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ABSTRACT

A major effort in cancer research is to organize the
complexities of the disease into fundamental traits.
Despite conceptual progress in the last decades and
the synthesis of hallmark features, no organizing
principles governing cancer beyond cellular features
exist. We analyzed experimentally determined struc-
tures harboring the most significant and prevalent
driver missense mutations in human cancer, cover-
ing 73% (n = 168178) of the Catalog of Somatic Mu-
tation in Cancer tumor samples (COSMIC). The re-
sults reveal that a single structural element––�-helix
(polyproline II helix)––lies at the core of driver point
mutations, with significant enrichment in all major
anatomical sites, suggesting that a small number of
molecular traits are shared by most and perhaps all
types of cancer. Thus, we uncovered the lowest pos-
sible level of organization at which carcinogenesis
takes place at the protein level. This framework pro-
vides an initial scheme for a mechanistic understand-
ing underlying the development of tumors and pin-
points key vulnerabilities.

INTRODUCTION

The dominant view of cancer research assumes that rules
governing the transformation of normal cells into malig-
nant cells share common traits. Thus, a major effort was put
into organizing the complexities of the disease into a small
number of molecular, biochemical and cellular traits. In the
landmark, thought-provoking review, Hanahan and Wein-
berg integrated and dissected the deluge of information on
cancer biology into general cell biology properties necessary
to achieve the cancer phenotype (1). Not free of critique,

nearly a quarter-century after defining the hallmarks of can-
cer, they remain the blueprints for understanding the core
traits of cancer (2–5). This framework was synthesized as
acquired capabilities and enabling characteristics on the cel-
lular level that are regulated by cancer-associated signaling
pathways (1,3). These hallmarks were central to the strategy
applied since 1971 when the National Cancer Act was de-
clared with the aim of reaching a mechanistic understand-
ing of cancer to develop more effective treatments (6). Since
then, technical improvements and advances in structure de-
termination and sequencing techniques have revolutionized
cancer research and its analytical depth. However, a mecha-
nistic understanding of the structural components of molec-
ular aberrations driving cancer remains elusive by any ob-
jective evaluation.

The focus on genomic aberrations stems from the diver-
sity and acquired capabilities during carcinogenesis that de-
pend largely on the succession of alterations that perturb
the normal function of proteins. Most mutations do not
confer a cancer hallmark or contribute directly to the tu-
mor phenotype (7), whereas specific mutations in tumor
suppressors and oncogenes confer a clear selective advan-
tage to the cancer cells in the local tissue environment and
enables their outgrowth (3). Driver mutations, defined by
their ability to ‘drive’ tumor progression, are often catego-
rized into two types: gain-of-function (GoF) and loss-of-
function (LoF) (8).

The study of genomic aberrations, and mainly coding mu-
tations, has been focused on the phenotypic consequences
of distinct GoF and LoF mutations; whereas, common
structural basis for mutations is lacking. To date, mutations
are often classified as detrimental, damaging, intolerant or
destabilizing (9–12) without a clear delineation of the con-
trasting functions (i.e. GoF versus LoF) or conflicting as-
sociations. For example, many mutations have minimal ef-
fect on protein stability or free energy, while others hyper-
stabilize the active conformation (13,14). The rationale for
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studying cancer genomics and proteomics was to uncover
the lowest possible level of organization at which tumorige-
nesis occurs (5). However, no conceptualization beyond cel-
lular physiology exists, indicating that dissecting the com-
plexities of cancer biology further into molecular and bio-
chemical traits is a key challenge.

MATERIALS AND METHODS

Cancer mutation dataset

Mutation data were obtained from the Catalog of Somatic
Mutation in Cancer (COSMIC) repository v94 represent-
ing the largest and most comprehensive resource of hu-
man somatic mutations (15). Specifically, driver mutations
were downloaded from the Cancer Gene Census, which
contains mutations that have been causally implicated in
cancer (16). We used genes classified in Tier 1 defined as
such on the basis of documented and reproducible activ-
ity relevant to cancer and well-defined evidence of chang-
ing the activity of the gene product in a way that promotes
oncogenic transformation (16). To gain further support for
the significance of the mutations, we excluded variants not
associated with pathogenic activity (minimal clinical sig-
nificance below 4) as annotated by ClinVar (17) based on
the American College of Medical Genetics and Genomics
(ACMG)/Association for Molecular Pathology (AMP) rec-
ommendations (18). Also, to select the most important vari-
ants, we included prevalent mutations based on the follow-
ing criteria: at least 10 unique mutated samples, and the ra-
tio of mutated to tested tumor samples was at least 0.05%.
Finally, we manually curated experimental evidence from
the literature. We included all type of coding mutations,
except nonsense mutations since their structural implica-
tions cannot be attributed with certainty to a single posi-
tion. We identified 205 driver mutations in 45 driver genes at
133 unique positions, all of which were missense mutations.
Further support of this set of driver genes was provided by
recent studies that explored the sequence context of driver
mutations and identified them as pathogenic (19–21).

Structure collection

Protein 3D structures determined by X-ray crystallogra-
phy or electron microscopy with a resolution cut-off of
<3.5 Å were download from the Protein Data Bank (PDB)
database (22). Mapping between the PDB structure and the
wild-type (WT) or mutated variant was performed using
the R package MAPDB. If more than one structure was
identified for a given variant, we selected the PDB with the
lowest resolution and regular secondary structure assign-
ment. PDB structures missing the residue of interest were
excluded. Also, structures with irregular or phosphorylated
residues near the variant were excluded.

PISCES dataset

A representative dataset of nonredundant high quality X-
ray structures was downloaded from PISCES on 6 Novem-
ber 2020 (23). The structures were culled from the PDB at
20% sequence identity, with resolutions better than 1.6 Å
and R-factors <0.25, yielding 3757 models.

Functional role assignment

The effects of mutations can be defined in several ways and
described on several levels. Variants can lead to myriad of
activities causing complex GoF or LoF associations that
highly depend on the experimental system. Thus, the inter-
pretation of the functional role can lead to conflicting con-
clusions, especially when characterizing the effects on sig-
naling pathways. Also, classification of mutations based on
biochemical assays, e.g. effect on phosphorylation, could
be caused by the mutation directly or indirectly. Further,
mutations can generate similar effects by destabilizing the
inactive state or stabilizing the active state. Therefore, to
characterize the most fundamental effects of the aberra-
tion and avoid ambiguous classification, we focused on ev-
idence of the direct structural and functional implications
and the main mode of action. Mutations associated with
loss of functionality but gained important neomorphic ca-
pabilities were considered GoF mutations. For example,
mutations leading to a new protein–protein interaction at
the expense of another or shifted the substrate specifici-
ties (24). For P53 mutations lacking sufficient experimental
evidence, we utilized data from the IARC TP53 database
(https://p53.iarc.fr/) (25).

Secondary structure assignment

The initial assignment of secondary structures was per-
formed using STRIDE (26). We used DSSP (27) to assign
bends at irregular structures and expanded the turn as-
signments. The commonly used assignment programs do
not assign �-helix (alternative designation for polyproline
II [PPII]). Therefore, to assign �-helix we used the method,
which was recently introduced (28,29).

We calculated the root-mean-square dihedral deviations
(RMSdD) of the peptide backbone torsional angles � and
� as a measure of the average deviation from a reference
�-helix. The RMSdD of � and � angles is given by

RMSdDφ =
√√√√ 1

N

N∑
i=1

(φi − φr )2 (1)

RMSdDψ =
√√√√ 1

N

N∑
i=1

(ψi − ψr )2 (2)

where N is the total number of residues with calculated tor-
sional angles φi and ψi , and φr and ψr are the reference an-
gles of � = −78◦, � = 146◦ (30). The mean RMSdD, which
incorporates both torsional dihedral angles, is then given by

RMSdD = RMSdDψ + RMSdDψ

2
(3)

To include short segments of �-helix, at least two consec-
utive residues with mean RMSdD below the cutoff (ε) of 17
were defined as the criteria for the assignment (28,31,32).

Overall, we assigned the following regular secondary
structures: �-helix, �-helix, �-strand, k-helix, 310-helix
(Figure 1A), as well as nonregular secondary structures:
bend, bridge, coil, �-turn, �-turn, �-turn or unclassified

https://p53.iarc.fr/
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Figure 1. Overview of the structural landscape of missense driver mutations. (A) Illustration of the regular secondary structures in ribbon representation in
two views. Carbons are represented as black spheres. (B) Distribution of the structural elements in the selected PDB models for each gene. (C) Circos plot
representation of the most prevalent and significant missense driver mutations in human cancer covering 73% (n = 168 178) of COSMIC tumor samples.
Left: Track order: functional role (GoF and LoF are colored in dark and light gray, respectively) (i); secondary structure of the native variant (ii), number
of variants at the position (iii) and SIFT score (iv). The central donut chart depicts the proportion of tumors with missense driver mutations targeting the
secondary structures. Right: circos plot distribution of mutations in various cancers.
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turn (U-turn). Of note, none of the residues in our dataset
were assigned to �-helix.

Structural characterization

To investigate the major structural components forming
the environment of the variants, we characterized the as-
sociation with nearby neighboring residues. We stratified
the nearby residues into flanking and interacting residues.
Flanking residues were defined as the three residues N- and
C-terminal to the variant (up to six in total). Variant in-
teracting residues were determined if they formed any non-
covalent interactions, including van der Waals using a dis-
tance cut-off of <5.0 Å. Structural analyses were performed
with the Bio3D package (33) in R version 4.0.3. Flanking
residues which also interacted with the variant remained
with the original annotation.

Characterization of post-transcriptional modifications

To determine the relationship between the structural fea-
tures of driver mutations and residues harboring post-
transcriptional modifications (PTMs), we obtained data
from PhosphoSitePlus (34). We considered nearby PTMs
if the site was no more than three residues from the vari-
ant, flanking or interacting residues. The PTMs included
phosphorylation, ubiquitination, methylation, acetylation,
SUMOylation, O-GlcNAcylation and O-GalNAcylation.

Molecular visualization programs

The PDB structures were visualized using PyMOL 2.4.1
(35) and the academic version of Schrodinger Maestro
v12.5 (36). Specifically, aligned PDB structures were vi-
sualized using PyMOL, and reassigned secondary struc-
tures were visualized using Maestro v12.5. �-helices and 310-
helices were represented as ribbons and tubes, respectively.
Ribbons were drawn passing through alpha carbons.

Statistical methods

The association between the secondary structure of the vari-
ant and the abundance or the functional roles was estimated
using the Chi-square test. Odds ratio estimates and 95%
confidence intervals were calculated using the R package
epiR. The Haldane–Anscombe correction was used when
one of the cells had zero value. P-values are two-sided with
a Bonferroni correction for multiple comparisons.

RESULTS

Here, we identified the most prominent mutations which
drive different types of human cancer based on their sig-
nificance and prevalence in the COSMIC database (15) (see
Materials and Methods section). Each variant was curated
and annotated as GoF or LoF based on the literature.
Structural analysis was performed on low-resolution solved
structures containing the native or mutated residue. We as-
signed the secondary structure of the selected PDB mod-
els using STRIDE (26) and DSSP (27). Since �-helix, com-
monly known as polyproline type II helix, is not assigned

by the widely used programs, a recently introduced method
was used for this assignment (28,29). Briefly, we calculated
the RMSdD of the peptide backbone torsional angles � and
� as a measure of the average deviation from a reference �-
helix (31,32).

We collected and curated the functional role of 205 (60%
GoF and 40% LoF) driver mutations at 133 unique sites
in 45 tumor suppressor and oncogenes from the COS-
MIC database and assigned the following secondary struc-
tures: �-helix, �-helix, �-strand, �-helix and 310-helix (Fig-
ure 1A), as well as nonregular secondary structures: bend,
bridge, coil, �-turn, �-turn, �-turn or unclassified turn (U-
turn). Of note, none of the variants or structures contained
residues assigned as �-helix (Figure 1B). Solved structures
of mutated proteins were identified for 22% (45/205) of the
dataset; therefore, we focused on the structural analysis of
the WT variants. The distribution of the driver mutations
across 45 genes and 20 anatomical sites is shown in Fig-
ure 1C and Supplementary Figure S1. This compilation of
driver mutations covers 73% (n = 168 178) of all sequenced
tumors in COSMIC with missense mutations, which pro-
vides extensive coverage of the genomic landscape of driver
mutations in human cancer (Supplementary Table S1). Over
96% of tumor samples contained only one driver mutation
(Supplementary Figure S2). Notably, we found that a sin-
gle structural element, �-helix, covers 58% of the tumors in
which at least one variant is assigned with this motif in the
WT form. The next structures were far less prevalent with
7.3% and 4.3% for �-helix and �-turn, respectively.

Given the observation that �-helix, as the target of driver
mutations, makes up the bulk of tumor samples with 81%
(n = 135 312) of the dataset (Figure 2A–D), we further
explored the structural composition of the mutations. The
most represented genes were JAK2, KRAS, BRAF and
TP53, with �-helix being the most common structural el-
ement (Figure 2D). The distribution of structural motifs
across different tumor types reveals a consistent pattern,
with �-helix being the most widespread assignment (Fig-
ures 2C and 3A). Exceptions include breast and urinary
tract cancer with �-helix and U-turns, respectively, the most
common conformations, followed by �-helix. In breast can-
cer, this can be explained by a high rate of PIK3CA mu-
tations, most of which occurred at �-helices (Figure 2D).
Comparison between the WT and mutated forms demon-
strated that the structural assignment was not affected by
the aberration in most variants (69%), indicating that muta-
tions tend to maintain the WT secondary structure (Figure
2E). Further, �-helix persisted as the predominant structure
in mutated form (Figure 2E, Supplementary Figures S6). To
gain insights into the functional role of the structural motifs
in tumor biology, we stratified the variants into GoF and
LoF mutations. Figure 2F shows a distinct pattern where
�-helices dominated GoF mutations with 68%. In LoF, the
most common structural motifs were �-helices (48%) and
�-strands (28%).

We next examined whether the increased proportions of
the structural components reflect their relative abundance
or are over-represented in the dataset. Analysis of hyper-
geometric distribution (Figure 3B) revealed significant and
exclusive enrichment of �-helix in driver mutations (odds
ratio (OR) = 2.2, 95% confidence interval (CI): 1.5–3.1,
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Figure 2. Structural characterization of missense driver mutations. (A) Proportion of tumors among 168 178 samples with identified missense driver
mutations targeting the various secondary structures. Right bar, proportion of tumors with mutations annotated as gain-of-function (GoF) or loss-of-
function (LoF). (B) Representative conformations targeted by mutations in tube representation with each residue colored in a different color. Shown are
structurally aligned structures of �-helices, �-strands and �-helices with at least three, two and four residues, respectively. (C) Distribution of missense
driver targeting the secondary structures stratified by anatomical tumor site. (D) Per-gene prevalence of structural motifs based on the amount of driver
mutations (left) or the amount of tumor samples harboring the mutations (right). (E) Association between the wild-type (WT) and mutated conformations
for 45 variants (GoF: 34, LoF: 11). (F) Structural characterization of residues targeted by 205 variants stratified by functional role (GoF: 123, LoF: 82).
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Figure 3. Enrichment of structural elements in driver mutations. (A) Summary of tumors with missense driver mutations targeting the secondary structures
stratified by anatomical tumor site. (B) Enrichment of secondary structures of driver mutations in tumor samples (n = 168 178 samples) and (C) among
gain-of-function (GoF) versus los-of-function (LoF) mutations (n = 133 unique sites). (D) Enrichment of structural elements in driver mutations among
all structures in the dataset (left) and over-representation in GoF, LoF and among GoF versus LoF mutations (n = 133 unique sites) (right panels). Odds
ratios are shown on a logarithmic scale. Bonferroni-adjusted P-values for multiple testing are shown.
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Figure 4. Structural characterization of the environment of missense driver mutations. Proportion of secondary structures of the variant, flanking or
interacting residues of the wild-type (WT) form for (A) all (n = 205), (B) gain-of-function (GoF) (n = 123) and (C) loss-of-function (LoF) (n = 82)
mutations. (D) Heatmap depicting the number of associations between the conformation of the WT variant (Y-axis) and the flanking or interacting
residues (X-axis). Proportion of variants with at least one residue forming the conformation in the (E) flanking and (F) interacting residues. To focus on
the unique tendency of conformations to flank the variant, proportions shown for elements different than that of the variant. Relationship between the
conformations of the variants and corresponding interacting or flanking residues in (G) GoF and (H) LoF driver mutations in the WT form.

P = 6.5e-05). This is mostly attributable to �-helix enrich-
ment in GoF mutations (OR = 5.9, 95% CI: 3.7–9.4, P =
1.2e-15). In LoF mutations, �-strands were significantly en-
riched (OR = 4.3; 95% CI, 2.5–7.6, p = 2.3e-7), but not �-
helices owing to the high abundance in proteins (Figure 1B).
The enrichments improved when we used a large representa-
tive ensemble of sufficiently diverse protein structures with
low resolutions, with significant enrichment in all anatomi-
cal sites (Supplementary Figure S3). The length distribution
for the structural motifs is shown in Supplementary Figure
S4. When evaluating the association between the functional
role of the variants and the secondary structure regardless
of their abundance, �-helices were significantly enriched in
GoF in all tumor types, including breast and urinary tract
cancer (Figure 3C–D). In contrast, �-helices and �-strands
were significantly enriched in LoF.

To investigate the major structural components forming
the environment of the variants, we characterized the asso-
ciation with nearby neighboring residues: flanking (within
three amino acids) and interacting residues (Figure 4, Sup-
plementary Figures S5 and S6). We found that the pri-
mary motif in the local environment of the variant was �-

helix in both types of mutations (Figure 4A). In GoF and
LoF, the �-helical motif was implicated in 94% and 91%
of the variants in the native state, respectively, albeit with
contrasting differences (Figure 4B and C). High GoF pro-
portions of �-helix are mainly attributable to the variant
structure, whereas high LoF proportions are attributable to
the interacting and flanking residues (Figure 4D–H). Re-
markably, �-helix was implicated in over 99% of the tu-
mor samples when considering both the variant and the
local environment (Supplementary Figure S7). This obser-
vation indicates that nearly all driver mutations target �-
helix or affect it directly. The next frequent elements were
bends (87%) which tend to flank �-helices in GoF muta-
tions (Figure 4D and G). We explored the relationship be-
tween the structural features of the driver mutations and
PTMs. Figure 5A depicts the distribution of PTMs and
the associated structural assignments, with phosphoryla-
tion being the most common modification, whereas no rel-
evant glycosylation or SUMOylation sites were identified.
Consistent with the assignment of the variants in the native
state, the most abundant conformation of PTM sites were
�-helices with 29% of variants and 35% of GoF variants
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Figure 5. Structural characterization of the post-transcriptional modification (PTM) sites associated with missense driver mutations. (A) Conformational
distribution of PTM sites associated with the variant and its surrounding. Summary of variants with PTM sites for (B) all, (C) gain-of-function (GoF) and
(D) loss-of-function (LoF) driver mutations in the wild-type (WT) form. PTM sites were considered if they were positioned within three amino acids from
a flanking or interacting residue.

(Figure 5B–D). Conversely, �-helices were slightly more
represented in LoF variants (26%), followed by �-helices
(21%) and �-strands (18%).

DISCUSSION

In this study, we found that most driver mutations occur
at a distinct structural motif and share the �-helix confor-
mation, which is also associated with the vast majority of
tumor samples. Thus, the �-helix conformation serves as
the dominant form targeted by driver mutations, suggesting
that it represents the lowest denominator in carcinogenesis.
This observation provokes a number of questions. What is
unique about the �-helical conformation? Why is it enriched
in cancer? How has it fallen under the radar?

�-helix, commonly known as polyproline type II helix,
is an elongated left-handed structure, with three residues
per turn and a 3-fold rotational symmetry along the he-
lical axis (29). Thus, the motif exhibits the least number
of residues required to cover the full range of 360 degrees
in the stereochemical space (Figures 1A and 2B). The ex-
tended character of �-helix does not support regular pat-
terns of intrachain hydrogen bonds, allowing for fast con-

formational changes (37). Since other noncovalent interac-
tions can stabilize �-helix, its unsatisfied hydrogen bonds
are free to engage with the surrounding residues (37). To-
gether, the flexibility and the availability of hydrogen bonds
make the structure an ideal molecular switch or a bind-
ing motif. The structural element has been described as a
‘functional block’ as it is often linked to a specific function,
including allosteric regulation and protein–protein interac-
tions (28,38). Thus, it is not surprising that mutations occur
at �-helices that participate in the regulation and binding in-
terfaces of oncogenes and tumor suppressors and alter their
on/off states or typical interactions. Despite extensive re-
search into the structural and functional properties of can-
cer mutations, �-helix as a key player in driver mutations
has been overlooked, which can be ascribed to several rea-
sons. First, the conformation is not assigned by the widely
used secondary structure assignment programs, including
DSSP, which are employed in the PDB (32), and relatedly,
lack any graphical representation in molecular visualization
programs (28,29). Second, although prolines have a high
propensity to form the conformation, hence the historical
term ‘polyproline’, it has been widely criticized for its mis-
leading association with mostly prolines, while proline-free
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Figure 6. Proposed model of functional capabilities at the molecular level acquired by driver mutations (A). Illustrative example showing the effect of
mutations targeting �-helix or �-helix leading to gain-of-function (GoF) or loss-of-function (LoF) mutations (B).
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structures are just as common or possibly more common in
proteins (28,29,32,38).

Although our analyses show that �-helix stands out
among all secondary structures, driver mutations target dif-
ferent regions in GoF and LoF mutations. We found that
GoF mutations tend to occupy �-helices, which are asso-
ciated with greater flexibility that may facilitate activating
conformational changes and neomorphic binding affinities.
In contrast, LoF mutations tend to target the structurally
rigid �-helices and �-strands that are responsible for main-
taining stability at allosteric regulation sites and binding
interfaces, which are often mediated by nearby flexible re-
gions such as �-helix. Such observations are increasingly
supported by in-depth structure–function analysis of driver
mutations (39,40).

The binary categorization of driver mutations into GoF
and LoF is useful but cannot accommodate the range of
functions of mutations in cancer. We suggest that the vast
catalog of driver mutations is a manifestation of six essential
alterations in the molecular machinery governing cancer bi-
ology (Figure 6): gain of interaction, gain of activation, gain
of reaction, loss of interaction, loss of repression and loss of
reaction. These structural alterations––acquired during tu-
mor development––represent mechanistic underpinning for
enabling reprogramming of hallmark capabilities by cellu-
lar circuitry. Analogous to the synthesis by Hanahan and
Weinberg, we propose that these six molecular hallmarks of
cancer are shared in most or perhaps all types of human
cancer.

Examples of oncogenic GoF driver mutations arising
in �-helices and involving these molecular hallmarks in-
clude: P53R175H disrupting the recruitment of MRN/ATM
to DNA damage sites by physically interacting with Mre11,
leading to ATM inactivation (41); JAK2V617F hypersta-
bilizing the stimulatory state using steric mechanism on
JH1 domain and enhancing JAK2 activity (13); IDH1R132

mutants gain neomorphic enzymatic activity by convert-
ing �-ketoglutarate to 2-hydroxyglutarate and modulating
metabolic effects (42). In contrast, examples of LoF driver
mutations in tumor suppressors arising in rigid elements,
such as �-helix, include DNMT3AR882H that disrupts WT
tetramers leading to reduced methyltransferase activity
(43), whereas PTENR130G losses phosphatase activity while
maintaining dimerization with WT, which constrains its
phosphatase activity in a dominant-negative manner (44).

Contrary to the paradigm that mutations produce onco-
genes with dominant GoF and tumors suppressors with re-
cessive LoF (1), both classes of cancer genes can elicit can-
cer phenotype by losing or gaining new functions. Also,
the binary classification of genes into oncogenes and tumor
suppressors is inaccurate for many genes and debatable for
others (45–47). Notably, the history of p53 and the oscil-
lating interpretations of its function serve as an example of
how scientific paradigms evolve and influence perceptions
about cancer-causing genes (45). The current classification
of p53 still remains inconclusive. Similarly, the binary clas-
sification of driver versus passenger and GoF versus LoF
mutations suffers from similar limitations, and it is difficult
to unambiguously ascribe the functions of particular mu-
tations to a single capability. Also, the functionally of can-
cer mutations may operate in concert or span a continuum

spectrum of effects (39). For example, the GoF JAK2V617F

mutation also has LoF features due to its impairment of
JH2 catalytic activity, which further enhances JAK2 (JH1)
activity due to loss of phosphorylation at negative regula-
tory sites (13). Thus, to avoid ambiguous classification, we
focused on the direct and primary reported mode of action.

Although we focused on structures with the lowest reso-
lutions, different structures might display various configu-
rations as proteins are dynamic in nature and particularly
at different states or environmental conditions. Other lim-
itations of the study include the lack of representation of
variants without solved structure, especially of rare muta-
tions. Nonetheless, the current dataset spans the full range
of tumor types and, based on the high coverage (73%) of
COSMIC database, is implicated in the majority of human
cancer.

Our results reveal that a single structural element lies at
the core of missense driver mutations and suggest that a
small number of molecular traits are shared by most and
perhaps all types of cancer. Envisioning that cancer research
is a logical science that could be reduced to machines and
their parts, we uncover the lowest possible level of organiza-
tion at which carcinogenesis takes place at the protein level.
By providing a glimpse into the toolbox of cancer, we antici-
pate that a mechanistic understanding underlying the devel-
opment of tumors and key vulnerabilities will be outlined in
greater detail and clarity in the future.
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