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Abstract
Background: RNAMute is an interactive Java application that calculates the secondary structure
of all single point mutations, given an RNA sequence, and organizes them into categories according
to their similarity with respect to the wild type predicted structure. The secondary structure
predictions are performed using the Vienna RNA package. Several alternatives are used for the
categorization of single point mutations: Vienna's RNAdistance based on dot-bracket
representation, as well as tree edit distance and second eigenvalue of the Laplacian matrix based
on Shapiro's coarse grain tree graph representation.

Results: Selecting a category in each one of the processed tables lists all single point mutations
belonging to that category. Selecting a mutation displays a graphical drawing of the single point
mutation and the wild type, and includes basic information such as associated energies,
representations and distances. RNAMute can be used successfully with very little previous
experience and without choosing any parameter value alongside the initial RNA sequence. The
package runs under LINUX operating system.

Conclusion: RNAMute is a user friendly tool that can be used to predict single point mutations
leading to conformational rearrangements in the secondary structure of RNAs. In several cases of
substantial interest, notably in virology, a point mutation may lead to a loss of important
functionality such as the RNA virus replication and translation initiation because of a
conformational rearrangement in the secondary structure.

Background
RNAMute is a user friendly computer tool that analyzes
point mutations in the secondary structure of RNAs. Ini-
tial ideas can be found in [1] and associated works in the
late 80's [2,3]. Since then, much progress has been made
in the field RNA secondary structure prediction [4], with
the gradual development of sophisticated energy minimi-
zation folding prediction packages (most widely used,
Zuker's mfold [5] and the Vienna RNA package [6,7]). The
possibility of reliably predicting conformational rearrang-

ing point mutations in the secondary structure of RNAs
has been revisited in [8], suggesting a coarse-grain tree
graph representation of the RNA secondary structure [2]
and the use of mathematical theorems that relate to eigen-
decomposition of the Laplacian matrix [9,10] correspond-
ing to the coarse-grain tree graphs. Both fine-grain and
coarse-grain graph representations, including distance
measures between the graphs, have been implemented in
the Vienna RNA package [6]. We use the Vienna RNA
package as the core of RNAMute, attaching to it the muta-
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tion prediction procedure described in [8]. To initially test
the approach, experimental results from [11,12] were
taken. Motivation for the use of RNAMute can be found in
the literature [13-16]. These constitute example cases in
which point mutations that affect the functionality of an
RNA molecule cause a conformational rearrangement in
its secondary structure, as explained in detail in the final
Section.

Implementation
Availability
The package can be downloaded from [17]. After down-
loading, extract the file with the commands:

1. >gunzip RNAMute.tar.gz

2. >tar xvf RNAMute.tar

More details on how to run the program are contained in
the ReadMe.html file.

The package content
1. mute_single – performs all possible "single point muta-
tions" in an RNA sequence. The mute_single routine pre-
dicts the secondary structure of the wild type and mutants
using Vienna's RNAfold, then calculates several different
representations and similarity measures between the wild
type and mutants, and finally produces a "result" file from
the results obtained.

2. RNAmute.java – the main routine. Creates a "friendly"
interface for the user. Receives as input a file with an RNA
sequence, runs "mute_single", and generates an HTML file
called "RESULT_TABLE.html" that contains all the proc-
essed data from the "result" file organized in various
tables.

3. calcEig2 – calculates the second smallest eigenvalue of
the Laplacian matrix for each single point mutation.

4. b2Shapiro – converts the full structure from bracket
notation to the weighted coarse grained notation intro-
duced by Bruce Shapiro. This routine uses a function that
is located in the Vienna package's "lib" directory.

5. runRnaMute – similar to RNAmute, but enables the
user to insert the RNA sequence in a text area of the GUI
instead of using a file.

Programs taken from the Vienna RNA package:

1. RNAfold – predicts minimum energy secondary struc-
tures and base pairing probabilities.

2. RNAdistance – calculates the distance between two
RNA secondary structures represented as dot-bracket
strings.

The package also contains the source code for all its com-
ponents.

While the program runs, a new directory called "htmlDir"
will be created. This directory contains all the HTML pages
and all the drawings of the RNA secondary structures that
are being calculated.

Preparation and compilation
RNAMute is currently available on a Linux platform,
therefore all preparations and compilations that will be
mentioned should be performed on a Linux platform with
Java and "GNU CC" compiler installed. RNAMute has all
its components already compiled and may be used with-
out any compilations, although it has some components
written in C that in some architectures may not work. In
such a case, the Vienna RNA package should be down-
loaded from the website [18] and directory "ViennaRNA-
1.4\lib" should be compiled by running the command
"make" in this directory. All files from the directory
"RNAMute\RNAMute_progs" should be copied to "Vien-
naRNA-1.4\Progs" and compiled with "makefile". "Make-
file" that appears in the "ViennaRNA-1.4\Progs" directory
should be overwritten. After the compilation finishes,
files: "b2Shapiro", "calcEig2", "RNAdistance", "RNAfold"
and "mute_single" should be copied from the "Vien-
naRNA-1.4\Progs" directory to the "RNAMute\bin" direc-
tory. All files that are already in the aforementioned
directory should be overwritten. The user should then
make sure that all files in the "RNAMute\bin" directory
are in an executable mode. If not, it is possible to change
their mode by typing the command: >chmod 700
file_name, where file_name is each file from the list
above.

Results and discussion
The input to RNAMute is simply an RNA sequence (see
Figure 1). Subsequently, after pressing the "Start" button,
RNAMute scans all possible single point mutations in that
sequence and computes their folding prediction using
Vienna's RNAfold program. The analysis of point muta-
tions is illustrated in Figures 2, 3 and 4 and will be
described in detail in the manual document file included
in the package. Such an analysis is capable of predicting
conformational rearranging single point mutations, for
example the point mutation that is responsible for switch-
ing between FORM 1 WT RNA and FORM 2 M3 RNA as
described and examined experimentally in [11]. Results
can be observed by pressing the "Result" button. An
HTML page with three tables will appear (Figure 2). For
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illustration, we use the IV domain piece that was cut from
rRNA of the Tetrahymena thermophila [12].

The first table in Figure 2 divides all new structures that
were predicted from all point mutations to groups accord-
ing to their second eigenvalue of the Laplacian matrix [8].
This table also shows how many vertices the structure in
each group contains, and the number of structures in each
group. In the third column, a group that holds the wild
type is marked with "WT", and groups that have the same
number of vertices as the WT are marked with "*". The
user can click on each value in the first column to view the
list of mutations with this value and the specified number
of vertices. For example, clicking on eigenvalue 0.381966
(with 5 vertices) will open the table shown in Figure 3.
This table contains: (1) mutation's names. (2) distances of
the mutations from the WT according to Shapiro's repre-
sentation for both the mutation and the WT. Mutations in
this table are sorted by this column. (3) Minimum Energy
(in Kcals/mol) of the secondary structure of mutated
sequence. (4) the Shapiro representation of the mutated
sequence. Additional information about each mutation

can be obtained by clicking on the mutation name. Figure
4 shows the HTML page with additional information for
mutation C21G that contains: drawings of RNA secondary
structures for the WT sequence and mutated sequence;
option to download both drawings in ps format; WT
sequence and the mutated sequence; the eigenvalue of the
WT secondary structure and of the mutant secondary
structure; the WT's free energy and the mutant free energy
(in Kcals/mol); Shapiro and dot-bracket representations
of both the WT and mutant; distances (according to Sha-
piro and dot-bracket representations) of mutant from the
WT, and the average Shapiro and dot-bracket distances of
all mutants.

The second table in Figure 2 divides structures to groups
according to their "Dot-bracket distance" from the wild
type structure. This distance is calculated between the dot-
bracket representations of WT and mutations. The first
column contains the distance's ranges that were calculated
according to "clustering resolution" for "dot-bracket rep-
resentation", which is set to 4 by default, and can be
changed by the user. Clustering resolution of X means that

RNAMute Input ScreenFigure 1
RNAMute Input Screen. Initial Java GUI for providing the RNA sequence that the user would like to analyze.
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distances are sorted in each group and if there are two dis-
tances such that the difference between them is less than
X, these distances are in the same group.

The user can click on a specific distance range in the first
column to observe the list of mutations with a distance in
this range. For example, distance range of 38.0-38.0 has a
similar table as in Figure 3 and has only 2 mutations. This

Mutations Descriptor DataFigure 3
Mutations Descriptor Data. Mutations descriptor HTML page. For each category, the single point mutations belonging to 
each category are listed along with their minimal free energy and string representation.

Categorization TablesFigure 2
Categorization Tables. Main HTML page for the categorization of single point mutations according to the mutants second-
ary structure similarities relative to the wildtype structure.
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distance range is interesting to explore because it contains
structures of mutations with a relatively large dot-bracket
distance from WT. Additional information about each
mutation in each table can be obtained by pressing on the
mutation name, such as in Figure 3 and the information

page that will be obtained as depicted in Figure 4. In our
case these are the same two mutations as were obtained
from the first table (eigenvalue 0.381966) and these are
the only mutations in the run that break one of two hair-
pins and linearize the structure.

Mutant vs. Wildtype Structure and Energy InformationFigure 4
Mutant vs. Wildtype Structure and Energy Information. For each single point mutation, relevant secondary structure 
and energy information is listed along with a graphical drawing for both the mutant and the wildtype. This allows a direct com-
parison between the corresponding mutant and the wildtype structure.
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Single Point Mutation Prediction in the 5'UTR ofHCV by RNAMuteFigure 5
Single Point Mutation Prediction in the 5'UTR ofHCV by RNAMute. A successful prediction by RNAMute, illustrating 
its potential capability to detect biologically meaningful findings. The G235A point mutation (corresponding to G95A using our 
indexing scheme) in the 5'UTR of HCV [16] is predicted by RNAMute to cause a conformational rearrangement. In turn, it is 
reported to display a dramatic reduction in translation initiation. However, in that reference [16] based on simple base pairing 
considerations, it was stated that this mutation alters only the primary sequence. With the availability of RNAMute, alterations 
in the secondary structure can easily be detected.
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The third table in Figure 1 is similar to the second table
but it groups structures according to their Shapiro distance
which is obtained from the Shapiro representation of the
WT and mutation's structure. It is possible to see that the
third table also groups two mutations with a relatively
large distance to a separate category, and these two muta-
tions are exactly the same mutations that were found in
"Eigenvalue table" and "Dot-bracket table".

From the illustrated example we can conclude that the
RNAmute package was able to find mutations that change
the secondary structure of the wildtype and it divided
these mutations into separate categories in all tables. In
the first table these mutations fall to the category with spe-
cific second smallest eigenvalue of the Laplacian matrix
corresponding to the coarse-grain tree graph representa-
tion; in the second and the third tables these mutations
fall into categories with largest distances.

Conclusion
In examining its biological relevance, RNAMute can be
used in predictions and analyses related to mutagenesis
experiments. For example, in [13] it was shown that indi-
vidual point mutations are capable of inactivating spectin-
omycin resistance in Escherichia coli and secondary
structure predictions displayed conformational rearrange-
ments. Moreover, in examples where the sequences exam-
ined contain less than 100 nt, virologists have shown
interest in computerized predictions of mutations that
disrupt the stable stem-loop structure that characterizes
Hepatitis C Virus (HCV) [14-16]. Such structural changes
may lead to alterations in virus replication [14,15] or
translation initiation [16]. In the latter reference [16], the
single point mutations A172G, G229A, and G235A were
found to display a dramatic reduction in translation initi-
ation in site-specific mutagenesis experiments affecting
the stem-loop IIIc. While it was obvious that A172G and
G229A disrupt the base pairing required to form the struc-
tures in and around stem-loop IIIc, G235A was assumed
to only alter the primary sequence since no obvious
Watson-Crick base pairing modifications appear at first
glance. However, using RNAMute, G235A can be found to
disrupt the important stem-loop structure as well (Figure
5), where G95A according to our indexing scheme corre-
sponds to G235A in the indexing scheme used in [16]. In
Figure 5, we only used a segment of the HCV RNA as our
initial sequence to RNAMute after verifying that the
wildtype of the segment is accurately predicted by mfold
and Vienna's RNAfold. Thus, with the public availability
of RNAMute, computational mutation predictions that
are needed to detect novel functional biological findings
can be improved.

Availability and requirements
Project name: RNAMute

Project home page: http://www.cs.bgu.ac.il/~RNAMute

Operating system(s): web access: not applicable, stand-
alone: LINUX

Programming language: C, Java

Other requirements: stand alone:Java 1.4.0 or higher,
GNU CC compiler

License: None

Any restrictions to use by non-academics: None
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