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A B S T R A C T   

Introduction: Osteosarcoma is a bone-derived malignancy that often leads to lung metastasis and 
death. 
Material and methods: The RNA-seq data of TARGET-osteosarcoma were collected from TARGET 
database. GSE16088 and GSE12865 datasets of osteosarcoma x from Gene Expression Database 
(GEO) were donwloaded. ConsensusClusterPlus was used for molecular subtype classification. 
Univariate Cox and Lasso regression was employed to develop a risk model. To analyze the 
regulatory effects of model feature genes on the malignant phenotype of osteosarcoma cell lines, 
qRT-PCR, Transwell and wound healing assays were performed. The abundance of immune cell 
infiltration was assessed using MCP-Counter, Gene Set Enrichment Analysis (GSEA), and ESTI
MATE. The Tumor Immune Dysfunction and Exclusion (TIDE) software was employed to evaluate 
immunotherapy and response to conventional chemotherapy drugs. 
Results: Three clusters (C1, C2 and C3) were classified using 39 necroptosis score-associated 
genes. In general, C1 and C2 showed better prognosis outcome and lower death rate than C3. 
Specifically, C2 could benefit more from immunotherapy, while C3 was more sensitive to tradi
tional medicines, and C1 had higher immune cell infiltration. Next, an 8-gene signature and a risk 
score model were developed, with a low risk score indicating better survival and immune cell 
infiltration. ROC analysis showed that 1-, 3-, and 5-year overall survival of osteosarcoma could be 
correctly predicted by the risk score model. Cellular experiments revealed that the model feature 
gene IFITM3 promoted the osteosarcoma cell migration and invasion. Furthermore, the overall 
survival of osteosarcoma patients from TARGET and validation datasets can be accurately eval
uated using the nomogram model. 
Conclusions: Our prognostic model developed using necroptosis genes could facilitate the prog
nostic prediction for patients suffering from osteosarcoma, offering potential osteosarcoma 
targets.   

1. Introduction 

Osteosarcoma is an aggressive bone tumor that frequently occurs to children and adolescents [1]. Lung metastasis is detected in 
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around 15 %–20 % of patients with osteosarcoma at their first diagnosis [2,3]. According to histological findings, osteosarcoma can be 
divided into high grade, medium grade and low grade [4]. Neoadjuvant chemotherapy has provided more treatment choices than 
before, but the overall survival of patients with osteosarcoma has not been significantly improved [5]. Hence, finding new prognostic 
factors and therapeutic targets is necessary for managing osteosarcoma. 

Necroptosis [6] is a non-caspase-dependent cell death characterized by both necrosis and apoptosis and is regulated by 
receptor-interacting protein (RIP). RIP1 fulfills a crucial function in the signal transduction of necrotizing apoptosis. Under abnormal 
conditions of the body, significantly increased production of caspase-8 will initiate the apoptotic signaling pathway [7], which can 
completely inhibit RIP1-mediated proteolytic activation of procaspase-8, block apoptosis signaling pathway, and then transform 
apoptosis into necrotizing apoptosis. Different stimuli are associated with necrotizing apoptosis, and TNF-α combined with 
Z-VAD-FMK (T/Z) is the classic model of inducing necroptosis [8,9]. In 2016, study reported that pancreatic ductal adenocarcinoma 
has high-expressed RIPK1 and RIPK3, which are the key components of necroptosis, but the suppression of RIPK3-mediated necrotizing 
apoptosis could delay the cancer progression [10]. Necroptosis is also present in the necrotic areas in mice with breast cancer, and the 
inflammatory response caused by necroptosis can cause lung metastasis [11]. Apart from these findings, numerous studies have been 
conducted on necroptosis in osteosarcoma [12–14]. 

In recent years, tumor diagnostic and prognostic biomarkers are increasingly discovered using public databases. Microarray 
technology is becoming increasingly useful in gene analysis. Gene expression profile database is a useful tool with significant clinical 
value in medical oncology [15–17]. Developing risk models for the adjuvant detection and management of multiple cancer types can 
improve the precision and effectiveness of treatment protocols [18,19]. Thus, in this study, TARGET-osteosarcoma, related osteo
sarcoma datasets of GSE12865 and GSE16088 were retrieved from the TARGET database and GEO database, respectively, and the 
potential key genes were identified to develop a prognostic risk model for the cancer. The patterns of immune infiltration were 
analyzed to provide a novel possibility for the pathogenesis and treatment strategy of osteosarcoma. 

2. Materials and methods 

2.1. Raw data 

We downloaded the RNA sequencing (RNA-seq) data of “TARGET-Osteosarcoma” from the TARGET (https://ocg.cancer.gov/ 
programs/target) database. A sum of 79 osteosarcoma samples with 19,533 genes were retained by removing samples without sur
vival time, survival status or clinical follow-up information while retaining mRNAs encoding proteins (Supplementary Table 1). 
Additionally, the dataset GSE21257 (45 osteosarcoma samples) and GSE39058 (36 osteosarcoma samples) were downloaded from 
GEO database by GPL10295 and GPL14951 [20].The data from the TARGET-osteosarcoma dataset were used as a training cohort, 
while those from the GSE21257 and GSE39058 datasets were used as a validation cohort. In total, 74 necroptosis-correlated genes were 
collected following a previous study [21]. 

2.2. Molecular subtypes 

Firstly, necroptosis score was calculated for TARGET-osteosarcoma using ssGSEA. Genes (cor >0.5 and P < 0.05) related to the 
necroptosis score were selected by Hmisc package. Univariable Cox analysis was performed to screen the prognostic genes from 
TARGET-osteosarcoma dataset using the Coxph function of R package survival, and the liminal value was defined when p < 0.05. Using 
these genes, the samples in the TARGET-osteosarcoma were subjected to molecular subtyping using the R package Consensus Cluster 
Plus 1.52.0 [22]. Applying Pam arithmetic and “spearman” distance, 500 bootstraps were conducted with each bootstrap containing at 
least 80 % of the samples from the TARGET-osteosarcoma dataset. The Cluster number k was between the range of 2 and 10, and 
according to cumulative distribution function (CDF) and AUC, the optimum k was determined. 

2.3. Analysis of immune infiltration 

R software ESTIMATE [23] was employed to calculate overall immunocyte infiltration (Immune Score), stroma level (Stromal 
Score), and the combination (ESTIMATE Score) for the samples in the TARGET-osteosarcoma cohort using Wilcox.test analysis. 

2.4. SsGSEA 

The GSEA was used to estimate a total of 28 subpopulations of TILs including the major innate immunity-correlated cell types 
including natural killer T (NKT) cells, macrophages, monocytes, etc. 

2.5. TIDE 

TIDE [24,25] algorithm (http://tide.dfci.harvard.edu) was run to evaluate the myeloid suppressor cells (MDSC), dysfunction of 
tumor infiltration cytotoxic T lymphocytes (CTL) (Dysfunction), IFNG, Exclusion of CTL by immunosuppressive factors (Exclusion), 
and M2 subtypes of M2 (TAM), which are the three types of cells that restrict T cell invasion into tumors. 
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2.6. Drug sensitivity analysis 

Sensitivities of Erlotinib, MG-132, Z-LLNle-CHO, Dasatinib, CGP-60474 and WH-4-023 to IC50 were predicted using pRRophetic 
[26]. 

2.7. Gene set enrichment analysis (GSEA) 

GSEA was conducted on the basis of the H.all.v7.5.1.Entrez.GMT gene set in the MSigDB database [27], with FDR<0.05 indicating 
significant enrichment. 

2.8. Development of a prognosis model for osteosarcoma 

To filter DEGs and prognostic genes from the molecular subtypes classified, the limma package and univariable Cox analysis were 
employed. Lasso regression was conducted using the glmnet package [28] to reduce the range of genes. The following formula was 
calculated to assess the prognosis of osteosarcoma: 

RiskScore=
∑n

k=0

βi × Expi  

where βi and Expi refer to the Cox regression coefficient and expression of the i gene, respectively. The median RiskScore value was 
used to divide low- and high-risk groups of the samples in the training and independent validation datasets. The prognostic prediction 
was further assessed using KM survival curve and ROC. 

2.9. MCP-counter and CIBERSORT algorithm 

The 8 immune populations and 2 stromal populations were quantified using MCP-counter for all the samples [29]. The CIRERSORT 
algorithm was run to assess the landscape of immune infiltration of 22 immune cells in different risk groups [30]. 

2.10. Nomogram development 

The model was further evaluated by developing a nomogram with other clinicopathological features of patients with osteosarcoma 
(e.g. age, gender, metastasis) using RMS software R package. The decision curve was plotted to test the nomogram prediction. 

2.11. Cell culture and transfection 

The osteosarcoma cell lines hFOB1.19 (BNCC338626) and Saos-2 (BNCC338485) were purchased from BNCC (Beijing). Dulbecco’s 
Modified Eagle Medium (Gibco, 11,965–092) added with 10 % fetal bovine serum (Gibco, 26,140–095) and 1 % antibiotics (Gibco, 
15,070–063) were used for cell culture at 37 ◦C in 5 % CO2. Next, cell transfection with negative control (NC) and IFITM3 siRNA 
(Sagon Co., China) was conducted with the use of Lipofectamine 2000 (Invitrogen, USA). 

2.12. QRT-PCR 

TRIzol reagent was used for total RNA extraction (Invitrogen, Carlsbad, California, USA) from cells. RNA was reverse-transcribed 
into cDNA using the Qiagen One-Step RT-PCR kit (Qiagen Gmbh, Germany) and subjected to qRT-PCR experiments. Amplification was 
performed using SYBR Green (Bimake, Houston, Texas, USA) on the ABI 7500 system (Thermo Fisher Scientific, USA). The primers for 
qRT-PCR are shown in Supplementary Table 2. 

2.13. Wound-healing assay 

Osteosarcoma Saos-2 cellss were seeded into 6-well plate to grow until they covered the entire bottom. A scratch was made 
vertically using a 200 μL pipette tip. After washing the cells twice with phosphate-buffered saline, the cells were photographed under 
an inverted microscope at 0 h and 48 h after the scratching. The wound healing rate was calculated as [(Width at 0 h - Width at 48 h)/ 
Width at 0 h] × 100 %. The experiment was performed in triplicate. 

2.14. Transwell analysis 

Saos-2 cells were seeded into the upper chamber of the Transwell apparatus (Corning, USA) containing serum-free medium. 
Subsequently, the lower chamber was supplemented with PRMI-1640 medium with 10 % FBS. After 1-day incubation at 37 ◦C, cells 
remaining on the upper chamber were removed, whereas the rest cells were fixed by 4 % paraformaldehyde and subsequently dyed by 
crystal violet for 30 min. A microscope was employed to observe the cells and count the cell number. 
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3. Results 

3.1. Three molecular subtypes were defined using the necroptosis genes 

There were a total of 116 genes associated with necroptosis score in TARGET-osteosarcoma dataset. Next, 39 prognostic genes (34 
protective genes and 5 risk genes) for osteosarcoma were screened by univariate cox survival analysis. Using the 39 genes, Con
sensusClusterPlus was employed to group patients in TARGET-osteosarcoma dataset. As shown in the relative change in area under 
CDF curve (Fig. 1A and B), C1, C2 and C3 were clustered when K = 3 (Fig. 1C). Specifically, the prognosis were the worst in C3 in 
TARGET-osteosarcoma (Fig. 1D) and GSE39058 dataset (Fig. 1E), whereas the samples in C1 and C2 had better survival. Risk genes had 
high expressions in C3, while protective genes were high-expressed in C1 and C2 (Fig. 1F). 

The distribution of clinical characteristics in C1, C2 and C3 was shown in Fig. 2, which demonstrated that patients’ status in 
TARGET-osteosarcoma cohort was noticeably different. 

3.2. Immune microenvironment and immunotherapy analysis for the three molecular subtypes 

Immune cell infiltration in the TARGET-osteosarcoma cohort was assessed based on the expressions of immune cells. Compared to 
the other two subtypes, C1 had the highest StromalScore, ImmuneScore and ESTIMATEScore (Fig. 3A) and the highest infiltration of 22 
out of 28 immune cells (Fig. 3B). We also observed that most of the immune checkpoint genes were high-expressed in C1 than in C2 and 
C3 (Fig. 3C). The results of TIDE showed higher Exclusion, TIDE, and MDSC in C2 group and higher IFNG and Dysfunctions in C1. In 
addition, C3 had more tumor-associated macrophage M2 subtypes than in C1 and C2 (Fig. 3D). Moreover, the IC50 of Erlotinib, MG- 
132, Z-LLNle-CHO, Dasatinib, CGP-60474 and WH-4-023 was higher in C3, suggesting a lower sensitivity of C3 patients to these drugs 
(Fig. 3E). 

Fig. 1. Classification of 3 molecular subtypes. A: Cumulative distribution function. B: Delta area of Cumulative distribution function. C: when k = 3, 
3 molecular subtypes were identified. D: KM survival curve of 3 molecular subtypes in TARGET-osteosarcoma. E: KM survival curve of 3 molecular 
subtypes in GSE39058 dataset. F: Heatmap of necroptosis genes expressions in 3 molecular subtypes. 
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3.3. Pathways analysis for the three molecular subtypes 

The GSEA showed that compared with genes C3, genes in C1 in the TARGET cohort were significantly enriched to 21 pathways, 
including epithelial mesenchymal transition (EMT), IFN-α response, interferon-γ response, etc. (Fig. 4A). Subsequently, we also 
compared the differential pathways between the three subtypes (including C1vsC2, C1vsC3, C2vsC3). Among the differential pathways 
between C2 and C3, the enrichment scores in EMT and UV response DN pathways were the highest (Fig. 4B). As shown in Fig. 4C, the 
immune-related pathways (including interferon response and IL6-JAK-STAT3 signaling pathway) in patients in C1 subtype were 
activated but cell cycle-related pathways were inhibited. 

3.4. Establishment of a prognosis risk model 

A total of 114 prognosis genes (48 risk genes and 66 protective genes) were selected out of 983 DEGs from C1, C2, and C3 (Fig. 5A). 
The trajectory and confidence interval of lambda in Lasso analysis was presented (Fig. 5B and C). When lambda = 0.1547, a risk model 
was developed using 8 genes: RiskScore=(− 0.516*IFITM3)+0.068*ACTA2+(− 0.108*GBP1)+(− 0.355*APBB1IP)+(− 0.26*GJA5)+
0.116*CGREF1+(− 0.309*CDK6)+0.26*TAC4. 

3.5. Validation of the prognosis risk model 

The risk score for all the patients in TARGET-osteosarcoma dataset was calculated with the formula (Fig. 6A). Subsequently, os
teosarcoma patients were categorized into two risk groups (high and low risks) by the risk score based on the threshold of “0". In the 
TARGET-osteosarcoma cohort, the AUC for 1-year, 3-year and 5-year survival was 0.8, 0.9 and 0.88, respectively (Fig. 6B). The KM 
survival curve showed a better OS in low-risk group in TARGET-osteosarcoma dataset (Fig. 6C). In GSE39058 cohort, the AUC for 1-, 3- 
and 5-year survival was 0.8, 0.86 and 0.9, respectively (Fig. 6D), with the low-risk samples having better survival (Fig. 6E). In 
GSE21257 cohort, the AUC for 1-, 3- and 5-year survival was 0.73, 0.7 and 0.73, respectively (Fig. 6F), with the low-risk samples 
having longer survival (Fig. 6G). 

3.6. Effects of the model feature genes on the malignant phenotype of osteosarcoma cell lines 

Cellular experiments were used to analyze the influences of the model genes on osteosarcoma progression of and to detect key genes 
involved in the malignant phenotype of osteosarcoma. Molecular detection results showed that IFITM3, APBB1IP, CDK6, GBP1, TAC4, 
and GJA5 expressions were relatively upregulated, and GJA5, CGREF1 mRNA levels were downregulated in osteosarcoma cell lines, 
with IFITM3 having the highest expression level (Fig. 7A–H). Wound healing and Transwell experiment demonstrated that silencing 
IFITM3 gene suppressed the migration (Fig. 7I–J) and invasion (Fig. 7K–L) of osteosarcoma cells, respectively. Overall, IFITM3 is a 
gene significantly affecting the prognostic outcomes of patients suffering from osteosarcoma and had a tangible regulatory effect on 
osteosarcoma cell lines, which verified the reliability of the prognostic model. 

Fig. 2. Clinical features distribution in 3 molecular subtypes.  
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3.7. Distribution of the risk score in clinical characteristics 

The risk score for samples in different clinical characteristics was computed, including metaststic, gender, age, cluster and status. 
The samples in metaststic, C3 and Dead had a higher risk score (Fig. 8A), while those in gender, age, metaststic had low risk score and 
better survival (Fig. 8B). 

Fig. 3. Immune microenvironment and immunotherapy analysis. A: Differences of the 3 molecular subtypes in ESTIMATEScore, StromalScore, and 
ImmuneScore. B: Differences of 28 kinds of immunes score in the 3 clusters. C: Differences of the expression of immune checkpoint genes in the 3 
clusters. D: TIDE analysis among C1, C2, C3. E: The estimated IC50 for drug in TARGET-osteosarcoma was shown in the box plots. (*P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001). 

Y. Bian et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e35719

7

3.8. Analysis on immune microenvironment between the two risk score groups 

Immune microenvironment differences between the two groups were observed, with the group of low risk score having higher 
ESTIMATEScore, StromalScore, and ImmuneScore (Fig. 9A). MCP-Counter analysis demonstrated that the scores of 6 out of 10 types of 
immune cells in the low group were higher (Fig. 9B). The ssGSEA analysis showed that the scores of 15 of 28 types of immune cell 
scores were higher in the low group (Fig. 9C). Additionally, we calculated the infiltration of 22 immune cells in different risk groups 
using the CIBERSORT and obtained similar results to the MCP-Counter algorithm. When compared to the high-risk group, low-risk 
patients had higher CD8+T cells infiltration (Supplementary Fig. 1). Further study revealed that most immune cells from 28 

Fig. 4. Pathways enrichment analysis. A: GSEA analysis of C1vsC3 in TARGET-osteosarcoma. B: GSEA analysis of C1vsC3, C1vs C2, C2vs C3 in 
TARGET-osteosarcoma. C: Radar plot of activated pathways in C1vsC2, C1vsC3, and C2vsC3 in the TARGET-osteosarcoma cohort. 
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immune cells showed negative correlation with the risk score (Fig. 9D). 

3.9. Pathways analysis for the two risk score groups 

The ssGSEA analysis demonstrated a negative correlation between the immune pathways and risk score (Fig. 10A). GSEA analysis 
revealed that 12 pathways and 30 pathways were activated in the group with a high risk score in TARGET-osteosarcoma and 
GSE39058 dataset, respectively, and that most pathways were associated with cell cycle (Fig. 10B). 

3.10. Clinical pathology features and the risk score to predict osteosarcoma survival 

The decision tree was produced based on gender, age, metastatic and the risk score in the TARGET-osteosarcoma cohort. Five 
different risk subgroups (Fig. 11A) with significant differences in OS (Fig. 11B) were classified. Patients in C1, C2 and C3 were in low 
risk score group, while those in C4 and C5 were in high risk score group (Fig. 11C). The 5 subgroups had significance differences in 
survival status (Fig. 11D). Both metastatic and the risk score were validated as independent prognosis factors by univariate and 
multivariate Cox survival analysis (Fig. 11E and F). We also constructed a nomogram together with the risk score and metastatic to 
predict 1-, 3-, 5-year OS of osteosarcoma patients (Fig. 11G). The risk score had higher AUC (Fig. 10H) and the reliability of the 
nomogram was proven by the calibration curve (Fig. 11I). DCA further validated the risk score as an indicator for effectively predicting 
osteosarcoma prognosis in comparison to other clinical variables (Fig. 11J.). 

Fig. 5. Identification of hub genes. A: 114 genes associated with prognosis were identified. B: As lambda changes, the trajectory of the independent 
variable was shown. C: Confidence interval under lambda. D: The distribution of Lasso coefficients of genes related to in the necroptosis- 
based signature. 
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4. Discussion 

Previous studies have confirmed crucial role of necroptosis in cancer development and metastasis [31,32]. In this work, 39 
necroptosis-related genes in TARGET-osteosarcoma were screened to classify C1, C2, and C3 as three molecular subtypes of osteo
sarcoma. Patients in C1 and C2 had enhanced immune status and better survival but limited immunotherapy benefit. The prognostic 
outcomes of patients with osteosarcoma could be correctly evaluated by the 8 necroptosis-correlated prognostic signature genes. The 
prognostic outcomes were better for patients who had a low risk score, and the nomogram combining both the risk score and risk 
factors could produce an accurate prognostic prediction. 

A total of 8 DEGs (ACTA2, APBB1IP, CDK6, CGREF1, GBP1, GJA5, IFITM3, and TAC4) were contained in the present model. The 
ROC curve and calibration curve showed that the model had an accurate prediction for osteosarcoma patients in the training and 
validation cohorts. Among all the 8 genes related to osteosarcoma prognosis, 4 genes (ACTA2, CDK6, IFITM3) were either involved in 
necroptosis-related pathogenesis of osteosarcoma or were important indicators of overall survival or relapse-free survival [33–35]. As 
an interferon-induced transmembrane protein, IFITM3 is high-expressed in the tumor region of gastric cancer. Depletion of IFITM3 can 

Fig. 6. Validation of the risk score. A: The risk score, survival status, and gene expression in TARGET-osteosarcoma dataset. B: ROC analysis of the 
risk score in TARGET-osteosarcoma. C: KM survival curve between low group and high group in TARGET-osteosarcoma. D: ROC analysis of the risk 
score in GSE39058 dataset. E: KM survival curve between the two groups in GSE39058 dataset. F: ROC analysis of the risk score in GSE21257 
dataset. G: KM survival curve between the two groups in GSE21257 dataset. 
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cause HGF-triggered inhibition of cell growth and migration by suppressing AKT/c-MYC signaling in gastric cancer [36]. Gan et al. 
found that knockdown of IFITM3 could impair the growth of the oral squamous cell carcinoma cell lines by inhibiting the proliferation 
of the cancer cells and inducing cell cycle arrest, senescence and apoptosis [37]. Consistently, we observed that silencing IFITM3 
expression greatly affected the osteosarcoma cell migration and invasion. In addition, Tang et al. observed that patients with 
high-expressed ACTA2 have a noticeably more favorable prognosis than those with low-expressed ACTA2, suggesting that 
high-expressed ACTA2 in osteosarcoma patients with lung metastasis indicates a better prognosis [38]. Recent discoveries showed that 
CDK6 has a crucial function in the advancement of various human cancers, and that a downregulation in its expression is associated 
with a negative prognostic outcome. Based on an analysis of the GEPIA and STARBASE databases, Zhao et al. found that CDK6 is an 
oncogene in pancreatic cancer, and that CDK6 is significantly associated with PD-L1, PD-L2, and HAVCR2 (three immune checkpoints), 
immune cells infiltration, and immune biomarkers [39]. However, previous study was less concerned with the remaining 5 model 
genes in the osteosarcoma prognosis or their roles as new potential biomarkers for the cancer. Therefore, these key gene targets should 
be analyzed more extensively. 

Past study has analyzed the roles of TME, in particular immune microenvironment [40,41]. Immune infiltration analysis 
demonstrated a negative relationship between the immune cell score and the risk score. Compared to the high-risk patients, those with 
a low risk had more immune cells and greater activation of immune pathways. Studies found that tumors could induce the generation 

Fig. 7. Effects of model feature genes on osteosarcoma cell. A–H: qRT-PCR results of model feature genes IFITM3, APBB1IP, CDK6, GBP1, TAC4, 
and GJA5. I–J: Scratch healing experiments and the quantified results of osteosarcoma cell line of si-IFITM3. K–L: Transwell experiment and the 
quantified results of osteosarcoma cell line of si-IFITM3. 
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of type II NKT cells and secrete IL-13 in turn, which causes MDSC aggregation in the tumor microenvironment, activates STAT6 
signaling pathway and suppresses the function of CD8+ T cell [42,43]. Based on scRNA-seq transcriptomic data and immunohisto
chemical staining analysis, Xie et al. confirmed that EVI2B is present on CD8+ T cells derived from osteosarcoma patients. EVI2B 
enhances the expressions of granzyme A and K in CD8+ T cells, resulting in a robust cytotoxic effect against tumor cells [44]. NK cells 
within the TME of osteosarcoma are innate immune cells that display cytokine-secreting and cytotoxic properties along with cytotoxic 
and helper T cells [45–47]. Both CD8+ T cells and NK cells possess the ability to eliminate cancer cells through their cytotoxic ac
tivities, yet the synergistic relationship between them is intricate. MHC-I expression downregulated by specific cancer cells escape the 
detection of CD8+ T cells while enhancing NK cell activation by eliminating a significant inhibitory cue [48]. At present, the appli
cation of T cells and NK cells in tumor immunotherapy has attracted extensive research attention. Apart from hematological tumors, 
memory-like NK cells and modified NK cells have great potential in treating breast cancer, colorectal cancer, ovarian cancer, non-small 

Fig. 8. Clinical features analysis for both the high and low groups. A: The differences in the risk score between different clinicopathological groups 
in the TARGET-osteosarcoma cohort. B: KM curves for both the high-risk and low-risk groups among different clinicopathological groups in the 
TARGET-osteosarcoma cohort. 
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cell lung cancer, liver cancer [49]. This suggested that the tumor microenvironment of low-risk patients may be more conducive to 
immune cell survival and function, which was strongly associated with a better prognosis for patients. 

In conclusion, differentially expressed necroptosis-related genes were identified in this study to develop a prediction model for 

Fig. 9. Immune microenvironment analysis. A: The differences of the high group and low group in ESTIMATEScore, StromalScore, ImmuneScore. B: 
The differences of the two groups in 10 kinds of immunes score. C: The differences of the two groups in 28 kinds of immunes score. D: The cor
relation between 28 immune cells scores and the risk score. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). 

Fig. 10. Pathways enrichment analysis. A: Results of correlation analysis between the risk score and KEGG pathways. NPRS showed a correlation 
higher than 0.4. B: By comparing high and low group, normalized enrichment scores of Hallmark pathways were shown in the heatmap. 
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osteosarcoma prognosis, and the association between immune activities and the risk score was systematically assessed. However, the 
mechanisms of necroptosis in tumor immunology should be further investigated by future studies. 
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Fig. 11. Construction of nomogram. A: To optimize risk stratification, a survival decision tree was established according to the full-scale anno
tations of patients including age, metastatic, NPRS. B: The overall survival outcomes of the 5 risk subgroups were significantly different. C: The 
distribution of low and high group samples in the 5 risk subgroups. D: The status distribution in 5 risk subgroups. E: Univariate Cox analysis. F: 
Multivariate Cox analysis. G: The development of a nomogram. H: The survival prediction of the nomogram was the most accurate in comparison to 
other clinicopathological features. I: 1-, 3- and 5- years calibration curves for the nomogram. J: Decision curve of the nomogram. 
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