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Abstract
Many signals of natural selection have been identified in the human genome. However,

except for some single-locus mechanisms, most molecular processes generating these

adaptation signals are still unknown. We developed an approach that integrates datasets

related to genome-wide association studies (GWAS) with information about systems biol-

ogy and genetic signatures of natural selection to identify evidence of polygenic adapta-

tion. Specifically, we focused on five anthropometric measurements: body mass index

(BMI), height, waist-to-hip ratio adjusted for BMI (WHR), and waist circumference

adjusted for BMI (WC), and sex differences for WHR and WC. We performed an enrich-

ment analysis for signals of natural selection in protein interaction networks associated

with anthropometric traits in European populations. The adaptation signals-enriched

gene networks associated highlighted epistatic interactions in the context of polygenic

selection for the investigated traits. These polygenic mechanisms indicated intriguing

selective mechanisms related to the anthropometric traits: adult locomotory behavior for

BMI, infection resistance for height, interplay between lipid transport and immune sys-

tems for WHR, and female-specific polygenic adaptation for WHR and WC. In conclusion,

we observed evidence of polygenic adaptation in the context of systems genetics of

anthropometric traits that indicates polygenic mechanisms related to the natural selection

in European populations.

Introduction
Numerous studies have investigated the human genome to understand how human species
adapted to the very different environments worldwide [1, 2]. The explosion of high-through-
put technologies and informatics permitted development of methods based on genome-wide
data to detect signatures of natural selection in the human genome [3]. Accordingly, reliable
evidence of genetic signals of selection across the genome has been identified regarding
human adaptations to infections [4], ultraviolet radiation [5], diet [6], and high altitude [7].
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However, some investigators have argued that the identified single-locus signals of selection
represent only a small part of the process of shaping adaptation-related human genomic vari-
ation [8, 9]; and that most adaptation events in natural populations occur via polygenic
mechanisms, in accordance with quantitative genetics models. Genome-wide association
studies (GWAS) have widely demonstrated that complex traits are substantially attributable
to many independent loci with small effect sizes [10] and genetic adaptation can affect
GWAS outcomes [11]. A broader view of these findings in the context of natural selection is
most consistent with the view that selection of phenotypic traits in response to environmen-
tal pressures probably generally occurs via polygenic adaptation, rather than sudden large-
effect mutations at individual key loci. Although these data strongly encourage exploration
of polygenic mechanisms, this is still a field in its infancy. In 2012, Turchin and colleagues
detected signature of widespread selection in height-associated loci [12]. Specifically, they
observed that frequencies of alleles associated with increased height are systematically ele-
vated in Northern Europeans compared with Southern Europeans. In 2013, Daub and col-
leagues used a different approach based on FST probabilities, pathway-enrichment analysis,
and long-distance genotypic linkage disequilibrium (LD) to investigate polygenic adaptation
in human genome [13]. They showed that pathogen-human interactions have produced
widespread and coordinated genomic responses, indicating that adaptation to pathogens is a
good example of polygenic selection. Berg and Coop investigated polygenic adaptation
among the loci associated with different complex traits (i.e., height, skin pigmentation, body
mass index (BMI), type 2 diabetes, Crohn’s disease, and ulcerative colitis) by GWAS; they
observed a number of putative signals of local adaptation [14]. These investigations provided
evidence regarding polygenic adaptation and methods useful to investigate polygenic
adaptation.

Compared to the previous studies which used information about GWAS significant out-
comes or pre-defined molecular pathways, we employed GWAS datasets (i.e., data about mil-
lions of variants across the human genome) together with information about systems biology
and genetic signatures of natural selection. To test our approach, we focused this investigation
on different sub-phenotypes (i.e., distribution, phenotypic variability, extreme phenotype dif-
ferences, and sex-differences) related different anthropometric traits (BMI, height, waist-to-hip
ratio adjusted for BMI (WHR), and waist circumference adjusted for BMI (WC)), since anthro-
pometric traits have been affected by numerous different environmental pressures in the pro-
cess of human evolution and adaptation, including known adaptation mechanisms that link
anthropometric traits with climate [15], diet [16], and fertility [17]. Furthermore, since the
polygenic inheritance of anthropometric traits seems not attributable to lower-frequency vari-
ants [18], these traits are good candidates to be investigated by our approach that focused
attention on polygenic inheritance from common variants. In our investigation, we performed
iHS (integrated Haplotype score) enrichment analysis of protein interaction networks associ-
ated with anthropometric traits, tested the epistatic interactions among loci included in the
iHS-enriched protein networks, and verified the enrichments of the interactive loci for gene
ontologies and known molecular pathways. Since haplotype structure-based statistics can iden-
tify selective sweeps under a number of different selection scenarios (i.e., complete, incomplete
hard, and soft sweeps) [19], our iHS-based strategy is capable of detecting polygenic adaptation
related to several different selection mechanisms. Our findings indicated evidence of polygenic
adaptation in the context of systems genetics of anthropometric traits that are related to differ-
ent biological mechanisms.
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Materials and Methods

GWAS summary statistics
We considered the large-scale meta-analysis of GWAS performed by GIANT (Genetic Investi-
gation of ANthropometric Traits) consortium for BMI [20–22], height [21–23], WHR [22, 24,
25], and WC [25]. GIANT data were downloaded from http://www.broadinstitute.org/
collaboration/giant/index.php/GIANT_consortium_data_files in August 2014. For each
anthropometric trait, we investigated GWAS data related to the analyses based on different
sub-phenotypes: distribution, phenotypic variability, and extreme phenotype differences (S1
Table). The GIANT investigators observed sex differences in the genetics of WC andWHR
[25], so we analyzed male- and female-specific GWAS data for these two traits separately.
Regarding WC and WHR analysis, we focused on BMI-adjusted traits since these adjusted
traits provide information about body shape and fat accumulation distribution. Since no sum-
mary statistics are publically available about large GWAS of anthropometric traits in non-
European populations, we restricted our analysis to the GIANT data and the genetic variation
within European ancestry. Our recent study demonstrated that GWAS findings depends to the
ancestry genomic background [11]. Accordingly, summary statistics of GWAS performed on
European populations cannot be used to investigate other human groups.

Integrated haplotype score screening in protein interaction networks
We used information about iHS–a statistic based on the differential levels of LD able to detect
evidence of recent positive selection [26]–to focus our analysis on loci which are known to
have suggestive signals of natural selection. We chose this specific selection metric because this
method is appropriate to detect non-fixed selected alleles, like those expected in a polygenic
adaptation scenario [9], in a specific population. A recent study confirmed that haplotype
structure-based statistics can identify selective sweeps under several different selection scenar-
ios (i.e., complete, incomplete hard, and soft sweeps) [19].

Since GIANT performed their GWAS on European ancestry populations, we used the iHS
data based on the HapMap Phase 2 CEU (Utah residents with Northern andWestern European
ancestry from the CEPH collection) population available in Haplotter database [26]. Previous
studies used |iHS|> 1.5 as suggestive evidence for natural selection [27–29], in agreement with a
recent simulation analysis that indicated |iHS|> 2.0 is too stringent a threshold [30]. Accord-
ingly, we selected from GIANT GWAS datasets those variants with |iHS|> 1.5 (S1 Table). Con-
sidering iHS selection criterion, we performed a gene-based association analysis using VEGAS
software [31]. The HapMap CEU reference panel was used to correct for LD patterns. We used
the summary statistics of gene-based association analysis to perform an association analysis
based on protein-protein interactions (PPI) using the R package dmGWAS [32]. We defined
PPIs of all genes with gene-based association using the Protein Interaction Network Analysis
(PINA) platform v2.0 [33] that includes information about physical and genetic PPIs. For each
investigated trait, we further considered analysis for the associated gene network defined by the
top-10 PPI modules (S2 Table). We developed this multi-step approach based on iHS screening
and gene- and PPI-based analyses to apply the iHS enrichment analysis on protein interaction
networks, instead of a continuous genome region. This approach can improve the effectiveness
of iHS screening to detect polygenic adaptation rather than single-locus signals.

Long-distance genotypic Linkage Disequilibrium
As previously performed by Daub and colleagues [13], we used long-distance genotypic LD to
detect epistatic interactions among variants included in the protein networks enriched for
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selection signals. For each trait, we calculated the long-distance genotypic LD among the vari-
ants located in the genes included in the top-10 PPI modules using Genepop 4.2 software [34].
To reduce the number of variants carried forward to investigate in the next steps, we pruned
the variants for LD (r2 > 0.8) using PLINK software [35]. Both data pruning and genotypic LD
analysis were performed using HapMap Phase 3 CEU population [36]. Long-distance LD pairs
were defined as pairs of variants either (a) mapped to different chromosomes, or (b) on the
same chromosome separated by� 10 Mb. Furthermore, we excluded LD pairs where none of
the variants is associated with the anthropometric trait at a nominal significance level. We used
the R package “qvalue” to estimate q-values for controlling the false discovery rate (FDR), and
considered q-values< 0.05 as significant.

Term Enrichment analysis
Considering the genes with significant evidence of epistatic interactions (long-distance geno-
typic LD with FDR q<0.05), we generated a gene set for each investigated anthropometric trait
potentially and analyzed the enrichment for different categorical data (e.g., gene ontology and
molecular pathway membership) using DAVID 6.7 software [37].

Results

Body Mass Index
BMI PPI-based analysis generated three gene networks associated with the investigated BMI-
related sub-phenotypes (i.e., distribution, phenotypic variability, and extreme phenotype dif-
ferences). The three BMI-related gene networks (S3 Table) respectively include 201 genes
(BMI distribution; 1,013 pruned variants with |iHS|> 1.5), 93 genes (BMI phenotypic variabil-
ity; 395 pruned variants with |iHS|> 1.5), and 79 genes (BMI extreme phenotype differences;
332 pruned variants with |iHS|> 1.5). Calculating the long-distance genotypic LD, we
observed significant LD pairs (Fig 1; S4 Table): 20 in the BMI distribution gene network, three
in the BMI phenotypic-variability gene network, and two in the BMI extreme-phenotypic-dif-
ference gene network. Considering the information about long-distance genotypic LD and
PPIs, we generated a BMI gene set based on the putative signals of polygenic adaptation in the
systems genetics of BMI (Fig 2). The enrichment analysis in this gene set indicated that it is sig-
nificantly associated with adult locomotory behavior, learning, and various molecular regula-
tory mechanisms (Table 1).

Height
Height PPI-based association analysis produced three gene networks for the investigated
height-related sub-phenotypes (i.e., distribution, phenotypic variability, and extreme pheno-
type differences). Specifically, the height-related gene networks (S5 Table) respectively include
532 genes for height distribution (2,246 pruned variants with |iHS|> 1.5), 114 genes for phe-
notypic variability (447 pruned variants with |iHS|> 1.5), and 409 genes for extreme pheno-
type differences (1,692 pruned variants with |iHS|> 1.5). The analysis of long-distance
genotypic LD identified numerous significant LD pairs (Fig 3; S6 Table): 68 in the height distri-
bution gene network, two in the height phenotypic-variability gene network, and 25 in the
height extreme-phenotypic-difference gene network. The gene sets made using the information
about the long-distance genotypic LD and PPIs suggested numerous interacting processes in
polygenic adaptation related to height (Fig 4). The enrichment analysis indicated that this
height-related gene set is significantly associated with GWAS outcomes of AIDS-
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nonprogression phenotype, GWAS results for height, immune systems-related functions, and
other molecular processes (Table 1).

Waist circumference
For WC, GWAS datasets were available only for sex differences (i.e., men and women). WC
PPI-based association analysis generated a gene network for each investigated WC-related sub-
phenotype (S7 Table). A total of 148 genes were included in the male WC gene network (715
pruned variants with |iHS|> 1.5), and 77 genes in the female WC gene network (328 pruned
variants with |iHS|> 1.5). In these gene networks, we observed one and two significant long-
distance genotypic LD pairs, respectively (Fig 5; S8 Table). Fig 6 reports the WC gene set based
on genotypic LD analysis and PPI information. No significant enrichments were observed in
the WC gene set.

Fig 1. Significant long-distance genotypic LD in BMI-associated gene network. The BMI phenotypic analyses are
highlighted with different colors: green (distribution), red (phenotypic variability), blue (extreme phenotypes), and black
(overlapping between distribution and extreme-phenotype analyses).

doi:10.1371/journal.pone.0160654.g001
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Waist-to-hip ratio
In WHR analysis, we considered four sub-phenotypes: distribution and extreme phenotype dif-
ferences, and males and females. PPI-based association analysis defined a gene network for
each investigated WHR sub-phenotype (S9 Table). One hundred thirty-nine genes are included
in the WHR-distribution gene network (702 pruned variants with |iHS|> 1.5), 138 in the
WHR-extreme-phenotype-difference gene network (578 pruned variants with |iHS|> 1.5), 65
genes in the WHR-men gene network (257 pruned variants with |iHS|> 1.5), and 92 genes in
the WHR-women gene network (406 pruned variants with |iHS|> 1.5). Among these WHR-
related gene networks, we observed significant long-distance genotypic LD (Fig 7; S10 Table):
two significant pairs in WHR distribution, five significant pairs in WHR-extreme-phenotype-
difference, one significant pair in WHR-males, and four significant pairs in WHR-females. Fig
8 reports the WHR gene sets based on long-distance genotypic LD and PPIs. The enrichment
analysis indicates a significant association for cellular structure-related terms in male WHR
gene sets, and terms related to immune systems and lipid transportation in female WHR gene
sets (Table 1).

Fig 2. Gene set with evidences of polygenic adaptation in the systems genetics of BMI-related sub-
phenotypes. The intensity of the box shadings is proportional to the strength of the gene-based significant
association. The types of line indicate the source of interaction evidence: solid line (BMI distribution analysis),
dashed line (BMI extreme phenotype analysis), dotdash line (phenotypic variability analysis), and dotted line (PINA
database).

doi:10.1371/journal.pone.0160654.g002
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Discussion
Our results highlight evidences of polygenic adaptation in the systems genetics of anthropo-
metric traits, suggesting that polygenic adaptation is not uncommon in the systems genetics of
complex traits, and confirming that anthropometric traits are influenced by several selective
pressures related to biological mechanisms, such as behaviors and immune systems. Our
approach demonstrated the usefulness of combining information from GWAS and systems
biology in investigating polygenic mechanisms in human adaptation. Previous studies of poly-
genic adaptation obtained interesting results [12–14], focusing on main genetic risk factors or
specific pathways, and investigating other natural selection signatures in human genome (e.g.,
FST). In our study, we applied a different approach based on GWAS summary statistics, gene
interactive network and iHS. Since polygenic mechanisms mostly involve multiple loci with
small effects that are implicated in different molecular pathways [10], our approach appears, at
least in these instances, to be effective in detecting polygenic selection in the systems genetics
of complex traits. Thus we have demonstrated utility in combining GWAS of complex traits
with information about systems biology and natural selection signatures. Furthermore, we also
confirmed the recent analysis of Ferrer-Admetlla and colleagues [19] regarding haplotype
structure-based statistics since our iHS-based analysis was able to detect the widespread signals
of polygenic adaptation.

Table 1. Term enrichment analysis of gene sets with evidences of polygenic adaptation. Fisher exact test p values adjusted for Bonferroni correction
are reported.

Anthropometric
trait

Sub-phenotype Term Genes adjusted P
value

BMI distribution GO:0008344~adult locomotory behavior ATXN1, APP, PARK2 1.64E-02

GO:0007612~learning ATXN1, APP, PARK2 2.28E-02

GO:0050678~regulation of epithelial cell proliferation SMAD3,MAP2K5, APC 3.80E-02

GO:0045944~positive regulation of transcription from RNA
polymerase II promoter

ATXN1, APP, CCNH, SMAD3,
RARB

4.30E-02

extreme
phenotype
differences

GO:0048469~cell maturation APP, IL21 6.66E-04

GO:0021700~developmental maturation APP, IL21 1.48E-03

Height Distribution OMIN—Genomewide Association Study of an
AIDS-Nonprogression Cohort Emphasizes the Role Played by

HLA Genes

MICB, RNF39, HCP5, HLA-B 7.32E-04

OMIN—Genome-wide association analysis identifies 20 loci that
influence adult height

DYM, ACAN, CDK6, SCMH1 3.22E-02

GO:0046703~natural killer cell lectin-like receptor binding MICB,MICA 3.90E-02

Extreme
phenotype
differences

GO:0030235~nitric-oxide synthase regulator activity HSP90AA1, ESR1 2.39E-02

GO:0042802~identical protein binding ATXN1, APP, HSP90AA1,
ATG7, SMAD3, GNAS, TTN,

CDSN

4.86E-02

WHR Men GO:0044431~Golgi apparatus part CORO7, SNAP25 7.48E-03

GO:0005624~membrane fraction CORO7, SNAP25 1.87E-02

GO:0005626~insoluble fraction CORO7, SNAP25 2.02E-02

GO:0000267~cell fraction CORO7, SNAP25 2.64E-02

Women GO:0006955~immune response IKBKAP, APOL1, PPARG,
HLA-B

1.28E-03

GO:0006952~defense response APOL1, PPARG, HLA-B 3.48E-02

GO:0045087~innate immune response APOL1, PPARG 4.00E-02

GO:0006869~lipid transport APOL1, PPARG 4.40E-02

doi:10.1371/journal.pone.0160654.t001
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In the BMI analysis, an examination of the systems genetics of this trait resulted in a conclu-
sion that there is evidence of polygenic adaptation in the systems genetics of this trait. Most sig-
nificant epistatic interactions (i.e., significant long-distance genotypic LD) among variants
with suggestive signatures of natural selection (i.e., |iHS|> 1.5) are related to the analysis of
BMI distributions. This is almost certainly due to the fact that GWAS of BMI distribution iden-
tified more loci associated with this sub-phenotype than the other BMI-related sub-pheno-
types, and therefore this comparison had better power. The enrichment analysis of the BMI
gene sets related to polygenic adaptation indicated significant association with some gene
ontologies. Among them, the most obviously relevant is related to adult locomotory behavior
and learning. Adult locomotory behavior is defined as the specific movement from place to
place of a fully developed and mature organism in response to external or internal stimuli. Ani-
mal experiments explored different molecular aspects involved in stimulus-response activities,
highlighting the interplay between food intake and locomotory behavior to maintain energy
homoeostasis [38–40]. No previous study highlighted putative signals of natural selection in

Fig 3. Significant long-distance genotypic LD in Height-associated gene network. The height phenotypic analyses
are highlighted with different colors: green (distribution), red (phenotypic variability), and blue (extreme phenotypes).

doi:10.1371/journal.pone.0160654.g003
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relation to genes involved in these mechanisms. Our data support an intriguing scenario where
genes involved in adult locomotory behavior are under selective pressure, and this could affect
the systems genetics of BMI. Furthermore, recent data indicated that some BMI-associated loci
mechanisms may be present in specific population categories [41], suggesting additional patho-
genic mechanisms that differ from those present in the general population.

Fig 4. Gene set with evidences of polygenic adaptation in the systems genetics of Height-related sub-
phenotypes. The intensity of the box shadings is proportional to the strength of the gene-based significant
association. The types of line indicate the source of interaction evidence: solid line (height distribution analysis),
dashed line (height phenotypic variability analysis), dotdash line (height extreme phenotype analysis), and dotted
line (PINA).

doi:10.1371/journal.pone.0160654.g004
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In the height analysis, we identified a large gene set with evidence of polygenic adaptation.
This is consistent with both the previous studies regarding natural selection related to height
[12, 14] and the large number of genome-wide significant loci identified by GWAS of height
[23, 42]. Our results provide additional information about the interplay between height and
immune system. The gene set with evidence of polygenic adaptation related to height distribu-
tion is enriched in genes identified by GWAS of AIDS resistance [43], and genes encoding nat-
ural killer cell lectin-like receptor binding. Several studies demonstrated the relevant
relationship between infection occurrences and stature, suggesting a relevant interplay between
nutrition and infection [43, 44]. Furthermore, a recent study indicated high frequency of short
stature in HIV-infected children, and poor adherence to antiretroviral treatment, severe immu-
nosuppression, and therapy inefficacy are associated with severe short stature.[45] Accord-
ingly, it is a reasonable hypothesis that greater infection susceptibility is one reason that
individuals might fail to attain what would otherwise be their genetically-determined greatest
height; and that adaptation processes related to infection resistance could also play a role in the

Fig 5. Significant long-distance genotypic LD inWC-associated gene network. TheWC phenotypic analyses are
highlighted with different colors: yellow (men) and purple (women).

doi:10.1371/journal.pone.0160654.g005
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genetics of height. Moreover, one of the previous studies about polygenic adaptation found
widespread and coordinated genomic responses related to the adaptation to pathogens [13],
consistent with our findings about polygenic selection in immune system-related genes.

WC analysis identified little evidence of polygenic adaptation, and what was observed was
mainly in females. No significant term enrichments were observed. However, among the genes
included in the female WC gene set, three may be interesting: CRHR1, NOS3, and FARS2.
CRHR1 is a genome-wide significant locus for bone-mineral-density [46] and a suggestive
locus for infant head circumference [47], and it is also involved in stress, reproduction,
immune response, and obesity [48, 49]. NOS3 is involved in several sex-specific molecular pro-
cesses, including cardiac and endothelial function [50, 51]. FARS2 is a suggestive locus
(p<10−7) for severe early-onset obesity [52].

The investigation of WHR data indicated putative signals of polygenetic adaptation in the
systems genetics of this trait. In particular, the female-specific findings suggest interplay
between lipid metabolism and immune systems in the enrichment analysis. The most immedi-
ately relevant locus involved in this gene set with evidence polygenic adaptation is PPARG.
This gene was genome-wide significant in a GWAS of WHR in women [25]. Furthermore,
population genetics studies indicated that it is a candidate in relation to metabolic adaptation
[53]. Finally, investigations using different approaches uncovered several functions of this gene
and its involvement in the pathogenesis of obesity, diabetes, atherosclerosis, and cancer [54].
The enrichment analysis based on the PPARG gene and the other genes involved in polygenic
adaptation related to female WHR (i.e., IKBKAP, APOL1,HLA-B, andMED9) indicated an
overlapping between immune systems and lipid transportation. Both these molecular processes
are widely recognized as mechanisms under selective pressures during human evolution [13,
55], and molecular investigations have also highlighted the strong interplay between them [56,

Fig 6. Gene set with evidences of polygenic adaptation in the systems genetics of WC-related sub-
phenotypes. The intensity of the box shadings is proportional to the strength of the gene-based significant
association. The types of line indicate the source of interaction evidence: dashed line (womenWC analysis)
and dotted line (menWC analysis).

doi:10.1371/journal.pone.0160654.g006
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57]. Furthermore, the sexes showed significant differences in both these mechanisms, mainly
attributable to the female reproductive function [58, 59]. All these results are consistent with
the possibility of polygenic adaption observed in the female WHR gene set.

In conclusion, our study suggests an effective approach to the investigation of polygenic
adaption in the systems genetic of complex traits based on combining GWAS data with infor-
mation regarding the systems genetics of complex traits. Regarding the results obtained about
anthropometric traits, our findings lead to novel insights that indicate polygenic adaptation in
response to selective pressures related to locomotory behavior, infection resistance, and lipid
transport. Further, in sex-stratified analysis of WC and WHR, we observed most of the signifi-
cant findings in females. These data indicate that the effect of past adaptation processes (e.g.,
locomotory behaviors and infection resistance) on human genome variation are affecting the
predisposition to anthropometric traits. However, these findings are specific to the genetic

Fig 7. Gene set with evidences of polygenic adaptation in the systems genetics of WHR-related sub-
phenotypes. The intensity of the box shadings is proportional to the strength of the gene-based significant association.
The types of line indicate the source of interaction evidence: solid line (WHR distribution analysis), dashed line (WHR
extreme phenotype analysis), dotdash line (WHRmen analysis), double line (WHR women analysis), and dotted line
(PINA).

doi:10.1371/journal.pone.0160654.g007
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structure of CEU populations that is the most used reference panel for European populations.
Additional polygenic adaptation processes are expected for other European and non-European
populations.

Besides its potential contribution to population genetics, our study also suggested the under-
standing of epistatic interactions related to polygenic adaptation may also improve our knowl-
edge about systems genetics, highlighting novel putative interactive processes to investigate.
Finally, here we focused on anthropometric traits, obtaining interesting results about the
potential role of human adaptation in shaping the genetic predisposition to these traits. How-
ever, numerous GWAS complex traits datasets are available to be investigated. The exploration
of these data may provide further information useful to understand both the genetic mecha-
nisms of human adaptation, and their effects on the genetic predisposition to complex traits.

Supporting Information
S1 Table. GWAS data of anthropometric traits made available by GIANT consortium that
were used in the present study.
(DOCX)

S2 Table. gene networks associated with GIANT phenotypic traits that were constructed on
the basis of top-10 PPI modules constructed with variants with |iHS|> 1.5.
(DOCX)

S3 Table. Genes and their correspondence p values present in gene network associated with
BMI-related phenotypes. NI: not included in top-10 PPI modules.
(DOCX)

Fig 8. Significant long-distance genotypic LD inWHR-associated gene network. TheWHR phenotypic
analyses are highlighted with different colors: green (distribution), blue (extreme phenotypes), yellow (men)
and purple (women).

doi:10.1371/journal.pone.0160654.g008
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