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ABSTRACT

Objectives Universities have turned to SARS-CoV-2 models to examine campus reopening strategies.
While these studies have explored a variety of modeling techniques, none have used empirical data.

Methods In this study, we use an empirical proximity network of college freshmen obtained using smart-
phone Bluetooth to simulate the spread of the virus. We investigate the role of immunization, testing, iso-
lation, mask wearing, and social distancing in the presence of implementation challenges and imperfect
compliance.

Results We show that frequent testing could drastically reduce the spread of the virus if levels of im-
munity are low, but its effects are limited if immunity is more ubiquitous. Furthermore, moderate levels
of mask wearing and social distancing could lead to additional reductions in cumulative incidence, but
their benefit decreases rapidly as immunity and testing frequency increase. However, if immunity from
vaccination is imperfect or declines over time, scenarios not studied here, frequent testing and other in-
terventions may play more central roles.

Conclusions Our findings suggest that although regular testing and isolation are powerful tools, they
have limited benefit if immunity is high or other interventions are widely adopted. If universities can
attain even moderate levels of vaccination, masking, and social distancing, they may be able to relax the

frequency of testing to once every four weeks.

Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

When SARS-CoV-2 escalated to a pandemic in early 2020, uni-
versities and colleges around the world were forced to rapidly
pivot to virtual instruction. Schools struggled to adapt to a new
normal, sending students home as residential campuses, and even
entire cities, were locked down to stop the spread of SARS-CoV-2.
Studies have shown that the rapid shift to virtual instruction ex-
acerbated pre-existing educational and social inequities, leading to
learning losses and leaving students feeling unmotivated (Shin and
Hickey, 2021). As the pandemic continued into the summer, uni-
versities were faced with a difficult choice: reopen campuses with
some return to traditional in-person instruction in order to provide
a rich educational experience or continue teaching entirely online
to protect the health of students.

* Corresponding author.
E-mail addresses: hhambridge@g.harvard.edu (H.L. Hambridge),
rek160@mail.harvard.edu (R. Kahn), onnela@hsph.harvard.edu (J.-P. Onnela).
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In the autumn of 2020, college administrators around the world
employed simulations to understand how enhanced public health
protocols could mitigate the spread of SARS-CoV-2 on their cam-
puses. These studies examined various preventive techniques and
made different assumptions about compliance with their proposed
policies (Brook et al., 2020; Chang et al., 2020; Christensen et al.,
2020; Elbanna et al., 2020; Ghaffarzadegan et al., 2020; Goyal et al.,
2021; Gressman and Peck, 2020; Lopman et al., 2021; Paltiel et al.,
2020). However, although various modeling techniques were em-
ployed, from compartmental homogeneous mixing models to con-
tact networks to agent-based models, all of these studies only used
simulated data.

In their review of COVID-19 modeling studies in a university
setting, Christensen et al. advocated for more research to be done
using empirical mixing data (Christensen et al., 2020). Here we
take up that charge and examine how using a real-world contact
network of students on a college campus, ascertained using smart-
phone Bluetooth data, changes our understanding of the role of
various interventions in the mitigation of SARS-CoV-2. As colleges
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look to reopen in the autumn of 2021, they will need to navigate a
rapidly changing environment and contend with both more trans-
missible variants and lower than hoped for vaccine coverage. Uni-
versities will need to identify an appropriate approach for their
specific student population, one which will likely involve a com-
plex interplay of interventions, from immunization to repeat test-
ing and isolation to non-pharmaceutical interventions, like mask
wearing and social distancing. This study seeks to equip univer-
sities with the necessary information and tools to navigate this
complicated decision-making process. While we present a range
of scenarios here, our study serves as a framework for universi-
ties to explore the effectiveness of different intervention strategies
in their own unique setting. Our well-documented code, together
with the publicly available data used for this study, allows univer-
sities to specify their own parameter values to examine scenarios
that were not considered in our study. Administrators and public
health officials alike can use our flexible framework to help craft
evidence-based policies designed to mitigate the spread of COVID-
19 on college campuses.

2. Methods
2.1. Proximity network

We employ a close proximity interaction network from the
Copenhagen Networks Study (CNS), which enrolled students from
the Technical University of Denmark. In particular, we focus ex-
clusively on Bluetooth proximity data acquired from 706 stu-
dents, which were made publicly available in December 2019
(Sapiezynski et al., 2019). Loaner smartphones were issued to study
participants who agreed to use the device as their primary phone
for the duration of the study. Devices were configured to be Blue-
tooth discoverable at all times and to scan for nearby devices every
five minutes, recording the device ID, a timestamp, and an indi-
cator of received signal strength (RSSI), which roughly correlates
with physical distance. Bluetooth proximity data are available for
28 days starting in February 2014. In order to model a typical uni-
versity semester, we loop through the CNS data four times, thereby
simulating a total of 16 weeks of interaction data.

2.2. Epidemic model

To model the spread of SARS-CoV-2, we use a discrete-time
stochastic susceptible-exposed-infectious-recovered (SEIR) individ-
ual model, with separate states for symptomatic and asymptomatic
cases. Each day, individuals advance to the next compartment
or remain in their current one probabilistically. Each person-to-
person interaction is treated as an independent event, such that
the probability of being exposed increases linearly with the num-
ber of interactions with an infectious individual. We allow for pre-
symptomatic transmission, as there is a two day period between
infectiousness and symptom onset, as well as entirely asymp-
tomatic transmission for asymptomatic cases. The parameter val-
ues are summarized in Table 1. We investigate low, medium, and
high transmission scenarios, which roughly correspond to Ry val-
ues of 1.5, 3.0, and 4.5, respectively. We explore a range of val-
ues as estimates of Ry vary widely across studies and settings
(Alimohamadi et al., 2020). The supplement and Figure 5 show ad-
ditional details of our SARS-CoV-2 transmission model.

In addition to infection via the contact network, we allow each
individual to develop infection due to outside exposure (e.g., in the
broader community), regardless of their contact network interac-
tions. We explore high and low levels of community transmission
to examine the impact of community prevalence and varying levels
of integration between the campus and the community. Given the
potential for continued community spread in the absence of very
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high vaccination rates (COVID-19 Scenario Modeling Hub, 2021)
and the increased transmissibility of new variants (Davies et al.,
2021), we focus on a setting with higher levels of community
transmission. The results obtained for the high community trans-
mission scenario are presented in the following, and those for our
low community transmission scenario are given in the supplement.

2.3. Initial immunity

While many countries have approved vaccines against SARS-
CoV-2 and are rushing to make them available to their residents,
the Council on Foreign Relations estimates that it will take years
for the majority of the world’s population to become immunized
against the virus (Felter, 2021). As such, we explore a wide range
of immunization scenarios, ranging from no immunization to 80%
of the student population immunized, either due to prior infection
or vaccination. For simplicity, we assume perfect immunity in our
model.

2.4. Testing and isolation

We consider symptomatic testing and scheduled testing in our
simulations, and assume that both were done via polymerase chain
reaction (PCR). Symptomatic testing occurs when a student seeks a
test after experiencing symptoms. In order to account for individ-
uals who may experience non-COVID related flu-like symptoms, a
fraction of non-infectious individuals also present for symptomatic
testing each day. Under scheduled testing, every member of the
population is tested regularly in an effort to identify additional
cases that would otherwise go undetected. Individuals are tested
at regular intervals so the time between tests is constant for each
student, although a small fraction of the population is set to be
non-compliant each day. Both types of testing incorporate time-
dependent sensitivity; SARS-CoV-2 test sensitivity is highly cor-
related with viral load, which varies over the course of the in-
fection. To account for this, we use the empirical test sensitivity
derived from nasopharyngeal swab data by Wikramaratna et al.
(Wikramaratna et al., 2020). Since their model only included the
time after symptom onset, we impute pre-symptomatic test sensi-
tivity, mirroring the post-symptomatic sensitivity so that the sen-
sitivity two days prior to symptom onset is the same as that two
days after symptom onset. This is consistent with literature show-
ing that viral load peaks at symptom onset, with similar loads pre-
and post-symptom onset (Johansson et al., 2021). Additional details
are provided in the supplement and Figure 6. Upon testing positive,
individuals are placed in isolation. For each set of parameter val-
ues, we examine scheduled testing frequencies of three, seven, 14,
and 28 days, as well as no scheduled testing.

2.5. Mask wearing and social distancing

We also consider a setting where student behavior leads to
individual-specific transmission rates. We specify a proportion of
the population that would wear face masks and randomly assign a
subset of the population to abide by social distancing. Both inter-
ventions are implemented as reductions in the transmission rate,
and these reductions are assumed to be linear. Since homophily,
the tendency for people to associate with others whom they per-
ceive to be similar to themselves, is typically present in social
networks (McPherson et al.,, 2001), we hypothesized that friend
groups might share similar views about COVID-19 and related mit-
igation efforts. Therefore, we consider both clustered and non-
clustered assignment of mask wearing across the network, a sce-
nario that cannot be studied with standard epidemiological mod-
els. To create clusters of mask users, we create a weighted con-
tact network for the entire study period and select a set of initial
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Parameters for simulation scenarios. The transmission probability, 8, is per five-minute interaction
with an infectious individual. All other epidemic transition parameters are per day, giving an average
latent period of three days and an average infectious period of seven and 12 days for asymptomatic and
symptomatic cases, respectively. Test sensitivity is time-varying. For distributions, values represent the
means and standard deviations, respectively. An overview of the epidemic model is shown in Figure 5.
Additional details are presented in the corresponding sections of the supplement.

Epidemic Model

B 0.003 — 0.009 probability of transmission per five-minute interaction
Tex ni  Normal(0.002, 0.0001) probability of external infection per day - high scenario
Tex lo Normal(0.0005, 0.0001)  probability of external infection per day - low scenario
TCai 0.3 probability of asymptomatic infection
|Io] 1 number of initial infections
e} 1/3 transition probability: exposed to asymptomatic infectious
o5 1/3 transition probability: exposed to symptomatic infectious
Ya 1/7 transition probability: asymptomatic infectious to recovered
Vs 1/12 transition probability: symptomatic infectious to recovered
Testing
Tse 0-0.96 sensitivity, time-varying
Tsp 0.99 specificity
Toy 1 day delay between symptom onset and symptomatic testing
TTse Normal(0.025, 0.01) probability non-compliant with scheduled testing
sy Normal(0.25, 0.1) probability non-compliant with symptomatic testing
s 0.005 probability non-infectious present for symptomatic testing
Isolation
Tid 1 day delay between testing and entering isolation
Tic Beta(0.91, 0.11) isolation compliance
Tip 10 days isolation period
Transmission Mitigation
Nfm Normal(0.15, 0.0684) reduction in transmission probability for mask wearing
Nsa Normal(0.18, 0.0734) reduction in transmission probability for social distancing
T 0-1 proportion of the population wearing face masks
Tsd 0-1 proportion of the population social distancing
Tim 0-038 proportion of the population immune

mask wearers uniformly at random. We then “spread” mask wear-
ing to their contacts, where neighbors with more interactions have
a higher probability of adopting a face covering. This process is
iterated until the desired proportion of mask wearers is reached.
More details are provided in the supplementary information.

3. Results

After removing non-participating devices and empty scans from
the Bluetooth data, 2,426,279 Bluetooth pings (44.3% of all pings)
and 692 users (98.0% of all users) remained, indicating that 14
users had no proximity events involving other study participants.
The proximity networks for each of the 28 days considered in this
study are shown in Figure 3 in the supplement. The networks have
a large connected component on weekdays when students were
likely active on campus and attending classes. On the weekends,
the networks were more loosely connected, with fewer users in-
teracting with fellow study participants, as shown in the first and
last columns in Figure 3.

The incidence rates for our moderate (Ry~ 3.0) transmission
scenario with various levels of the population immune from the
outset are shown in Figure 1. Regardless of immunization level, in-
creasing the testing frequency reduced the number of infections
observed over the course of the semester, although the effect was
relatively small if 60 — 80% of the population was immune. Under
no immunization, testing every three days resulted in 42.7% of the
students being infected by the end of the semester on average,
whereas testing every seven, 14, and 28 days led to 47.5%, 56.2%,
and 61.6% of students infected, respectively (no scheduled testing:
66.1%). However, with 80% immunized, testing every three days re-
sulted in 12.3% of students infected by the end of the semester
on average, with no scheduled testing giving rise to 15.8% of stu-
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dents infected on average. Thus, while increased testing and sub-
sequent isolation impacted the number of infections for a given
immunization level, ultimately increasing the population immunity
led to commensurate or greater reductions in incidence. Incidence
for our low (Ry ~ 1.5) and high (Rg ~ 4.5) transmission scenarios
are shown in the supplement (see Figures 9 and 10).

Under no immunization, the average time required to infect
10% of all students was 24 days without any testing or isolation,
whereas testing just once every four weeks increased this time to
25 days, and testing twice each week resulted in 10% of students
being infected on day 30 on average (Figure 1). However, when
20% of the population was immune, testing every three days could
extend this period by 11 days, and with 40% of the population im-
mune, frequent testing could spread infections out even further,
thereby giving universities an additional two weeks. These find-
ings demonstrate that when combined with regular testing, even
modest levels of immunity can help universities flatten the curve,
ultimately saving resources and reducing the cost of mitigation ef-
forts.

The number of positive tests and number of people isolated are
shown in Figures 7 and 8, respectively. These metrics allow uni-
versities to estimate the resources required to mitigate the spread
of COVID-19 among their student population in terms of resources
spent on interventions and lost opportunity costs. For instance, the
number of students isolated over the course of the semester also
corresponds to the number of missed school days, allowing univer-
sities to quantify both the resources needed to quarantine students
and the lost educational opportunities associated with quarantine.
Further details are provided in the supplement.

The results obtained for our mask wearing and social distancing
scenarios under moderate transmission (Rg ~ 3.0) are presented in
Figure 2, which shows the mean percentage of the student pop-
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Fig. 1. Number of students infected over the course of a simulated 16-week semester for Ry ~ 3.0 and high levels of transmission from the community. Rows show
different proportions of the population immunized, as annotated on the right. Columns show scenarios where scheduled testing was conducted every three, seven, 14, and
28 days, respectively, and no scheduled testing. Grey lines denote individual simulations. Blue lines indicate the point-wise average trajectory over all 100 replicates. Vertical
red lines and text indicate the average times to reach 10% of the population infected, which were computed by identifying the time required to reach 10% infected for each

realization and averaging those times.

ulation infected at the end of the semester. Testing was most ef-
fective at reducing cumulative incidence under low levels of im-
munity and low to moderate levels of mask wearing and social
distancing. When mask wearing and social distancing were ubig-
uitous, more frequent testing offered only small decreases in the
cumulative incidence as the virus was already well controlled. Sim-
ilarly, initial immunity in even a small fraction of the population
reduced the impact of regular testing. Under no immunity, testing
every three days resulted in sizeable benefits when mask wear-
ing and social distancing were below 60%. However, with 20% and
40% immune, testing every three days only provided sizeable bene-
fits when mask wearing and social distancing were below 40% and
30%, respectively. Somewhat surprisingly, little to no decrease in
efficacy occurred when mask wearing was clustered on the contact
network, perhaps due to the highly connected nature of the net-
work (see Figure 11). If universities can achieve even moderate lev-
els of immunity, mask wearing, and/or social distancing, our sim-
ulations demonstrate that they may be able to test less frequently
with little or no change in the cumulative incidence.

To compare the effectiveness of testing and isolation, mask
wearing, social distancing, and immunity, we conducted a regres-
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sion analysis based on the cumulative incidence over all of our
moderate transmission simulations (Rg ~ 3.0). The cumulative in-
cidence decreased by 3.95 or 0.57 per 100 students for every one
week increase in the testing frequency. Every 10% increase in the
proportion of the population conforming to social distancing re-
duced the cumulative incidence by 4.47 or 0.65 per 100 students.
Likewise, each 10% increase in the proportion wearing masks re-
duced the cumulative incidence by 5.76 or 0.83 per 100 students.
Finally, each 10% increase in the proportion with immunity de-
creased the cumulative incidence by 17.08 or 2.47 per 100 stu-
dents. Thus, while testing might be straightforward for colleges to
enforce, it provides much smaller reductions in cases than mask
wearing and social distancing. As expected, increasing population
immunity resulted in the greatest reduction in cumulative inci-
dence.

4. Discussion

While the past year has given us the promise of effective vac-
cines and greater insight into the dynamics of SARS-CoV-2, schools
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Fig. 2. Cumulative percentage infected for various proportions of the population social distancing and/or wearing masks for Ry ~ 3.0. Cell values indicate the pro-
portion of the population infected by the end of a simulated 16-week semester. Rows show different proportions of the population immunized, as annotated on the right.
Columns show scenarios where scheduled testing was conducted every three, seven, 14, and 28 days, respectively, and no scheduled testing.

are still facing an uncertain future. With bumpy vaccine roll-outs
in some areas of the world and financial strains due to decreased
enrollment, many colleges wonder how they will be able to return
to some sort of normalcy and what steps they can take to accel-
erate the process (St. Amour, 2020). The 2015 United Nations Sus-
tainable Development Goals aim to ensure both healthy lives and
inclusive and equitable quality education (United Nations, 2015). In
order to continue to advance toward these objectives, it is impor-
tant to determine how schools can reopen safely, thereby allowing
them to deliver quality education while promoting well-being.

In this study, we endeavored to help universities navigate the
challenges of reopening by examining the efficacy of regularly
scheduled (i.e., screening) testing in a residential college popula-
tion in conjunction with various levels of immunization. We found
that while testing should be an integral part of every university’s
mitigation strategy, moderate levels of immunity, mask wearing,
and social distancing can allow universities the freedom to test less
frequently. As such, if colleges can achieve high vaccination rates,
they may be able to relax testing to just once or twice each month,
saving valuable resources. While our focus is on a university set-
ting, our methods and results could be applied to other residential
environments.

In contrast to previous studies, we used a real-world contact
network as the basis for our simulations, allowing us to capture
the underlying heterogeneous social behavior of college students,
which undoubtedly alters how the virus spreads. In addition, many
previous studies in this area accounted for only a small number
of implementation obstacles and compliance issues. We allowed
for external infections, a background rate of influenza-like illness,
time-dependent test sensitivity, and test result delays, as well as
student non-compliance throughout the testing and isolation pro-
cess.

The close proximity data we employed were collected long be-
fore the pandemic when students did not limit their interactions
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with others. Therefore, our data represent a worst case scenario
where students do not reduce their contacts with others. How-
ever, when students reduce their contacts with others, they are
effectively practicing a form of social distancing. Thus, these pre-
pandemic contact patterns were necessary in order to study the
effects of social distancing interventions, a goal of this study.

While vaccines do not provide perfect immunity, the mRNA
vaccines currently being employed are highly effective at reducing
infections and ostensibly effective at reducing transmission among
those who become infected (Haas et al., 2021). Although we as-
sumed perfect immunity in our simulations, our population immu-
nity levels could be mapped to effective immunity levels in order
to account for imperfect immunity and resultant breakthrough in-
fections.

While our model incorporated many of the challenges we ex-
pect universities to face on campus, we did not explicitly model
contact tracing. Although contact tracing can be an effective tool
when implemented appropriately (Cencetti et al., 2021; Ferretti
et al., 2020), it is often a resource-intensive undertaking, one that
requires access to information on social contacts, access college
students may be hesitant to grant. We also did not estimate the
number of adverse outcomes expected to occur, although deaths
and hospitalizations could be approximated from our results if
additional assumptions are made. Finally, we did not incorporate
any seasonal variation in the transmission of SARS-CoV-2, although
new research suggests that in temperate climates transmission is
significantly higher in the winter, when schools are in session, than
in the summer (Gavenciak et al., 2021). Thus, universities should
consider their specific climate conditions when considering the
disease burden they may face.

While this work provides novel insights into how immuniza-
tion, repeat testing, isolation, and other strategies can reduce the
spread of SARS-CoV-2 on college campuses, it is important to note
that there is no one-size-fits-all approach (Bradley et al., 2020).
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The most successful schools will tailor their approach to their spe-
cific situation and adapt as circumstances change. Indeed, the most
advantageous strategy may be an agile approach, one where test-
ing frequency is adjusted based on the current transmission dy-
namics, an approach which has yet to be studied rigorously.

Funding

This study was supported by a Harvard University Department
of Biostatistics scholarship and a U.S. Government scholarship (to
HH). Additional funding was provided by the Centers for Disease
Control and Prevention (grant MInD: U01 CK000585 to RK) and the
National Institutes of Health (NIAID RO1 award AI138901 to JPO).
The funding sources had no role in study design, data analysis, data
interpretation, or the writing of the report.

Ethical approval
Separate medical ethical clearance not mandatory.
Data sharing

Proximity network data from the Copenhagen Network Study
are in the public domain (https://doi.org/10.6084/m9.figshare.
7267433). All models and code for this project written in ver-
sion 3.7 of the Python programming language are available through
GitHub (https://github.com/onnela-lab/covid-campus).

Contributors

HH and JPO had full access to all data in the study. JPO concep-
tualized and supervised the study. HH, RK, and JPO contributed to
the methodology, investigation, and visualization. HH drafted the
manuscript with critical revision by RK and JPO. All authors have
read and approved the final version.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
Acknowlgedgments

We thank Marc Lipsitch for his feedback on this project. We
also thank Giang T. Nguyen and Max Wang for their critical reading
of the manuscript.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/].ijid.2021.10.008

330

International Journal of Infectious Diseases 113 (2021) 325-330

References

Alimohamadi Y, Taghdir M, Sepandi M. Estimate of the basic reproduction num-
ber for COVID-19: a systematic review and meta-analysis. Journal of Preventive
Medicine and Public Health 2020:151.

Bradley EH, An MW, Fox E. Reopening colleges during the coronavirus disease
2019 (COVID-19) pandemic-one size does not fit all. JAMA Network Open
2020;3:e2017838.

Brook CE, Northrup GR, Ehrenberg AJ, Doudna JA, Boots M. Optimizing COVID-19
control with asymptomatic surveillance testing in a university environment.
medRxiv; 2020.

Cencetti G, Santin G, Longa A, et al. Digital proximity tracing on empirical contact
networks for pandemic control. Nature communications 2021;12:1-12.

Chang JT, Crawford FW, Kaplan EH. Repeat SARS-CoV-2 testing models for residen-
tial college populations. Health care management science 2020:1-14.

Christensen H, Turner K, Trickey A, et al. COVID-19 transmission in a university set-
ting: a rapid review of modelling studies. medRxiv; 2020.

Davies NG, Abbott S, Barnard RC, et al. Estimated transmissibility and impact of
SARS-CoV-2 lineage b.1.1. 7 in England. Science 2021;372.

Elbanna A, Wong GN, Weiner Z], et al. Entry screening and multi-layer mitigation
of COVID-19 cases for asafe university reopening. medRxiv 2020.

Felter C. What to know about the global COVID-19 vaccine rollout so far. Council on
Foreign Relations; 2021.

Ferretti L, Wymant C, Kendall M, et al. Quantifying SARS-CoV-2 transmission sug-
gests epidemic control with digital contact tracing. Science 2020;368.

Gavenciak T, Monrad JT, Leech G, et al. Seasonal variation in SARS-CoV-2 transmis-
sion in temperate climates. medRxiv; 2021.

Ghaffarzadegan N, Childs LM, TAuber UC. Diverse computer simulation models pro-
vide unified lessons on university operation during a pandemic. BioScience;
2020.

Goyal R, Hotchkiss |, Schooley RT, De Gruttola V, Martin N. Evaluation of SARS-
CoV-2 transmission mitigation strategies on a university campus using an agen-
t-based network model. Clinical Infectious Diseases; 2021.

Gressman PT, Peck JR. Simulating COVID-19 in a university environment. Mathemat-
ical biosciences 2020;328:108436.

COVID-19 Scenario Modeling Hub. COVID-19 model projection. Round 5
2021;2021:05-28. Accessed https://covid19scenariomodelinghub.org/viz.html.
Haas EJ, Angulo FJ, McLaughlin JM, et al. Impact and effectiveness of mRNA
BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospital-
isations, and deaths following a nationwide vaccination campaign in Israel: an

observational study using national surveillance data. The Lancet; 2021.

Johansson MA, Quandelacy TM, Kada S, et al. SARS-CoV-2 transmission from people
without COVID-19 symptoms. JAMA network open 2021;4:e2035057.

Lopman B, Liu CY, Le Guillou A, et al. A modeling study to inform screening and
testing interventions for the control of SARS-CoV-2 on university campuses. Sci-
entific reports 2021;11:1-11.

McPherson M, Smith-Lovin L, Cook JM. Birds of a feather: Homophily in social net-
works. Annual review of sociology 2001;27:415-44.

United Nations. General assembly resolutionn a/RES/70/1. Transforming Our World,
the 2030 Agenda for Sustainable Development; 2015.

Paltiel AD, Zheng A, Walensky RP. Assessment of SARS-CoV-2 screening strategies
to permit the safe reopening of college campuses in the united states. JAMA
network open 2020;3:e2016818.

Sapiezynski P, Stopczynski A, Lassen DD, Lehmann S. Interaction data from the
copenhagen networks study. Scientific Data 2019;6:1-10.

Shin M, Hickey K. Needs a little TLC: Examining college students emergency re-
mote teaching and learning experiences during COVID-19. Journal of Further
and Higher Education 2021;45:973-86.

St Amour M. Final fall enrollment numbers show pandemic’s full impact. Inside
Higher Ed; 2020.

Wikramaratna PS, Paton RS, Ghafari M, Lourenco J. Estimating the false-negative test
probability of SARS-CoV-2 by RT-PCR. Eurosurveillance 2020;25:2000568.


https://doi.org/10.6084/m9.figshare.7267433
https://github.com/onnela-lab/covid-campus
https://doi.org/10.1016/j.ijid.2021.10.008
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0001
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0001
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0001
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0001
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0002
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0002
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0002
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0002
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0003
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0003
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0003
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0003
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0003
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0003
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0004
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0004
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0004
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0004
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0004
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0005
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0005
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0005
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0005
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0006
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0006
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0006
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0006
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0006
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0007
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0007
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0007
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0007
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0007
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0008
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0008
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0008
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0008
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0008
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0009
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0009
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0010
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0010
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0010
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0010
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0010
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0011
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0011
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0011
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0011
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0011
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0012
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0012
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0012
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0012
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0013
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0013
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0013
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0013
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0013
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0013
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0014
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0014
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0014
https://covid19scenariomodelinghub.org/viz.html
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0015
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0015
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0015
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0015
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0015
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0017
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0017
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0017
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0017
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0017
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0018
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0018
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0018
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0018
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0018
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0019
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0019
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0019
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0019
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0020
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0020
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0021
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0021
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0021
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0021
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0022
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0022
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0022
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0022
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0022
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0023
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0023
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0023
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0024
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0024
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0025
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0025
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0025
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0025
http://refhub.elsevier.com/S1201-9712(21)00796-7/sbref0025

