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Objectives Universities have turned to SARS-CoV-2 models to examine campus reopening strategies. 

While these studies have explored a variety of modeling techniques, none have used empirical data. 

Methods In this study, we use an empirical proximity network of college freshmen obtained using smart- 

phone Bluetooth to simulate the spread of the virus. We investigate the role of immunization, testing, iso- 

lation, mask wearing, and social distancing in the presence of implementation challenges and imperfect 

compliance. 

Results We show that frequent testing could drastically reduce the spread of the virus if levels of im- 

munity are low, but its effects are limited if immunity is more ubiquitous. Furthermore, moderate levels 

of mask wearing and social distancing could lead to additional reductions in cumulative incidence, but 

their benefit decreases rapidly as immunity and testing frequency increase. However, if immunity from 

vaccination is imperfect or declines over time, scenarios not studied here, frequent testing and other in- 

terventions may play more central roles. 

Conclusions Our findings suggest that although regular testing and isolation are powerful tools, they 

have limited benefit if immunity is high or other interventions are widely adopted. If universities can 

attain even moderate levels of vaccination, masking, and social distancing, they may be able to relax the 

frequency of testing to once every four weeks. 

Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

When SARS-CoV-2 escalated to a pandemic in early 2020, uni- 

ersities and colleges around the world were forced to rapidly 

ivot to virtual instruction. Schools struggled to adapt to a new 

ormal, sending students home as residential campuses, and even 

ntire cities, were locked down to stop the spread of SARS-CoV-2. 

tudies have shown that the rapid shift to virtual instruction ex- 

cerbated pre-existing educational and social inequities, leading to 

earning losses and leaving students feeling unmotivated ( Shin and 

ickey, 2021 ). As the pandemic continued into the summer, uni- 

ersities were faced with a difficult choice: reopen campuses with 

ome return to traditional in-person instruction in order to provide 

 rich educational experience or continue teaching entirely online 

o protect the health of students. 
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In the autumn of 2020, college administrators around the world 

mployed simulations to understand how enhanced public health 

rotocols could mitigate the spread of SARS-CoV-2 on their cam- 

uses. These studies examined various preventive techniques and 

ade different assumptions about compliance with their proposed 

olicies ( Brook et al., 2020; Chang et al., 2020; Christensen et al., 

020; Elbanna et al., 2020; Ghaffarzadegan et al., 2020; Goyal et al., 

021; Gressman and Peck, 2020; Lopman et al., 2021; Paltiel et al., 

020 ). However, although various modeling techniques were em- 

loyed, from compartmental homogeneous mixing models to con- 

act networks to agent-based models, all of these studies only used 

imulated data. 

In their review of COVID-19 modeling studies in a university 

etting, Christensen et al. advocated for more research to be done 

sing empirical mixing data ( Christensen et al., 2020 ). Here we 

ake up that charge and examine how using a real-world contact 

etwork of students on a college campus, ascertained using smart- 

hone Bluetooth data, changes our understanding of the role of 

arious interventions in the mitigation of SARS-CoV-2. As colleges 
ses. This is an open access article under the CC BY license 
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ook to reopen in the autumn of 2021, they will need to navigate a 

apidly changing environment and contend with both more trans- 

issible variants and lower than hoped for vaccine coverage. Uni- 

ersities will need to identify an appropriate approach for their 

pecific student population, one which will likely involve a com- 

lex interplay of interventions, from immunization to repeat test- 

ng and isolation to non-pharmaceutical interventions, like mask 

earing and social distancing. This study seeks to equip univer- 

ities with the necessary information and tools to navigate this 

omplicated decision-making process. While we present a range 

f scenarios here, our study serves as a framework for universi- 

ies to explore the effectiveness of different intervention strategies 

n their own unique setting. Our well-documented code, together 

ith the publicly available data used for this study, allows univer- 

ities to specify their own parameter values to examine scenarios 

hat were not considered in our study. Administrators and public 

ealth officials alike can use our flexible framework to help craft 

vidence-based policies designed to mitigate the spread of COVID- 

9 on college campuses. 

. Methods 

.1. Proximity network 

We employ a close proximity interaction network from the 

openhagen Networks Study (CNS), which enrolled students from 

he Technical University of Denmark. In particular, we focus ex- 

lusively on Bluetooth proximity data acquired from 706 stu- 

ents, which were made publicly available in December 2019 

 Sapiezynski et al., 2019 ). Loaner smartphones were issued to study 

articipants who agreed to use the device as their primary phone 

or the duration of the study. Devices were configured to be Blue- 

ooth discoverable at all times and to scan for nearby devices every 

ve minutes, recording the device ID, a timestamp, and an indi- 

ator of received signal strength (RSSI), which roughly correlates 

ith physical distance. Bluetooth proximity data are available for 

8 days starting in February 2014. In order to model a typical uni- 

ersity semester, we loop through the CNS data four times, thereby 

imulating a total of 16 weeks of interaction data. 

.2. Epidemic model 

To model the spread of SARS-CoV-2, we use a discrete-time 

tochastic susceptible-exposed-infectious-recovered (SEIR) individ- 

al model, with separate states for symptomatic and asymptomatic 

ases. Each day, individuals advance to the next compartment 

r remain in their current one probabilistically. Each person-to- 

erson interaction is treated as an independent event, such that 

he probability of being exposed increases linearly with the num- 

er of interactions with an infectious individual. We allow for pre- 

ymptomatic transmission, as there is a two day period between 

nfectiousness and symptom onset, as well as entirely asymp- 

omatic transmission for asymptomatic cases. The parameter val- 

es are summarized in Table 1 . We investigate low, medium, and 

igh transmission scenarios, which roughly correspond to R 0 val- 

es of 1.5, 3.0, and 4.5, respectively. We explore a range of val- 

es as estimates of R 0 vary widely across studies and settings 

 Alimohamadi et al., 2020 ). The supplement and Figure 5 show ad- 

itional details of our SARS-CoV-2 transmission model. 

In addition to infection via the contact network, we allow each 

ndividual to develop infection due to outside exposure (e.g., in the 

roader community), regardless of their contact network interac- 

ions. We explore high and low levels of community transmission 

o examine the impact of community prevalence and varying levels 

f integration between the campus and the community. Given the 

otential for continued community spread in the absence of very 
326 
igh vaccination rates ( COVID-19 Scenario Modeling Hub, 2021 ) 

nd the increased transmissibility of new variants ( Davies et al., 

021 ), we focus on a setting with higher levels of community 

ransmission. The results obtained for the high community trans- 

ission scenario are presented in the following, and those for our 

ow community transmission scenario are given in the supplement. 

.3. Initial immunity 

While many countries have approved vaccines against SARS- 

oV-2 and are rushing to make them available to their residents, 

he Council on Foreign Relations estimates that it will take years 

or the majority of the world’s population to become immunized 

gainst the virus ( Felter, 2021 ). As such, we explore a wide range

f immunization scenarios, ranging from no immunization to 80% 

f the student population immunized, either due to prior infection 

r vaccination. For simplicity, we assume perfect immunity in our 

odel. 

.4. Testing and isolation 

We consider symptomatic testing and scheduled testing in our 

imulations, and assume that both were done via polymerase chain 

eaction (PCR). Symptomatic testing occurs when a student seeks a 

est after experiencing symptoms. In order to account for individ- 

als who may experience non-COVID related flu-like symptoms, a 

raction of non-infectious individuals also present for symptomatic 

esting each day. Under scheduled testing, every member of the 

opulation is tested regularly in an effort to identify additional 

ases that would otherwise go undetected. Individuals are tested 

t regular intervals so the time between tests is constant for each 

tudent, although a small fraction of the population is set to be 

on-compliant each day. Both types of testing incorporate time- 

ependent sensitivity; SARS-CoV-2 test sensitivity is highly cor- 

elated with viral load, which varies over the course of the in- 

ection. To account for this, we use the empirical test sensitivity 

erived from nasopharyngeal swab data by Wikramaratna et al. 

 Wikramaratna et al., 2020 ). Since their model only included the 

ime after symptom onset, we impute pre-symptomatic test sensi- 

ivity, mirroring the post-symptomatic sensitivity so that the sen- 

itivity two days prior to symptom onset is the same as that two 

ays after symptom onset. This is consistent with literature show- 

ng that viral load peaks at symptom onset, with similar loads pre- 

nd post-symptom onset ( Johansson et al., 2021 ). Additional details 

re provided in the supplement and Figure 6. Upon testing positive, 

ndividuals are placed in isolation. For each set of parameter val- 

es, we examine scheduled testing frequencies of three, seven, 14, 

nd 28 days, as well as no scheduled testing. 

.5. Mask wearing and social distancing 

We also consider a setting where student behavior leads to 

ndividual-specific transmission rates. We specify a proportion of 

he population that would wear face masks and randomly assign a 

ubset of the population to abide by social distancing. Both inter- 

entions are implemented as reductions in the transmission rate, 

nd these reductions are assumed to be linear. Since homophily, 

he tendency for people to associate with others whom they per- 

eive to be similar to themselves, is typically present in social 

etworks ( McPherson et al., 2001 ), we hypothesized that friend 

roups might share similar views about COVID-19 and related mit- 

gation effort s. Theref ore, we consider both clustered and non- 

lustered assignment of mask wearing across the network, a sce- 

ario that cannot be studied with standard epidemiological mod- 

ls. To create clusters of mask users, we create a weighted con- 

act network for the entire study period and select a set of initial 
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Table 1 

Parameters for simulation scenarios. The transmission probability, β , is per five-minute interaction 

with an infectious individual. All other epidemic transition parameters are per day, giving an average 

latent period of three days and an average infectious period of seven and 12 days for asymptomatic and 

symptomatic cases, respectively. Test sensitivity is time-varying. For distributions, values represent the 

means and standard deviations, respectively. An overview of the epidemic model is shown in Figure 5. 

Additional details are presented in the corresponding sections of the supplement. 

Epidemic Model 

β 0 . 003 − 0 . 009 probability of transmission per five-minute interaction 

πex _ hi Normal( 0 . 002 , 0 . 0 0 01 ) probability of external infection per day – high scenario 

πex _ lo Normal( 0 . 0 0 05 , 0 . 0 0 01 ) probability of external infection per day – low scenario 

πai 0 . 3 probability of asymptomatic infection 

| I 0 | 1 number of initial infections 

σa 1 / 3 transition probability: exposed to asymptomatic infectious 

σs 1 / 3 transition probability: exposed to symptomatic infectious 

γa 1 / 7 transition probability: asymptomatic infectious to recovered 

γs 1 / 12 transition probability: symptomatic infectious to recovered 

Testing 

πse 0 − 0 . 96 sensitivity, time-varying 

πsp 0 . 99 specificity 

τsy 1 day delay between symptom onset and symptomatic testing 

πsc Normal( 0 . 025 , 0 . 01 ) probability non-compliant with scheduled testing 

πsy Normal( 0 . 25 , 0 . 1 ) probability non-compliant with symptomatic testing 

π f s 0 . 005 probability non-infectious present for symptomatic testing 

Isolation 

τid 1 day delay between testing and entering isolation 

πic Beta( 0 . 91 , 0 . 11 ) isolation compliance 

τip 10 days isolation period 

Transmission Mitigation 

η f m Normal( 0 . 15 , 0 . 0684 ) reduction in transmission probability for mask wearing 

ηsd Normal( 0 . 18 , 0 . 0734 ) reduction in transmission probability for social distancing 

π f m 0 − 1 proportion of the population wearing face masks 

πsd 0 − 1 proportion of the population social distancing 

πim 0 − 0 . 8 proportion of the population immune 
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ask wearers uniformly at random. We then “spread” mask wear- 

ng to their contacts, where neighbors with more interactions have 

 higher probability of adopting a face covering. This process is 

terated until the desired proportion of mask wearers is reached. 

ore details are provided in the supplementary information. 

. Results 

After removing non-participating devices and empty scans from 

he Bluetooth data, 2,426,279 Bluetooth pings (44.3% of all pings) 

nd 692 users (98.0% of all users) remained, indicating that 14 

sers had no proximity events involving other study participants. 

he proximity networks for each of the 28 days considered in this 

tudy are shown in Figure 3 in the supplement. The networks have 

 large connected component on weekdays when students were 

ikely active on campus and attending classes. On the weekends, 

he networks were more loosely connected, with fewer users in- 

eracting with fellow study participants, as shown in the first and 

ast columns in Figure 3. 

The incidence rates for our moderate ( R 0 ≈ 3 . 0 ) transmission 

cenario with various levels of the population immune from the 

utset are shown in Figure 1 . Regardless of immunization level, in- 

reasing the testing frequency reduced the number of infections 

bserved over the course of the semester, although the effect was 

elatively small if 60 − 80% of the population was immune. Under 

o immunization, testing every three days resulted in 42 . 7% of the 

tudents being infected by the end of the semester on average, 

hereas testing every seven, 14, and 28 days led to 47 . 5 % , 56 . 2 % , 

nd 61 . 6 % of students infected, respectively (no scheduled testing: 

6 . 1 % ). However, with 80% immunized, testing every three days re- 

ulted in 12 . 3 % of students infected by the end of the semester 

n average, with no scheduled testing giving rise to 15 . 8 % of stu- 
327 
ents infected on average. Thus, while increased testing and sub- 

equent isolation impacted the number of infections for a given 

mmunization level, ultimately increasing the population immunity 

ed to commensurate or greater reductions in incidence. Incidence 

or our low ( R 0 ≈ 1 . 5 ) and high ( R 0 ≈ 4 . 5 ) transmission scenarios 

re shown in the supplement (see Figures 9 and 10). 

Under no immunization, the average time required to infect 

0% of all students was 24 days without any testing or isolation, 

hereas testing just once every four weeks increased this time to 

5 days, and testing twice each week resulted in 10% of students 

eing infected on day 30 on average ( Figure 1 ). However, when 

0% of the population was immune, testing every three days could 

xtend this period by 11 days, and with 40% of the population im- 

une, frequent testing could spread infections out even further, 

hereby giving universities an additional two weeks. These find- 

ngs demonstrate that when combined with regular testing, even 

odest levels of immunity can help universities flatten the curve, 

ltimately saving resources and reducing the cost of mitigation ef- 

orts. 

The number of positive tests and number of people isolated are 

hown in Figures 7 and 8, respectively. These metrics allow uni- 

ersities to estimate the resources required to mitigate the spread 

f COVID-19 among their student population in terms of resources 

pent on interventions and lost opportunity costs. For instance, the 

umber of students isolated over the course of the semester also 

orresponds to the number of missed school days, allowing univer- 

ities to quantify both the resources needed to quarantine students 

nd the lost educational opportunities associated with quarantine. 

urther details are provided in the supplement. 

The results obtained for our mask wearing and social distancing 

cenarios under moderate transmission ( R 0 ≈ 3 . 0 ) are presented in 

igure 2 , which shows the mean percentage of the student pop- 
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Fig. 1. Number of students infected over the course of a simulated 16-week semester for R 0 ≈ 3 . 0 and high levels of transmission from the community. Rows show 

different proportions of the population immunized, as annotated on the right. Columns show scenarios where scheduled testing was conducted every three, seven, 14, and 

28 days, respectively, and no scheduled testing. Grey lines denote individual simulations. Blue lines indicate the point-wise average trajectory over all 100 replicates. Vertical 

red lines and text indicate the average times to reach 10% of the population infected, which were computed by identifying the time required to reach 10% infected for each 

realization and averaging those times. 
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lation infected at the end of the semester. Testing was most ef- 

ective at reducing cumulative incidence under low levels of im- 

unity and low to moderate levels of mask wearing and social 

istancing. When mask wearing and social distancing were ubiq- 

itous, more frequent testing offered only small decreases in the 

umulative incidence as the virus was already well controlled. Sim- 

larly, initial immunity in even a small fraction of the population 

educed the impact of regular testing. Under no immunity, testing 

very three days resulted in sizeable benefits when mask wear- 

ng and social distancing were below 60% . However, with 20% and 

0% immune, testing every three days only provided sizeable bene- 

ts when mask wearing and social distancing were below 40% and 

0% , respectively. Somewhat surprisingly, little to no decrease in 

fficacy occurred when mask wearing was clustered on the contact 

etwork, perhaps due to the highly connected nature of the net- 

ork (see Figure 11). If universities can achieve even moderate lev- 

ls of immunity, mask wearing, and/or social distancing, our sim- 

lations demonstrate that they may be able to test less frequently 

ith little or no change in the cumulative incidence. 

To compare the effectiveness of testing and isolation, mask 

earing, social distancing, and immunity, we conducted a regres- 
328 
ion analysis based on the cumulative incidence over all of our 

oderate transmission simulations ( R 0 ≈ 3 . 0 ). The cumulative in- 

idence decreased by 3 . 95 or 0 . 57 per 100 students for every one 

eek increase in the testing frequency. Every 10% increase in the 

roportion of the population conforming to social distancing re- 

uced the cumulative incidence by 4 . 47 or 0 . 65 per 100 students. 

ikewise, each 10% increase in the proportion wearing masks re- 

uced the cumulative incidence by 5 . 76 or 0 . 83 per 100 students. 

inally, each 10% increase in the proportion with immunity de- 

reased the cumulative incidence by 17 . 08 or 2 . 47 per 100 stu- 

ents. Thus, while testing might be straightforward for colleges to 

nforce, it provides much smaller reductions in cases than mask 

earing and social distancing. As expected, increasing population 

mmunity resulted in the greatest reduction in cumulative inci- 

ence. 

. Discussion 

While the past year has given us the promise of effective vac- 

ines and greater insight into the dynamics of SARS-CoV-2, schools 
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Fig. 2. Cumulative percentage infected for various proportions of the population social distancing and/or wearing masks for R 0 ≈ 3 . 0 . Cell values indicate the pro- 

portion of the population infected by the end of a simulated 16-week semester. Rows show different proportions of the population immunized, as annotated on the right. 

Columns show scenarios where scheduled testing was conducted every three, seven, 14, and 28 days, respectively, and no scheduled testing. 
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re still facing an uncertain future. With bumpy vaccine roll-outs 

n some areas of the world and financial strains due to decreased 

nrollment, many colleges wonder how they will be able to return 

o some sort of normalcy and what steps they can take to accel- 

rate the process ( St. Amour, 2020 ). The 2015 United Nations Sus- 

ainable Development Goals aim to ensure both healthy lives and 

nclusive and equitable quality education ( United Nations, 2015 ). In 

rder to continue to advance toward these objectives, it is impor- 

ant to determine how schools can reopen safely, thereby allowing 

hem to deliver quality education while promoting well-being. 

In this study, we endeavored to help universities navigate the 

hallenges of reopening by examining the efficacy of regularly 

cheduled (i.e., screening) testing in a residential college popula- 

ion in conjunction with various levels of immunization. We found 

hat while testing should be an integral part of every university’s 

itigation strategy, moderate levels of immunity, mask wearing, 

nd social distancing can allow universities the freedom to test less 

requently. As such, if colleges can achieve high vaccination rates, 

hey may be able to relax testing to just once or twice each month, 

aving valuable resources. While our focus is on a university set- 

ing, our methods and results could be applied to other residential 

nvironments. 

In contrast to previous studies, we used a real-world contact 

etwork as the basis for our simulations, allowing us to capture 

he underlying heterogeneous social behavior of college students, 

hich undoubtedly alters how the virus spreads. In addition, many 

revious studies in this area accounted for only a small number 

f implementation obstacles and compliance issues. We allowed 

or external infections, a background rate of influenza-like illness, 

ime-dependent test sensitivity, and test result delays, as well as 

tudent non-compliance throughout the testing and isolation pro- 

ess. 

The close proximity data we employed were collected long be- 

ore the pandemic when students did not limit their interactions 
329 
ith others. Therefore, our data represent a worst case scenario 

here students do not reduce their contacts with others. How- 

ver, when students reduce their contacts with others, they are 

ffectively practicing a form of social distancing. Thus, these pre- 

andemic contact patterns were necessary in order to study the 

ffects of social distancing interventions, a goal of this study. 

While vaccines do not provide perfect immunity, the mRNA 

accines currently being employed are highly effective at reducing 

nfections and ostensibly effective at reducing transmission among 

hose who become infected ( Haas et al., 2021 ). Although we as- 

umed perfect immunity in our simulations, our population immu- 

ity levels could be mapped to effective immunity levels in order 

o account for imperfect immunity and resultant breakthrough in- 

ections. 

While our model incorporated many of the challenges we ex- 

ect universities to face on campus, we did not explicitly model 

ontact tracing. Although contact tracing can be an effective tool 

hen implemented appropriately ( Cencetti et al., 2021; Ferretti 

t al., 2020 ), it is often a resource-intensive undertaking, one that 

equires access to information on social contacts, access college 

tudents may be hesitant to grant. We also did not estimate the 

umber of adverse outcomes expected to occur, although deaths 

nd hospitalizations could be approximated from our results if 

dditional assumptions are made. Finally, we did not incorporate 

ny seasonal variation in the transmission of SARS-CoV-2, although 

ew research suggests that in temperate climates transmission is 

ignificantly higher in the winter, when schools are in session, than 

n the summer ( Gaven ̌ciak et al., 2021 ). Thus, universities should 

onsider their specific climate conditions when considering the 

isease burden they may face. 

While this work provides novel insights into how immuniza- 

ion, repeat testing, isolation, and other strategies can reduce the 

pread of SARS-CoV-2 on college campuses, it is important to note 

hat there is no one-size-fits-all approach ( Bradley et al., 2020 ). 



H.L. Hambridge, R. Kahn and J.-P. Onnela International Journal of Infectious Diseases 113 (2021) 325–330 

T

c

a

i

n

F

o

H

C

N

T

i

E

D

a

7

s

G

C

t

t

m

r

D

c

i

A

a

o

S

f

R

A  

B  

B  

C  

C  

C  

D  

E  

F  

F  

G  

G

G

G

C

H  

J  

L  

M  

U

P

S  

S  

S

W  
he most successful schools will tailor their approach to their spe- 

ific situation and adapt as circumstances change. Indeed, the most 

dvantageous strategy may be an agile approach, one where test- 

ng frequency is adjusted based on the current transmission dy- 

amics, an approach which has yet to be studied rigorously. 
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