al. (2016) used voxelwise
amplitude of low-frequency fluctuations (ALFF) between frequencies 0.01–0.08 to find that
SZs have lower ALFF compared with TCs especially in posterior cortex, occipital, and cere-
bellar lobes. This observation has been reported in other studies as well (Alonso-Solis et al.,
2017; Calhoun et al., 2012; Hare et al., 2017; Hoptman et al., 2010). On the other hand,
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Alonso-Solis et al. (2017) report that ALFF for SZ is higher than that of TCs in insula. So
it seems reasonable to think that the relationship between ALFF differences in SZs and TCs
are different for different regions. In addition, Yu et al. (2014) found that these differences
are dependent on the frequency; future studies should consider studying different frequency
bands.

All these studies point to differences in the frequency profile of activity-level time series in
individuals with SZ. A natural evolution of these studies is to explore the frequency profile of
connectivity-level information. An earlier attempt at this utilized wavelet coherence methods
(Yaesoubi et al., 2017), but as mentioned earlier, this method implemented frequency tiling in
activity space; therefore, the relationship between frequency and connectivity patterns is not
direct.

In the Methods section, we first introduce the proposed approach and its formulation. Next,
we attempt to provide intuition into how our method performs using a toy example. After this,
the dataset used in the paper is introduced briefly. We mention findings in the Results section
and explore these in more detail in the Discussion section. Finally, we discuss limitations and
end the paper with some concluding remarks.

MATERIALS AND METHODS

Filter-Banked Connectivity

Assume we have two time series x(t) and y(t), where t is time. Centered SWPC at each time
point, rx,y(t), can be estimated as follows:

rx,y(t) = ∑t+Δ
i=t−Δ

[x(i)− μx(t)][y(i)− μy(t)]
σx(t)σy(t)

, (1)

where 2Δ + 1 is window size and μx(t) and σx(t) are windowed sample mean and windowed
standard deviation (for time series x), respectively. Their definitions are as follows:

μx(t) =
1

2Δ + 1 ∑t+Δ
i=t−Δ x(i). (2)

σx(t) =
√

∑t+Δ
i=t−Δ (x(i)− μx(t))

2. (3)

Similar equations can be used to estimate μy(t) and σy(t).

Now if we define two times series h(t) and w(t) such that

h(t) =

{
1 − Δ < t < Δ
0 otherwise

, (4)

w(t) =
[x(t)− μx (t)][y(t)− μy(t)]

σx(t)σy(t)
, (5)
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then the convolution between these two time series can be written as the following:

gx,y(t) = h(t)× w(t) =
+∞

∑
i=−∞

h(t − i)w(i)

=
t−Δ

∑
i=−∞

h(t − i)w(i) +
t+Δ

∑
i=t−Δ

h(t − i)w(i) +
+∞

∑
i=t+Δ

h(t − i)w(i)

=
t−Δ

∑
i=−∞

0 × w(i) +
t+Δ

∑
i=t−Δ

1 × w(i) +
+∞

∑
i=t+Δ

0 × w(i) =
t+Δ

∑
i=t−Δ

w(i)

=
t+Δ

∑
i=t−Δ

[x(i)− μx(i)][y(i)− μy(i)]
σx(i)σy(i)

= gx,y(t).

(6)

From the gx,y(t) equation we can see that it is quite similar to the equation for rx,y(t) in
Equation 1. Their difference is in how the windowed mean and standard deviation is calcu-
lated. In the SWPC equation (Equation 1), for each window we have one mean and standard
deviation (the index of μx is t, not i). In contrast, in gx,y(t) (Equation 6), windowed mean and
standard deviation are calculated using a window around each sample (the index of μx is i
here). Therefore, we can interpret the convolution between h(t) and w(t) as an approximation
for SWPC. Based on the system and signal theorem (Oppenheim, 1999), we know that the
output of a system with an impulse response function h(t) and input of w(t) is h(t)× w(t). So
gx,y(t) (and SWPC that it approximates) is the output of a system with impulse response h(t)
and input of w(t) (Figure 2). The defined ht for the SWPC system is a rectangular window that
can be viewed as a low-pass filter. In other words, the output of the system (SWPC estimation)
is a low-pass signal and we lose the high-frequency information of the connectivity.

A filter bank is an approach that is used frequently in the electrical engineering field
(Boashash, 2015). The basic idea behind a filter bank is to design an array of systems to filter
one time series into its different frequency sub-bands (usually nonoverlapping bands that cover
the entire frequency spectrum).

In our proposed approach, we replace h(t) of SWPC (Figure 2A) with a filter bank
(Figure 2B). Each filter in the designed filter bank has its own response function hn(t) where n
represents filter index. In FBC instead of one low-passed connectivity time series—that is,
rx,y(t) as in SWPC—we have N time series, each an estimate of connectivity in the sub-
frequency bands defined by hn(t). In other words,

rn,x,y(t) = hn(t)× w(t) n = 1, . . . , N. (7)

In this paper, we used Chebyshev type 2 filters. These filters are infinite impulse response
(IIR) filters that have better frequency features compared with finite impulse response filters
(Rabiner, Kaiser, Herrmann, & Dolan, 1974). The issue with infinite impulse response filters isFinite impulse response filter:

A digital filter that depends linearly
only on the input (signal being
filtered) from previous samples.

Infinite impulse response filter:
A digital filter that depends linearly
on both the input (signal being
filtered) and the output (filtered
signal) from previous samples.

that they have nonlinear phase (compared with linear phase for finite impulse response filters),
but because of the offline nature of fMRI data analysis we can use forward-backward filtering
to achieve zero-phase filtering in our analysis (Mitra & Kuo, 2006; Oppenheim, 1999).

Toy Example

We have designed a simple toy example to provide insight into how our method works. Note
that the aim for designing this toy example was not to comprehensively evaluate FBC for use
with fMRI data, but rather to convey intuition. In addition, we believe this approach can be
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Figure 2. SWPC and FBC systems. (A) SWPC system. (B) FBC system. The subsystem 1 is shared between both SWPC and FBC. This subsystem
uses a pair of time series and transforms activity space to connectivity space (wt belongs to this space and has connectivity information). The
difference between SWPC and FBC is in their subsystem 2. SWPC uses a low-pass filter to calculate a low-pass version of wt while in FBC
instead of a low-pass filter, an array of filters are used. These filters include (but are not limited to) the low-pass band examined in SWPC. FBC
is more flexible in the sense that it does not make any assumption about the connectivity frequency and effectively spans a range of window
sizes.

used to analyze many types of datasets, and therefore we designed the toy example to be a
general illustration.

For this toy example, we use a multivariate normal distribution to simulate six time series:

X(t) ∼ N(μ(t), Σ(t)). (8)

For simplicity, we put μt equal to 0 and each time series variance equal to 1. Therefore, the
covariance matrix can be written as

Σ(t) =

⎛
⎜⎜⎝

1 · · · ρ1,6(t)
...

. . .
...

ρ6,1(t) · · · 1

⎞
⎟⎟⎠ , (9)
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where ρi,j(t) is the correlation (i.e., connectivity) between time series i and j at time t. ρi,j(t)
has the form ρi,j(t) = Ai,j(t)cos(2πcorrt), where Ai,j(t) forms the 6 × 6 matrix A(t). For all toy
examples, we simulated time series using two connectivity states, each with a length of 10,000
time points. Each state has a unique A(t) and fcorr, where fcorr determines the frequency of
connectivity while A determines its amplitude. Figure S1 in the Supporting Information shows
the A(t) of the two states used in all scenarios. The time series starts with state 1 and switches
to state 2 after 10,000 time points. The total length of the simulated time series is 20,000.

Two scenarios with different values for fcorr and analysis parameters were designed. In both
scenarios, we use two filter banks (one low-pass filter and one band-pass filter). In the first
scenario, we choose SWPC window size such that it covers the same frequency band as the two
designed filters. This scenario represents a case where the window size is chosen correctly for
SWPC (it covers all the connectivity frequencies where the information resides). In the second
scenario, the SWPC only covers the low-pass filter in the filter bank. This scenario represents
a case where the window size is chosen larger than what should be used (i.e., we are filtering
out some of the relevant connectivity frequencies). This scenario can happen either because
of the researcher’s mistake (note that we generally do not know the ground truth about real
data), or the technical limitation of the connectivity estimator paired with sliding window. For
example, if sample Pearson correlation is used with sliding window (as is the case here), we
know that if the number of samples is below a specific number, sample Pearson correlation
estimator fails (it gives very skewed results and in the worst case estimates only 1 and −1).
Therefore, there is a lower bound on window size if we use this estimator. As the frequency
of a rectangular window is tied directly to its window size, the lower bound on window size
causes a higher bound on frequency, that is, the connectivity is low-passed.

To compare FBC with SWPC methods, we analyzed the toy example data using both meth-
ods. To provide a more direct comparison between FBC and SWPC, the filters designed for toy
examples did not cover the whole spectrum of the simulation (we cannot have a window that
filters the whole frequency and reach a good estimation of correlation for SWPC). In addition,
for simplicity purposes, we used the same window size for both FBC (window used to estimate
sample mean and standard deviation) and SWPC. The results of both FBC and SWPC were then
clustered into four clusters using the k-means approach. The reason for choosing four as the
number of clusters was because we had two original states. Each state has two extreme corre-
lation values (+At and −At because of the sinusoid nature of ρi,j), so we essentially have two
pairs of states.

The fcorr value for each state and the designed filter frequency response will be shown when
discussing the results.

Real Dataset and Preprocessing

To demonstrate the utilization of FBC, we used it to analyze a resting-state fMRI dataset in-
cluding SZ and TC individuals. The data were obtained as a part of the Functional Imaging
Biomedical Informatics Research Network (FBIRN) project (Potkin & Ford, 2009). The dataset
used in this paper includes 163 TC and 151 SZ. The data acquisition and preprocessing steps
are explained in our previous work (Damaraju et al., 2014). To summarize, echo planar imag-
ing was used to acquire 162 volumes of bold data at seven sites all using 3T MRI scanners. All
scans were acquired using 2 s as TR. Subjects’ eyes were closed during the scanning session.

Preprocessing was started with motion correction, slice-timing correction, and despiking.
Next, data were registered to a common Montreal Neurological Institute (MNI) template and
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smoothed to 6 mm full width at half maximum. For the last step of preprocessing, each voxel
time series was variance normalized.

To decompose the data into 100 spatially independent time series and their associated
spatial maps, the pipeline proposed by Allen et al. (2014) was used. In the proposed ap-
proach group spatial independent component analysis (GICA) implemented in the GIFT (http://
trendscenter.org/software/gift) software was used (Calhoun, Adali, Pearlson, & Pekar, 2001b;
Erhardt, Allen, Damaraju, & Calhoun, 2011). The 162 time points for each subject were first
reduced into 120 dimensions using principal component analysis (PCA). All subjects’ reduced
data were then concatenated and another PCA was used to reduce the dimension to 100. Fi-
nally, independent components were estimated using the infomax algorithm (Bell & Sejnowski,
1995). ICA was repeated 20 times in ICASSO algorithm (Himberg & Hyvarinen, 2003) and
the most central solution was selected for stability purposes (Du, Ma, Fu, Calhoun, & Adali,
2014). Subject-specific time series and their associated spatial maps were calculated using a
back reconstruction approach (Calhoun, Adali, Pearlson, & Pekar, 2001a; Erhardt et al., 2011).
The spatial maps of these 100 components were visually inspected, and 47 components were
chosen as components of interest and were grouped into seven functional domains. These
time series where then band-pass filtered between 0.01 Hz and 0.15 Hz using Butterworth
filter (fifth order). The data used for the current project are the same 47 components used by
Damaraju et al. (2014). The seven functional domains are auditory (AUD), attention/cognitive
control (CC), subcortical (SC), cerebellar (CB), default mode (DM), sensorimotor (SM), and
visual (VIS). The spatial maps of all the components included in each functional domain can
be viewed in Figure S2 in the Supporting Information.

FBC and SWPC Analysis (Real Data)

To analyze the FBIRN dataset using FBC pipeline, each component pair (from the pool of 47
components) was used to calculate a specific wt (Equation 5) for that pair. For calculating
wt, a window with size equal to 10 TR (22 s) was used. This step resulted in 1,081 wt time
series (47 × (47 − 1)/2). All wt were then filtered in a forward-backward filtering system of
the designed filters. For this paper, 10 IIR filters were designed to filter all the values. To obtain
the optimal order for filters, we used cheb2ord as implemented in MATLAB to achieve at most
30 dB attenuation in the stopband and 3 dB in the passband (Rabiner & Gold, 1975).

The choice of the number of filters in this analysis is similar to the choice of Fourier trans-
form length in a frequency analysis. As long as the designed filters are stable, the investigators
can choose their desired number for any given analysis. We ran the analysis using different
filter numbers to ensure the results are consistent. To check for filter effects, we also evalu-
ated the performance of the pipeline using Butterworth and elliptic filters (see the Supporting
Information).

The filter bands frequencies are the following:

Band 1: 0.000–0.025 Hz

Band 2: 0.025–0.050 Hz

Band 3: 0.050–0.075 Hz
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Band 4: 0.075–0.100 Hz

Band 5: 0.100–0.125 Hz

Band 6: 0.125–0.150 Hz

Band 7: 0.150–0.175 Hz

Band 8: 0.175–0.200 Hz

Band 9: 0.200–0.225 Hz

Band 10: 0.225–0.250 Hz

The filtered values that resulted from all filter banks were then clustered using the k-means
approach. For k-means clustering, we used the k-means++ algorithm (Arthur & Vassilvitskii,
2006) with squared Euclidean distance. The clustering was repeated 30 times with different
initial cluster centroids, and the one with the lowest within-cluster distance was selected as
the best result. To find the best cluster number, we used the elbow criteria paired with within-
cluster distance (see Figure S3 in the Supporting Information).

Next, we calculated how many time points each subject has spent in each specific state
(fraction rate). This value can be calculated for all 10 frequency sub-bands separately or for all
of them combined. In summary, for each state, we produce a plot that is quite similar concep-
tually to the frequency response of the corresponding state. In addition, we have compared
the fraction rate between TC and SZ for each state. Figure 3 illustrates the pipeline used in this
paper.

Within this pipeline, there are two analysis parameters that must be selected. First, we have
to choose a window size that will be used to calculate wt (i.e., calculate mean and standard
deviation of component pairs). Here we have chosen a window size of 11 time points (22 s)
for this step. Results from other window sizes are provided in the Supporting Information,
Figures S4 through S12. As seen in these figures, the results are similar across all window
sizes. Second, the number of clusters (i.e., k) needs to be selected for k-means. We chose k = 8
as the desired number of clusters in all our analyses explained in this manuscript. Our selection
was based on within-cluster distance as the metric (for more details, refer to the Supporting
Information; Figure S3). In addition, we also performed our analysis using different cluster
numbers and provide this information in the Supporting Information (Figures S4 through S12).
All statistical tests were corrected for multiple comparison. We used a method that controls
false discovery rate (FDR) on the results (Benjamini & Hochberg, 1995).

RESULTS

As mentioned in the Methods section, we designed several toy example scenarios using a mul-
tivariate Gaussian probability density function to demonstrate the benefits of FBC compared
with SWPC. In addition, we show the use of FBC on real data including SZ and TC.

Toy Example Results

All the toy example results are summarized in Figure 4. Each subfigure (boxes A through F) has
seven rows. Row numbers are brought in the left-hand side of boxes A and D. The first and fifth
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Figure 3. The pipeline used in this manuscript. (A) FBC estimation. First, all subjects’ 47 time series
were used to estimate w(t), resulting in 1,081 time series for each subject. Then w(t)s were filtered
into 10 bands and concatenated into one big matrix. K-means clustering was applied to this matrix
(feature size 1,081), which resulted in eight clusters. (B) The k-means clustering resulted in eight
clusters. The cluster centroids were matrices with size 47 by 47, while the cluster index is a vector
with time by subject number by 10 (number of bands). (C) This cluster index vector was reshaped
into 10 matrices each with a size equal to time by subject number. Each of these 10 matrices belongs
to one band and can be used to calculate the fraction rate for each band and each cluster.
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Figure 4. Toy example results. Each figure (A through F) shows the results from both FBC and SWPC analysis. The numbers show the row
number for each box. Rows 1 through 4 illustrate FBC-related results, while the last three rows illustrate SWPC results. Rows 1 and 5 show
the connectivity frequency of each specific scenario in addition to the frequency response of filter banks (1st row) and the sliding window
(5th row) used for the analysis. Rows 2 and 6 show the mean of estimated cluster centroids (i.e., connectivity states). Rows 3 and 7 show the
standard deviation of the estimated cluster centroids. The fourth row shows the frequency profile of the estimated cluster centroids for FBC
(this information is exclusive to the FBC approach and is one of this method’s strengths). Figures A through C show the scenario where the
SWPC sliding window is chosen correctly (connectivity frequencies are included in the main lobe of the sliding window for all three cases).
In these cases, SWPC has managed to estimate states correctly in the three cases, but when at least one of the states has higher frequencies
where SWPC main lobe has a lower value (A and C), SWPC is not able to distinguish between different states well (the mean matrices in row
4 show both state patterns). In contrast, FBC has managed to estimate the two states very distinctly (e.g., the state 2 pattern does not appear in
both clusters 1 and 2 in C, unlike SWPC results). In addition, FBC is showing superior standard deviation (i.e., lower) in these cases. Figures D
through F illustrate the results from the second scenario, where SWPC window size is not chosen correctly (either because of investigator
mistake or Pearson correlation technical limitations). Apart from the case where both state connectivity frequency is in the passband of SWPC
(E), SWPC is not able to estimate the two states well (i.e., low values for means in row 6). In contrast, FBC does well in all three cases (high
mean values). Apart from case E, where connectivity frequencies are very low and SWPC has an advantage over FBC, in the other two cases,
standard deviation of FBC is superior, too. One final note is that in the cases where the connectivity frequencies are in two separate bands
(A and D), the connectivity frequency profiles that resulted from FBC show that clusters 1 and 2 have lower frequency while clusters 3 and 4
have higher frequencies.
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rows demonstrate the normalized frequency response of the covariance matrix for FBC (first
row) and SWPC (fifth row). The second and third rows demonstrate the mean and standard
deviation of the centroids calculated from the toy example data, while the sixth and seventh
rows demonstrate the same measures for SWPC. Conceptually speaking, the mean shows that
the estimated values are close to the true values on average, while standard deviation represents
how much variation exists in the estimated values. The fourth row shows the total fraction rate
of each state in relation to the two filters. This information is exclusive to FBC and is not
available for SWPC (SWPC is essentially one filter). Clusters 1 and 2 are the maximum and
minimum values for state 1 (connectivity in state 1 oscillates between these values). Clusters
3 and 4 are the maximum and minimum values for state 2. True amplitude matrices, A(t), for
the two states are shown in Figure S1 in the Supporting Information.

In the first scenario (Figure 4A through 4C), the SWPC window size (10 time points) covers
the same frequency band as the two filters used in FBC. This scenario includes three specific
situations. In the first situation, each state fcorr is located in one separate filter (Figure 4A),
while in the second and third situations fcorrs are either in the first filter (Figure 4B) or in
the second filter (Figure 4C). Looking at the top three rows of Figure 4, we can make several
observations. The means of estimated clusters are estimated very distinctly using FBC. In other
words, clusters 1 and 2 show only state 1 At while clusters 3 and 4 show only state 2 At. In
contrast, if we look at SWPC results, the means of estimated clusters are estimated distinctly
only when both states have low frequencies (Figure 4B). When the frequencies of the states
are higher (Figure 4A and C), cluster means are not distinct. For example, cluster means of
Figure 4C for SWPC show both states 1 and 2 At patterns (Figure S1) in all clusters.

In the second scenario, the window size is longer compared with the first scenario (30 time
points) and only covers the frequency band of the first filter of FBC (Figures 4D through F).
This scenario represents the case where SWPC window size is not chosen correctly. That is,
the passband frequency of the SWPC window does not cover all frequencies where state con-
nectivity frequencies are located. This can happen either because of a user’s incorrect choice
or because of the technical limitation of the estimator that is paired with a sliding window
(Pearson correlation here). This is shown in Figures 4D and 4F, where at least one of the states
has connectivity frequency outside the passband of the SWPC window. Looking at SWPC re-
sults in Figures 4D, we can see that clusters 3 and 4 show very weak versions of state 2 At.
In a more severe case where all states’ connectivity frequencies are outside the passband of
SWPC (Figures 4F), all SWPC cluster mean values are very weak. Contrary to SWPC results,
FBC mean values for cluster centroids are quite strong and similar to states 1 and 2 At. Note
that the scales of the images are the same across all scenarios.

In addition to the means, we can also interpret the standard deviation values. Based on
Figures 4A through C, we can see that SWPC produces higher standard deviation values com-
pared with FBC standard deviation values for null connectivity elements (matrix entries where
true connectivity is 0 in each state). In contrast, for the second scenario results, we can see
that using longer window sizes results in lower standard deviation values where the true con-
nectivity frequency is very low. This is the case for Figure 4D (first state) and Figure 4E (both
states). In addition, when the specific state has a higher frequency than the SWPC frequency
band, the standard deviation values are noticeably higher for all matrices’ entries. This can be
seen for the second state in Figure 4D and for both state results in Figure 4F.

Another interesting observation can be made for the case where the two states’ fcorrs are
located in separate filter bank frequency bands (Figures 4A and 4D). The fraction rate for FBC
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Figure 5. Correlation of estimated cluster centroids with ground truth for all toy examples. The
left figure shows the results for the first scenario (A through C; window size equals 10 time points),
while the right figure is for the second scenario (D through F; window size equals 30 time points).
As can be seen here, FBC performs better (i.e., has higher correlation) for most of the cases. Only
in cases B and E does SWPC perform better than FBC (connectivity frequency is well within the
band-pass of SWPC). In the cases where even one of the connectivity frequencies spread outside
the SWPC main lobe (cases A, C, D, and F) FBC performs better than SWPC. Note also that the FBC
mean correlation values remain mostly the same for all six cases. This observation, combined with
the fact that we never know the correct window size, suggests FBC as a more robust solution.

(row 4 in each of the boxes 4A and 4D) shows that clusters 1 and 2 spend more time in the
first filter bank, while clusters 3 and 4 spend more time in the second filter. This is an accurate
reflection of the ground truth and shows that FBC can provide correct frequency specificity in
the case where connectivity frequencies are distributed in different filter frequency bands. This
is also an exclusive and important feature of the FBC approach. This point will be expanded
upon more in the Discussion section.

Figure 5 shows the correlation between the estimated clusters and the true centroids (both
positive and negative matrices shown in Figure S1). Based on this figure, we can see that in most
cases FBC performs better (has a higher correlation) except the case where the connectivity
frequencies are well inside the SWPC frequency window (cases B and E). Thus, if even one of
the states has a higher frequency than what is covered by the SWPC window, FBC performs
better (cases A, C, D, and F). In addition, compared with SWPC, FBC shows more robust
performance, that is, FBC performance is similar across different scenarios. This means that
FBC performance is not impacted greatly by the true connectivity frequency, which is unknown
to us. Finally, FBC results seem to have less variation (spread of correlation values) compared
with SWPC results, which have only low variation in cases B and D. Note that these two cases
are essentially the best case scenarios for SWPC.
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Group Differences Between TC and SZ in the FBIRN Data

As mentioned in the Methods section, FBC was utilized to analyze the FBIRN dataset. After
calculating FBC values for all component pairs, we compute eight clusters using the k-means
method. The results can be seen in Figure 6. Based on the fraction rate values across all 10
bands (second row in each separate box) we can group the clusters into three groups: low-pass,
band-pass, and high-pass clusters.

Figure 7 shows all the SWPC results. Figure 7A depicts the static FNC (FNC calculated over
the entire time series using Pearson correlation) for the TC and SZ groups separately. Looking
at Figure 7A, we can see that the TC group has a stronger positive connectivity block in AUD,
VIS, and SM functional domains compared with SZ static FNC. Comparing these results with
the two low-pass clusters in Figure 6 (clusters 1 and 2), we can see a resemblance between
static FNCs and clusters 1 and 2. This can also be verified using Figure 7C, where correlation is
used to assess the similarity of the cluster centroids. Based on this figure, TC static FNC highest
correlation is with FBC cluster 2, while SZ static FNC has a higher correlation with FBC cluster
1. Another observation that supports this comparison is that TCs spend significantly more time
in cluster 2 compared with SZs (Figure 6, last row in each box). In addition, SZs tend to stay
more in FBC cluster 1 compared with TC.

Figure 7B shows the eight clusters that resulted from SWPC. Comparing Figure 7 with
Figure 6, we can see that all the clusters resulting from SWPC are repeated in FBC results. This
statement can be verified using Figure 7C. As seen in the aforementioned figure, all SWPC
clusters have a high correlation with at least one of the FBC clusters. In contrast, four of the
FBC clusters are not visible in SWPC results, namely, clusters 5 through 8. All of these clusters
are from either the band-pass or the high-pass group and some show opposite patterns to each
other, pointing to an oscillating effect in connectivity patterns.

We used FDR to correct the p values for eight comparisons (number of states) for this anal-
ysis. Looking at the comparison between TC and SZ fraction rate of FBC results (Figure 6, last
row), we can see that from the eight comparisons, seven are significant after correcting for
multiple comparisons. TCs tend to stay more in clusters 2, 3, 4, and 6, while SZs tend to stay
more in clusters 1, 7, and 8. Lastly, if we look at the frequency profile of cluster pairs 7–8 (SZ >

TC) in Figure 6 and compare them with other clusters, we see that 7–8 clusters have relatively
higher frequencies compared with the other pair. This is especially more visible for cluster 8,
where the higher frequencies have higher fraction rate values.

DISCUSSION

In this preliminary work, we developed a new method (FBC) to estimate connectivity dynamics
that are not limited to low-frequency connectivity, or even to a specific choice of frequency.
We first designed a toy example and showed that FBC enables us to estimate high-frequency
changes in functional connectivity, while typical SWPC might miss these changes. We then
used FBC to analyze the FBIRN dataset and found eight distinct connectivity states, each with
their own unique frequency profile. We showed that FBC is able to estimate the states resulting
from SWPC in addition to some other states that go undetected using SWPC because of their
higher frequency profile. In addition, FBC enables us to explore the frequency profile of con-
nectivity patterns in the whole frequency range. That is, using FBC we are able to comment
on the frequency profile of each state. Applying this approach to real data reveals results in SZ
that are consistent with, but extend, previous work and adds to our understanding of functional
brain differences in this disorder.
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Figure 6. FBIRN FBC results. In each box, the first row shows the cluster centroids where the
title gives the ratio of each state occurrence and range of each state centroid colormap (e.g., for C1
−0.34 is blue while 0.34 is red). The second row shows each cluster frequency profile (fraction rate
of each band) for TC and SZ separately. The third row compares the fraction rate across all bands
between TC and SZ (the title of these contains the comparison p value, where the significant ones
are in bold font). The first observation we can make is that FBC has resulted in states that show
opposite patterns to some other states. These opposite patterns are not visible within the SWPC
results as some of them show a more high-pass frequency profile (possibly the reason these are not
visible in the SWPC results). These opposite patterns might point to the presence of connectivity
oscillation as designed in our toy examples. Another observation we can make is that states 1 and 2
show a very strong low-pass frequency profile, where TCs tend to spend more in state 2 while SZs
spend more time in state 1. Interestingly, states 1 and 2 are very similar to the static connectivity
calculated from SZ and TC, respectively (see Figure 7). States 7 and 8 are a finding exclusive to FBC,
which SZs tend to stay in significantly more compared with TCs. These states show a very sparse
connection in AUD/VIS/SM. This is in contrast with states 2 and 4 (higher fraction rate for TC); there
are very strong connections in these domains.

Network Neuroscience 71



A unified approach for static/dynamic connectivity estimation

Figure 7. Pearson correlation results. (A) Static connectivity estimated using all the time points of the time series. (B) Estimating dFNC using
SWPC and then clustering all the results into eight clusters. (C) Correlation between Pearson correlation (both static and dynamic states) and
FBC results. As can be seen in this figure, sFNC for SZ and TC are quite similar to FBC clusters 1 and 2, respectively (in C, they have the highest
correlation). In addition, all SWPC clusters are quite similar to the first four clusters of FBC. FBC clusters 1, 2, and 3 are all low-pass; cluster
4, although grouped as band-pass, has a rather high fraction rate for the low-frequency bands compared with other band-pass clusters. This
in line with our other observations that SWPC is quite biased toward low-frequency connectivites.

Activation Frequency Versus Connectivity Frequency

As we mentioned in the Introduction section, many studies have tried to explore the frequency
profile of connectivity using different methods. The majority of these methods perform fre-
quency tiling in the activity domain and then calculate connectivity. Then they proceed to
make indirect inferences about the connectivity frequency profile. This is problematic, as the
relationship between the activity domain and the connectivity domain is unclear at best and
depends heavily on the specific estimation method used. Many methods estimate connectivity
(i.e., transform the activity domain into the connectivity domain) using highly nonlinear sys-
tems, and therefore the frequency information is distorted in this transformation. For example,
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looking at the SWPC formula (Equation 1) we see that μx(t) is subtracted from x(i) and the re-
sulting value is divided by σx(t). This part in itself distorts the frequency profile of x. In addition,
[x(i)− μx(t)]/σx(t) is multiplied by [y(i)− μy(t)]/σy(t) to calculate correlation (Equation 1).
This step will further distort the frequency information. Therefore, using frequency information
within the activity domain to infer frequency-related information specific to connectivity is
not straightforward. Some studies overlook this detail when studying connectivity frequency
profile. For example, Li, Bentley, and Snyder (2015, p. E2528) used frequency tiling in the
activity domain to conclude that “oxygen correlation is band limited.” A similar issue can be
found with a more recent paper where they talk about dynamic functional connectivity at spe-
cific bands (Luo et al., 2019). In another type of study, Yaesoubi et al. (2017) used the wavelet
transform to decompose the activity time series into different time-frequency bands and then

Wavelet transform:
A time-frequency analysis method
that allows us to explore different
frequencies of a time series using
different temporal/spatial resolutions.
In this article, we are looking at
temporal resolution.

calculate coherence. Several observations about connectivity frequencies are then made. In
our view, these kinds of statements can be misleading as the frequency profile is not directly
studied in the connectivity space and therefore it does not enable us to make claims about the
connectivity frequency profile. Rather they show that connectivity is caused by signals (i.e.,
activity) from specific frequency bands.

We believe that to make correct claims about the connectivity frequency profile, it is im-
portant to implement frequency tiling directly in the connectivity space. In addition, we should
differentiate between the frequency profile of activity (estimated from time series themselves)
and the frequency profile of the connectivity. The relationship between these two is not
clear, so using knowledge about time series frequencies to make inferences regarding the
connectivity frequency profile is not as straightforward as some studies suggest (Leonardi &
Van De Ville, 2015).

FBC Performs Frequency Tiling in the Connectivity Domain

In this work, we have proposed an approach called FBC to estimate dFNC that does not make
any assumption about the frequency profile of connectivity. This is in contrast with SWPC,
which applies a low-pass filter when calculating dFNC. Note that we have filtered the BOLD
time series using a band-pass filter (between 0.01 and 0.15) based on the existing literature
(Niazy, Xie, Miller, Beckmann, & Smith, 2011). But to the best of our knowledge, no previous
work has made the distinction between activity and connectivity frequency response, and our
work is the first one to do so. Because of this, we decided not to assume any prior knowl-
edge regarding the frequency profile of connectivity, which resulted in considering 10 bands
covering the entire sampled spectrum. Additionally, we explore the spectrum of activity time
series and connectivity time series before filtering, that is, w(t), and presented the results in
the Supporting Information (Figure S13). As can be seen in this figure, the activity spectrum
is clearly bounded between 0.01 and 0.15 Hz while the w(t) spectrum does not seem to be
bounded between any two frequencies. This point should be further explored in a future work.

Using k-means clustering to summarize FBC results, we found that in addition to states that
resulted from SWPC, we can estimate some other states exclusive to FBC (see Figure 6). In
addition, because of the frequency tiling nature of our method, we are able to discuss the
frequency profile of the estimated connectivity patterns. In many dFNC studies, it is reported
that one dFNC state tends to be quite similar to the static connectivity (Damaraju et al., 2014;
Faghiri et al., 2018). In this study, we see that there are actually three states that have strong
low-frequency profiles (states 1, 2, and 3; see Figure 6). State 1 is quite similar to sFNC that
resulted from SZ individuals, while the other state, state 2, is similar to sFNC that resulted from
TCs (see Figure 7C for correlation between different states). One possible conclusion from
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this observation is that FBC enables us to distinguish between states that show more static-like
behavior (states that show low-pass frequency profile) and others that are more dynamic (states
that show a high- or band-pass frequency profile). This feature of FBC can be utilized so that
we have a full picture of FNC in all its frequencies, that is, study both static and dynamic FNC
patterns simultaneously. As mentioned in the last paragraph, we did not limit our connectivity
spectrum, but this can easily be done. To do so, one can design filters to cover the desired
bands.

sFNC Repeats in Higher Frequencies With Lower Cognitive Control Connectivity

Similar to the states reported in our earlier work (Damaraju et al., 2014), several of the states
that resulted from the SWPC approach (Figure 7B) are quite similar to each other (states that
show similar patterns to overall sFNC). We can see two states similar to these in FBC results,
too (namely states 2 and 4). Unlike the SWPC results, here we can see that while state 2
shows a very strong low-pass frequency profile, state 4 shows a more broadband frequency
distribution. Again because of the frequency tiling of FBC, we have some added information
in regard to the frequency profile of connectivity patterns that we can investigate. Cluster 4
has lower CC connectivity in general. One possible observation we can make is that cluster
2 (which is quite similar to TC sFNC and has a very low-frequency profile) occurs in higher
frequencies in the form of cluster 4 with smaller CC connectivity values. We speculate that CC
(especially intraconnectivity within CC components) is lower in higher frequencies. This point
should be examined in more depth in future work.

SZ Connectivity Patterns Have Higher Frequencies Compared With TC Connectivity Patterns

SZ subjects have significantly higher fraction rate for cluster pairs 7 and 8, while TC subjects
have significantly higher fraction rate for cluster pairs 4 and 6 (Figure 6). Looking at the fre-
quency profile of these cluster pairs, we can see that cluster pairs 7 and 8 are in the high-pass
group while pairs 4 and 6 are in the band-pass group. This seems in line with some previous
studies where it was reported that in activity space SZs have higher power at higher frequencies
compared with TCs (Garrity et al., 2007; Alonso-Solis et al., 2017). Unlike these studies, we
have found alterations in the frequency profile of connectivity instead of activity. This obser-
vation has been made possible because of the unique feature of our proposed approach that
allows us to study the frequency properties of connectivity directly. We believe these points
need further investigation.

Weak Connection Between Somatomotor and Visual/Auditory Networks in SZ

FBC identified two unique states, 7 and 8, which are not visible via the SWPC approach. SZ
spend significantly more time in these two states compared with TC (p < 0.01, FDR corrected).
Our approach enables us to intuitively capture the frequency profile and connectivity patterns
of each state simultaneously, which provide information that is not available to the SWPC
approach. If we compare these states with states 4 and 6 (higher fraction rate for TCs compared
with SZs) we see a difference in the connection between SM and sensory areas (AUD and
VIS functional domains). These connections are strong (regardless of their sign) in states 4
and 6, while they are weak in clusters 7 and 8. Several studies have reported the presence
of connectivity between motor and sensory regions in typical controls (D’Ausilio et al., 2009;
Londei et al., 2010). A reduction in connectivity between these regions in SZ has been reported
in the past years (Berman et al., 2016; Kaufmann et al., 2015).
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Dynamic Connectivity Highlights Oscillations Between Two Opposite Patterns

Another observation we can make based on the FBC results (Figure 6) is that there are pairs
of states (undetected by SWPC) that show opposite connectivity patterns. In our case, states
4 and 7 show opposite connectivity patterns of states 6 and 8, respectively. One interesting
insight about these is that they exhibit a more high-pass frequency profile compared with the
other states. This is possibly the reason that these states are not estimated using SWPC. As men-
tioned in the Methods section, we used forward-backward filtering, therefore it is unlikely that
these opposite patterns are due to an alteration in phase caused by the analysis. Another expla-
nation can be that these states are spurious estimations caused by the high-frequency nature
of the filter banks, as discussed by Leonardi & Van De Ville (2015). We cannot completely
rule out this possibility, but because these states show the opposite patterns of some other
low-pass states, this is unlikely. To further investigate, we removed the low-frequency informa-
tion of SWPC with different high-pass filters (forward-backward filtering) and then performed
k-means clustering. Figure 8 shows the resulting clusters using different high-pass filters. When
removing the low-frequency information, we obtain these opposite clusters (e.g., C3 in Figure 8
is quite similar to FBC cluster 6). Another possible explanation for these opposite patterns is
that, similar to how the toy examples were designed, the dynamic connectivity patterns oscil-
late between two opposite patterns. Unlike the toy examples, the negative patterns (states 2, 4,
and 8) show a higher frequency profile compared with their more low-pass counterparts, but
this could reflect asymmetric oscillatory behavior (e.g., more rapid return from the negative
patterns). This is an interesting observation; however, future work should be designed to further
explore the possibility that connectivity indeed oscillates between two opposite connectivity
patterns. In addition, the biological/clinical meaning of this view should be explored further.

A Systematic View of Estimations

We believe that any analysis steps (including statistical estimators) can be viewed as a
system and benefit from the extensive work done in the system design field (Bentley, Dittman,
& Whitten, 2000). In this work, we examined SWPC and proposed an approximate system
diagram for it (Figure 2A). This way of thinking about SWPC facilitated our conclusion that
SWPC has a low-pass filter inherent to its formula and led to our proposed method. The use
of filter banks as proposed in the current work is only one possibility: for future work we can
use custom h(t) functions to extract specific information. For example, one possible choice is
the wavelet transform in the place of subsystem 2 (wavelet can be viewed as a system itself).
Another possibility is to improve SWPC by replacing its h(t) with an IIR low-pass filter with
very sharp transition and flat band-pass (in contrast with SWPC with a rectangular window
where the frequency response of the filter is sinc like). This is in line with previous work that
has suggested that SWPC window shape can be modulated to achieve better results (Mokhtari,
Akhlaghi, Simpson, Wu, & Laurienti, 2019).

Robustness of the Results in Regard to Different Parameter Choices

There are several choices we made that can impact the results. First, there is the choice of
filter. We used Chebyshev type 2 filter for this analysis, but we also repeated all analyses with
two other filter types (Butterworth and elliptic) with matching characteristics. Figure S14 in
the Supporting Information depicts the results for all three filter types. As can be seen in this
figure, almost all the cluster repeats in all three filter types. The only difference is in cluster 7,
where the fraction rate for Chebyshev filter is high-pass, while the other two filters show a more
band-pass fraction rate. This difference is probably caused by the difference in the frequency
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Figure 8. High-passed SWPC results. To verify FBC results, we removed low-frequency information of SWPC using different high-pass filters
and then used k-means clustering. The first row is essentially unfiltered SWPC results, while the next three rows are SWPC results using different
filters. As seen in the last three rows, we have clusters similar to FBC clusters in SWPC results, too (clusters 3, 4, and 8). The only reason these
clusters were not estimated using unfiltered SWPC is that SWPC frequency response function attenuates all frequencies above 0 even in its
band-pass.

response of the filters. It is important to note that even though cluster 7 shows band-pass
fraction rate for the last two filters, it has higher frequency profile compared with other band-
pass clusters (clusters 4, 5, and 6). That is, it started going down in higher frequencies.

Another parameter was window size used for estimating w(t). In Figures S4 through S12 in
the Supporting Information, we demonstrated that different window sizes with different cluster
numbers show similar results. But to make sure the differences found between SZ and TC hold
for different window sizes, we did all the analysis with different window sizes (from 2 TR to
60 TR) and eight clusters and performed all our statistical tests. As can be seen in Figure S15
in the Supporting Information, almost all the results for different clusters hold, with the only
distinction being cluster 7. This cluster is not estimated using higher window sizes, which
leads us to believe that this cluster is showing very fast changes in variance and/or mean. Both
Figures S14 and S15 show that we should be careful when talking about cluster 7 of our main
results. On the other hand, cluster 8, which shows an opposite pattern and forms a pair with
cluster 7, is repeated in both Figures S14 and S15 with the same statistical test results (higher
fraction rate in SZ). This observation reassures us that cluster 7 is a valid connectivity pattern.

Finally, we repeated the analysis with different numbers of filters, while keeping the filter
type and cluster number the same as the main results of this paper. Figure S16 in the Supporting
Information illustrates these results for different numbers of filters, from 5 to 12. Apart from
clusters 4 and 8 (of the main results), all other six clusters are repeated in other rows with
similar frequency profile. Cluster 4 is a little different in frequency profiles for filter number 5
and 8 compared with other filter numbers results. But the frequency profile, while categorized
as low-pass, has a bump in middle-frequency bands (unlike the first three clusters, which are
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high only in very low frequencies). In addition, clusters in both columns 5 and 6 in Figure S16
are quite similar visually. Other different clusters are clusters in columns 3 and 10. The reason
behind this is possibly how the tiling has been done. When using filter numbers 5–7, we do not
have good representation for the higher frequency (near normalized frequency 1); therefore,
the high-pass cluster is not estimated with this number of clusters. But for higher filter numbers
this cluster has always been estimated (for filter numbers 8 through 12). Therefore, we think
that this cluster is strong when we represent the highest frequencies more fairly. The number
of filters to be used is a choice that the investigators should make and is akin to selecting
the number of Fourier transform points. There are two important properties that should be
considered when designing the filters. First, the filters should be stable, that is, all their poles
should be outside unit circle in z-plane Oppenheim (1999). Second, the sum of the filtered
time series (i.e., rn,x,y) should be very close to the unfiltered time series (i.e., w(t)), ideally
equal.

Limitations and Future Directions

The first limitation of the FBC approach is the subsystem used to transform activity space to
connectivity space (Figure 2). In this system, we have used a window to calculate the mean
and standard deviation. The problem arises when mean and standard deviation move faster
than what the window can track. In this case, our estimations will be suboptimal. To remedy
this, we can use other instantaneous connectivity estimators suggested (Faghiri et al., 2020;
Shine et al., 2015). Another limitation of this method is the possibility of noise contamination
in the higher frequencies. This is certainly a valid issue, though our goal in this preliminary
work was to refrain from making any strong assumptions about connectivity frequencies. The
reason behind this decision was that we have no solid prior knowledge about connectivity
frequency. In fact, to the best of our knowledge, this work is the first one that differentiates
between activity and connectivity frequency profiles and previous work makes assumptions
about connectivity frequency using activity space information. Future investigators can utilize
our proposed approach to study any specific frequency bands more specifically.

In this study we have chosen to utilize our novel method to analyze a dataset that has been
used extensively in many other studies (Damaraju et al., 2014; Hare et al., 2017; Sui et al.,
2018). This can be viewed as a limiting aspect of this study, but doing so allowed us to compare
our results with the previously published work by using the same data and the same function for
transforming from activity to connectivity (i.e., w(t)) as the previous work (Damaraju et al.,
2014). What we changed here is essentially the averaging step (Figure 2 subsystem 2) so that
it does not remove frequency band information. We show that this provides a much richer
source of information and additional insights into resting brain function in individuals with
schizophrenia. One final limitation of this study is that, as shown in Figure 1, the estimated
values at some bands might be nonsignificant. However, we have used k-means to cluster
the results, which does not distinguish between significant and nonsignificant connections. To
remedy this, in future work we can employ some methods that have a built-in statistical test.
One such method can be to change point-detection algorithms that have been increasingly ap-
plied to fMRI data (Jeong, Pae, & Park, 2016; Xu & Lindquist, 2015). We can pair these methods
with our estimation pipeline to find meaningful changes in the connectivity at different bands.

In this paper, we have used k-means paired with Euclidean distance for the summarization
step. We selected this algorithm to be consistent with previous work (Damaraju et al., 2014;
Yaesoubi et al., 2015). In addition, Abrol et al. (2017) found evidence for reproducibility of

Network Neuroscience 77



A unified approach for static/dynamic connectivity estimation

k-means results (paired with Euclidean distance). Exploring different clustering approaches
(e.g., ensemble clustering) would be an interesting direction for future investigation.

In this work we compare FBC directly with one other estimator (i.e., SWPC). This compar-
ison is useful because SWPC is currently the most widely used estimator, and additionally,
FBC was inspired by SWPC. A comprehensive comparison of FBC with other novel connec-
tivity estimation approaches (Pedersen et al., 2018; Shine et al., 2015) is beyond the scope of
this preliminary work, which has the primary goal of introducing a new estimator. We leave a
more comprehensive comparison between FBC and other estimators for future work. We also
suggest that such a comparison should be done with great care to explore the estimators with
regard to how they behave in the frequency domain. To the best of our knowledge this has not
been done yet.

CONCLUSION

In this work, we proposed a new approach to estimate dFNC called FBC. Our proposed ap-
proach does not make any strong assumptions about connectivity frequency (unlike SWPC)
and performs the frequency tiling in the connectivity domain. This is in contrast to previous
work where frequency tiling was implemented in the activity domain. FBC aims to estimate
connectivity in all frequencies, and it enables us to investigate connectivity pattern frequency
profiles. Using toy examples, we showed that FBC is able to even estimate high-frequency
connectivities in addition to providing information about the estimated connectivity frequen-
cies. Utilizing FBC, we analyzed an fMRI dataset including TC and SZ. Using FBC we found
evidence of both static connectivity and time-varying states (typically identified with SWPC)
in addition to some new connectivity states undetected by SWPC (possibly because of their
high-pass nature). Finally, FBC points to a possible view of connectivity in which data oscillate
between two opposite connectivity patterns. This view should be further explored in future
works.
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