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Purpose: To assess the capabilities of Chat Generative Pre-trained Transformer (ChatGPT) and Vertex AI in
executing code-free preprocessing, training machine learning (ML) models, and analyzing the data.

Design: Evaluation of diagnostic test or technology.
Participants: ChatGPT and Vetrex AI as publicly available large language model and ML platform,

respectively.
Methods: ChatGPT was employed to improve the resolution of fundus photography images from the

Methods to Evaluate Segmentation and Indexing Techniques in the field of Retinal Ophthalmology (Messidor-2)
open-source dataset using the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique by Fiji
software. Subsequently, Vertex AI, an automated ML (AutoML) platform, was utilized to develop 2 classification
models. The first model served as a binary classifier for detecting the presence of diabetic retinopathy (DR), while
the second determined its severity. Finally, ChatGPT was used to provide scripts for R and Python programming
languages for data analysis and was also directly employed in analyzing the data in a code-free method.

Main Outcome Measures: Evaluating the utility of ChatGPT in generating scripts for preprocessing images
using Fiji and analyzing data across Python and R and assessing its potential in analyzing data through a code-
free method. Investigating the capabilities of Vertex AI to train image classification models for detection of DR and
its severity.

Results: Two ML models were trained using 1740 images from the Messidor-2 database. The first model,
designed to detect the severity of DR, achieved an area under the precision-recall curve (AUPRC) of 0.81, with a
precision rate of 81.81% and recall of 72.83%. The second model, tailored for the detection of the presence of
DR, recorded a precision and recall of 84.48% with an AUPRC of 0.90.

Conclusions: ChatGPT and Vertex AI have the potential to enable physicians without coding expertise to
preprocess images, analyze data, and train ML models.

Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclo-
sures at the end of this article. Ophthalmology Science 2024;4:100495 ª 2024 by the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
Chat Generative Pre-trained Transformer (ChatGPT),
developed by OpenAI, is a large language model designed
to generate responses that closely mimic human conversa-
tion.1 As a part of the Generative Pretrained Transformer
family, this model creates text by analyzing preceding text
to accurately predict and generate the words that should
logically follow.2 Since its launch, ChatGPT has attracted
millions of users, making it a popularly utilized tool.3

Recently, ChatGPT has been equipped with Data Analyst
feature, an advanced tool for data analysis. This addition
is ideal for users seeking to explore data and solve
problems with the aid of artificial intelligence (AI) tools.4

The effective use of AI technologies enhances the anal-
ysis of complex images, leading to quicker and more ac-
curate disease detection, which results in improved patient
ª 2024 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
care outcomes.5,6 In the field of machine learning (ML),
various algorithms and methodologies are utilized to allow
computers to identify patterns and classify images based
on the findings. In the context of diabetic retinopathy
(DR) classification, ML algorithms can be effectively
trained using large datasets of labeled fundus photographs.
This training enables these algorithms to identify patterns
and features corresponding to various DR stages, allowing
for the classification of new fundus images that have not
been previously encountered.7

Traditionally, development of ML models has been a
complex and time-consuming process, requiring computa-
tional expertise to optimize hyperparameters. Such a process
has posed challenges for clinicians, who often lack coding
skills in ML model development.8 However, the advent of
1https://doi.org/10.1016/j.xops.2024.100495
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automated ML (AutoML) has changed this landscape.
Vertex AI, developed by Google Cloud, offer graphical
user interfaces that enable users to construct ML models.
Impressively, AutoML models exhibit performance
comparable to traditionally developed models.9,10

Diabetic retinopathy is a microvascular disorder resulting
from the long-term effects of diabetes mellitus. Several
studies have indicated that the number of DR patients in the
United States will reach 16.0 million by 2050, with
approximately 3.4 million experiencing vision-threatening
complications. Diabetic retinopathy can lead to severe
vision loss and, in some cases, blindness, making it the
leading cause of visual impairment among working-age
adults in the western world.11,12 Early detection and
accurate classification of various stages of DR are
essential for prompt and effective treatment.13e15 Timely
intervention can slow down the progression of DR from its
early nonproliferative stages, primarily through glycemic
and blood pressure control,16,17 and reduce vision loss in
later stages using intravitreal injections and laser
photocoagulation.18

In this index study, we aimed to evaluate the function of
ChatGPT in assisting physicians with enhancing the quality
of fundus photographs and analyzing the data. Additionally,
we assessed the utility of Vertex AI as an AutoML platform
for training ML models for the detection and grading of DR.

Methods

This study adhered to the principles of the Declaration of Helsinki
and was conducted using a publicly available deidentified dataset;
therefore, institutional review board approval or informed consent
was not required.

Dataset

Methods to Evaluate Segmentation and Indexing Techniques in the
field of Retinal Ophthalmology (Messidor-2), an open-source
dataset, was used to evaluate the efficacy of the proposed strat-
egy.19 The Messidor-2 dataset was compiled from 3 ophthalmic
departments in France, employing a digital video recording camera
mounted to a Topcon TRC NW6 retinograph. Within this database,
a total of 1748 images were classified based on the severity of DR.
The classification system adopted for this study assigned specific
labels to the images: 0 for “No DR,” 1 for “mild NPDR” (non-
proliferative DR), 2 for “moderate NPDR,” 3 for “severe NPDR,”
and finally, 4 for “PDR” (proliferative DR).20 The categorization
was determined following an adjudication protocol, as described
in the research conducted by Krause et al.21

Preprocessing of Images

Contrast Limited Adaptive Histogram Equalization (CLAHE) is an
image enhancement method aimed at improving the visual quality
of digital images by enhancing their contrast. Unlike traditional
histogram equalization, which stretches the intensity levels of an
image across the entire dynamic range, CLAHE addresses the is-
sues of overamplification of noise and artifacts in low-texture re-
gions by dividing the image into small, overlapping tiles or
regions. Each tile undergoes histogram equalization separately,
with a contrast limiting mechanism in place to ensure that no tile’s
histogram is stretched beyond a predefined threshold. Such algo-
rithm prevents the overamplification of noise in smooth areas and
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yields more natural-looking results by uniformly distributing the
color intensities while maintaining the original hues intact.22,23 The
localized contrast enhancement offered by CLAHE allows for the
effective improvement of details in both bright and dark areas of
an image. Consequently, it proves particularly valuable for
images with nonuniform lighting or low contrast.24,25 To
preprocess images using CLAHE, we queried ChatGPT-4, “I
have thousands of images that I would like to enhance their res-
olution using CLAHE. Can you kindly demonstrate how to process
this batch of images in Fiji?” (Fig S1). Following the instructions
provided by ChatGPT, we successfully processed the batch of
images using Fiji (ImageJ2 2.14.0/1.54f)26 (Fig 2).

Model Training

Two single-label datasets were created to train 2 distinct image
classification models. This process involved selecting the “us-
central” region on Vertex AI and uploading the preprocessed im-
ages to Google Cloud. The first dataset was compiled using 5 la-
bels to grade DR, and the second dataset was created using 2 labels
to indicate the presence or absence of DR. Correspondingly, the
first model was trained using the first dataset to grade severity of
DR, while the second model was trained using the second dataset
to detect the presence of DR. The dataset was automatically split
into 3 sets: 80% for training, 10% for validation, and the remaining
10% for testing the data. To enhance data security during the
training process, Google-managed encryption key services were
used. Objectives were set to prioritize higher accuracy, aiming for a
latency of 200 to 300 milliseconds. Eight node hours were used for
training the model, with "node hour" representing an hour of
computation on an individual computing node.

Performance Metrics

The AutoML platform provides performance metrices derived from
the testing set, while the AI model predicts categories by assigning
probabilities to individual images. To classify an image, a confi-
dence threshold determines the algorithm’s minimum required
confidence level. The model’s accuracy is evaluated by computing
the area under the precision-recall curve (AUPRC) across a spec-
trum of confidence levels ranging from 0.0 to 1.0 on the testing
dataset. The precision-recall curve highlights varying precision and
recall values achievable through adjustable confidence thresholds,
providing insights into the model’s performance. Additionally, the
platform generates confusion matrices including true-positives,
true-negatives, false-positives, and false-negatives which enable
calculation of performance indices such as sensitivity (SN), spec-
ificity (SP), positive predictive value (PPV), negative predictive
value (NPV), accuracy, and F1 scores.

Analysis of Data Using Programming Languages

To analyze the confusion matrix of the first trained model and
acquire essential performance indices, ChatGPT-4 was utilized to
obtain scripts for both R and Python. For R scripts, we presented
the following query to ChatGPT: “I have a confusion matrix with 5
labels, labeled 0 to 4. The first row is the header including the
prediction labels and the first column is the true diagnosis. Blank
cell means zero value. Can you please share the R script to import a
comma-separated values (CSV) file, calculate the SN, SP, PPV,
NPV, accuracy, and F1 score, and export the results as a CSV file?”
The input and output file paths were specified at the end of the
query. Subsequently, ChatGPT provided the script. However, the
output metrics were found to be all zeros or not availables, which
was not anticipated. We asked ChatGPT to create a script that
displays the contents of a CSV file, aiming to gather the necessary
information for troubleshooting purposes. Based on the error



Figure 2. A, Original no diabetic retinopathy fundus photo. B, Preprocessed no diabetic retinopathy fundus photo. C, Original moderate nonproliferative
diabetic retinopathy (NPDR) fundus photo. D, Preprocessed moderate NPDR fundus photo. E, Original severe NPDR fundus photo. F, Preprocessed severe
NPDR fundus photo. G, Original proliferative diabetic retinopathy fundus photo. H, Preprocessed proliferative diabetic retinopathy fundus photo.
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description from R and ChatGPT’s responses, it was determined
that blank cells had been converted to “not availables” during
import into R and were not recognized as numeric values, leading
to miscalculations. Upon running the revised script generated by
ChatGPT, a new error was encountered, indicating a mismatch in
the number of items being replaced in a data frame compared with
the required number. However, after the details of this error were
provided to ChatGPT, appropriate edits were made to the script.
The final version of the script, executed after these adjustments,
successfully yielded the desired results (Fig S3).

For Python3 scripts, we altered our strategy. Initially, we aimed
to provide ChatGTP with the data structure by asking, “I have a
confusion matrix with 5 labels, labeled 0 to 4. The first row is the
header including the prediction labels and the first column is the
true diagnosis. Blank cell means zero value. Please provide me
with a script to print the contents of confusion_matrix.csv.” While
trying to run the script we encountered an error: “Mod-
uleNotFoundError: No module named ’pandas.’” This issue was
resolved by reporting the exact error details to ChatGPT and
proceeding as instructed (Fig S4). The results of the script were
shared with ChatGPT. Then, the following inquiry was made
and paths for the input and output files were also provided: “I
have a confusion matrix with 5 labels, labeled 0 to 4. The first
row is the header including the prediction labels and the first
column is the true diagnosis. Blank cell means zero value. Can
you please share the Python3 script to import a CSV file,
calculate the SN, SP, PPV, NPV, accuracy, and F1 score, and
export the results as a CSV file?” Subsequently, ChatGPT
generated the script, as shown in Fig S5. In line with earlier
instructions regarding the “pandas” library, we proceeded to
install the “numPy” library and ran the script which resulted in
obtaining the desired results.

The scripts provided by ChatGPT were executed using R
software (version 4.3.1; R Foundation for Statistical Computing)
and Python programming language (version 3.9.7; Python Soft-
ware Foundation).

Analysis of Data Using Code-Free Method

ChatGPT was employed as a code-free solution for our data
analysis following the activation of the ChatGPT Plus subscription
plan. The “Data Analyst” Generative Pretrained Transformer was
accessed through the “Explore Generative Pretrained Trans-
formers” section to upload a CSV file to ChatGPT. The same query
was posted: “I have a confusion matrix with 5 labels, labeled 0 to 4.
Blank cell means zero value. Can you please calculate the SN, SP,
PPV, NPV, accuracy, and F1 score, and export the results as a CSV
file?” ChatGPT conducted the analysis and provided an exportable
CSV file with the results (Fig S6).

To ensure accuracy in calculations and metrics, a comprehen-
sive verification process of the results was conducted. The same
steps were followed to analyze the data for the second model.

Results

In this study, a comprehensive dataset of retinal images
(Messidor-2) was uploaded to Google Cloud for analysis
and annotation. The dataset consisted of a total of 1748
images; however, 8 were excluded due to the absence of
labels, which could have potentially reduced the accuracy of
the models. The dataset was labeled, with 1017 images
classified as “no DR,” 268 images labeled as “mild NPDR,”
345 images labeled as “moderate NPDR,” 75 images labeled
as “severe NPDR,” and 35 images labeled as “PDR.” The
model’s AUPRC for grading the severity of DR was 0.81
with precision of 81.81% and recall of 72.83% using a score
3



Figure 7. Precision-recall curves for grading diabetic retinopathy.
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threshold of 0.5 (Fig 7). Table 1 presents the precision and
recall of the model trained for grading the severity of DR at
different confidence thresholds, namely 25%, 50%, and
75%.

Table 2 presents the evaluation parameters used for
assessing the model trained to detect the severity of DR.

A second model was trained using 2 labels: label 0 for
“no DR” and labels 1, 2, 3, and 4 for “DR.” The Vertex AI
platform provided several performance metrics to evaluate
the performance of the trained model to detect DR. The
model achieved an AUPRC of 0.90. It also demonstrated an
SN of 76% and an SP of 90%. The PPV was recorded at
88.37%, while NPV reached 78.95%. Furthermore, the
model attained an F1 score of 0.84 (Fig 8). Table 3 presents
the precision and recall of the model trained for detection of
the presence of DR at 25%, 50%, and 75% confidence
thresholds.
Discussion

In this study, the capabilities of ChatGPT in data pre-
processing and analysis were assessed. ChatGPT provided R
and Python scripts and instructed us how to enhance image
quality using Fiji. Additionally, we explored the potential of
AI in a broader context by using Vertex AI to train 2 models
with the Messidor-2 open-source database. The primary
objectives were twofold: first, to demonstrate the feasibility
of integrating AI technologies into existing workflows, and
second, to highlight the user-friendly nature of ChatGPT
Table 1. Precision and Recall at Different Confidence Thresholds
for Grading Diabetic Retinopathy Stages

Confidence Threshold Precision (%) Recall (%)

25% 67.59 84.39
50% 81.81 72.83
75% 87.04 54.34
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and Vertex AI, which facilitated the preprocessing, training,
and analysis processes.

Numerous deep learning models have been developed for
DR classification, each employing different datasets.27e29

However, the challenge of low resolution and suboptimal
image quality significantly impacts the performance of the
trained models as low-quality images have less distin-
guishable details.30e32 Retinal fundus images are commonly
captured using different fundus photography devices, lead-
ing to intensity variations in the photographs. Therefore, it
becomes critical to enhance the quality of fundus images
and eliminate different types of noise.33 One effective
technique for improving image quality is CLAHE, which
enhances contrast and reduces the impact of uneven
illumination.24,34

In a study by Faes et al, the feasibility of training
AutoML models by health care experts without coding
backgrounds was explored. The study utilized the Messi-
dor dataset to develop a model capable of distinguishing
between eyes without DR and those with any degree of
DR. The outcomes revealed an AUPRC of 0.87, with
precision, SN, and SP reported as 73%, 73%, and 67%,
respectively.35 In our study, feasibility of preprocessing,
training AutoML models, and analyzing data using
ChatGPT and Vertex AI by physicians lacking coding
experience was evaluated. We successfully applied
CLAHE to enhance image quality, achieving improved
detection of DR with SN, SP, PPV, and NPV reported as
76%, 90%, 88.37%, and 78.95%, respectively. Moreover,
an AUPRC of 0.90 demonstrated the model’s efficacy in
correctly identifying DR cases. Additionally, we utilized
ChatGPT for data analysis in R and Python, as well as
through a noncoding method that involves uploading the
data to ChatGPT.

Sanchez et al evaluated the presence of DR in the Mes-
sidor dataset using traditional ML techniques and reported
an AUPRC of 0.87, successfully distinguishing normal
images from those with DR. They also achieved an SN of
92.2% at an SP of 50%.36 Similarly, Anatal et al conducted



Table 2. Parameters for Evaluation of the Model Trained for Detection of Severity of DR

DR
Grading

Sensitivity
(%)

Specificity
(%)

Positive Predictive
Value (%)

Negative Predictive
Value (%) F1 Score Accuracy

No DR 92 90.5 70.7 97.8 0.800 0.908
Mild NPDR 44 90.5 53.6 86.6 0.483 0.812
Moderate NPDR 67.3 76.4 41.9 90.2 0.517 0.746
Severe NPDR 57 91 61.2 89.4 0.590 0.842
PDR 33.3 100 100 85.8 0.500 0.868

DR ¼ diabetic retinopathy; NPDR ¼ nonproliferative diabetic retinopathy; PDR ¼ proliferative diabetic retinopathy.
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a study on the same dataset, classifying images into "DR/
non-DR" categories based on the presence of
microaneurysms. Their method achieved an AUPRC of
0.90, with an SN of 76% and an SP of 88%.37

Furthermore, Seoud et al’s38 study, using traditional ML
on the Messidor dataset, could detect DR with an AUPRC
of 0.89, SN of 93.9%, and SP of 50%. Our model, with
an SN of 76%, SP of 90%, and AUPRC of 0.90,
demonstrates comparable efficacy in detecting DR using
the same dataset. Considering the reduced time, minimal
coding knowledge required, and lower costs associated
with training AutoML models, they present a feasible
option for ML model training.

The trained model for grading DR achieved an SN of
92% and an SP of 90.5% in detecting “no DR.” It demon-
strated an SN of 44% and an SP of 90.5% in identifying
“mild NPDR.” In the “moderate NPDR” category, the
model reached an SN of 67.3% and an SP of 76.4%. For
“severe NPDR,” SN of 57%, and an SP of 91% was
observed. Lastly, in the “PDR” group, the model yielded an
SN of 33.3% and an SP of 100%.

Python scripts that were generated by ChatGPT for
analysis of data included the NumPy and Pandas libraries.
ChatGPT generates scripts for various programming lan-
guages by combining its training with the specific input it
Figure 8. Precision-recall curves for binary detection of diabetic retinopathy.
receives. It has been trained on a vast dataset that includes
examples from numerous programming languages. When
prompted, ChatGPT applies the patterns it has learned to
generate code that is syntactically and logically consistent
with the requested programming language. It utilizes a
database of programming syntax, conventions, and common
coding practices to produce these scripts.39 In the field of
data science and AI, particularly during algorithm
development, the Pandas and NumPy libraries are
frequently used together. The Pandas library is typically
employed for initial data handling and preprocessing.
Once the data is cleaned and structured, the NumPy
library is utilized for more intensive numerical
computations. This combination facilitates transition from
data preparation to mathematical operations, which is
essential in algorithm development.40

Recent advancements have made AI tools more acces-
sible and ubiquitous. In this study, Vertex AI was utilized
for training ML models while ChatGPT was employed for
image preprocessing and data analysis. This included
generating R and Python scripts and utilizing the Data
Analyst feature. ChatGPT successfully provided scripts for
analyzing the confusion matrix generated by Vertex AI. For
optimal outcomes and enhanced efficiency, providing
ChatGPT with detailed descriptions and specifics of the raw
5



Table 3. Precision and Recall at Different Confidence Thresholds
for Binary Detection of Diabetic Retinopathy

Confidence Threshold Precision (%) Recall (%)

25% 75.10 90.20
50% 84.48 84.48
75% 87.80 70.10
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data is recommended. However, errors may occur when
running the scripts. In such cases, it is crucial to report these
errors to ChatGPT and request a revised script. This process
may need to be repeated until the expected results are ach-
ieved. Nonetheless, the Data Analyst feature could rapidly
read and analyze data without the aforementioned issues
associated with R and Python scripts. The integration of
ChatGPT’s processing capabilities with Vertex AI’s ML
resources demonstrated promising outcomes, highlighting
how AI can enhance research and analysis in a user-friendly
manner. This study provides insights into the practical ap-
plications of AI technologies into medicine, encouraging
further exploration and adoption in diverse scientific
domains.

Despite its benefits, ChatGPT does have certain limita-
tions. For instance, when ChatGPT encounters identical
queries, it may not always provide the exact same answer.
Responses might vary, at least to some degree. This varia-
tion can be attributed to several factors. Even minor dif-
ferences in how questions are phrased can lead to variations
in the generated responses. Moreover, the order in which
questions are presented and their context can influence
ChatGPT’s responses. Additionally, ChatGPT incorporates
a degree of randomness, resulting in variations in its re-
sponses even when faced with the same question asked
repeatedly.41 However, large language models like
ChatGPT predict each subsequent word based on the
preceding context. This allows for multitude of ways to
express the same idea with different phrasings. Take, for
instance, instructing someone on using CLAHE in Fiji.
While ChatGPT might offer varied explanations upon
each inquiry, this diversity stems from the multiple
methods available to accomplish the same task in Fiji.
This principal of varied yet valid responses extends to
other concepts and instructions as well. It is important to
note that this does not imply that ChatGPT always
provides the correct answer. ChatGPT draws on content
from the internet, and if this content is inaccurate or
6

misleading, ChatGPT may generate erroneous responses.
Therefore, when using ChatGPT, one should be mindful
of this possibility and exercise caution. Furthermore,
different versions of ChatGPT (3.5 vs. 4.0) can produce
different outputs. In a study by Eric Strong and
colleagues, ChatGPT-3 was used to respond to free-
response case-based clinical reasoning assessments. The
study revealed that when given the same case 20 separate
times, ChatGPT’s performance on that case varied, with
scores ranging from 56% to 81%. This indicates a signifi-
cant degree of variability in ChatGPT’s responses, even
when faced with identical scenarios.42 Another study aimed
to evaluate ChatGPT’s capacity for ongoing clinical
decision support. The research involved inputting
published clinical vignettes into ChatGPT-3.5 and assess-
ing its accuracy in various areas such as differential di-
agnoses, diagnostic testing, final diagnosis, and
management. The results showed that ChatGPT achieved a
71.7% accuracy overall across all vignettes. It demonstrated
the highest performance in making a final diagnosis (76.9%
accuracy) and the lowest in generating an initial differential
diagnosis (60.3% accuracy).43

Another critical factor to consider is the most recent point
at which ChatGPT had access to internet content. Although
it has been updated with information up until April 2023,
some of this data might be outdated today.44
Conclusion

ChatGPT and Vertex AI together provide an efficient AI
implementation in medical research, allowing researchers
and physicians to employ advanced AI for tasks like image
analysis, diagnostics, and patient care without needing
extensive programming skills.
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