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Abstract

Background

Pancreatic cancer is the fourth leading cause of cancer-related mortality in the United

States. The minority of patients can undergo curative-intended surgical therapy due to pro-

gressive disease stage at time of diagnosis. Nonetheless, tumor involvement of surgical

margins is seen in up to 70% of resections, being a strong negative prognostic factor. Real-

time intraoperative imaging modalities may aid surgeons to obtain tumor-free resection mar-

gins. Full-field optical coherence tomography (FF-OCT) is a promising diagnostic tool using

high-resolution white-light interference microscopy without tissue processing. Therefore, we

composed an atlas of FF-OCT images of malignant and benign pancreatic tissue, and inves-

tigated the accuracy with which the pathologists could distinguish these.

Materials and methods

One hundred FF-OCT images were collected from specimens of 29 patients who underwent

pancreatic resection for various indications between 2014 and 2016. One experienced gas-

trointestinal pathologist and one pathologist in training scored independently the FF-OCT

images as malignant or benign blinded to the final pathology conclusion. Results were com-

pared to those obtained with standard hematoxylin and eosin (H&E) slides.

Results

Overall, combined test characteristics of both pathologists showed a sensitivity of 72%,

specificity of 74%, positive predictive value of 69%, negative predictive value of 79% and an

overall accuracy of 73%. In the subset of pancreatic ductal adenocarcinoma patients, 97%
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of the FF-OCT images (n = 35) were interpreted as tumor by at least one pathologist. More-

over, normal pancreatic tissue was recognised in all cases by at least one pathologist. How-

ever, atrophy and fibrosis, serous cystadenoma and neuroendocrine tumors were more

often wrongly scored, in 63%, 100% and 25% respectively.

Conclusion

FF-OCT could distinguish normal pancreatic tissue from pathologic pancreatic tissue in both

processed as non-processed specimens using architectural features. The accuracy in pan-

creatic ductal adenocarcinoma is promising and warrants further evaluation using improved

assessment criteria.

Introduction

Pancreatic cancer is the fourth leading cause of cancer related deaths with a 5-year survival

rate of 8% in the United States [1]. Many patients present with locally advanced or metasta-

sized disease and are beyond cure. Patients diagnosed with localized disease can undergo a

potentially curable treatment and have a 5-year survival rate around 20% [2–4]. Treatment

consists of high-risk surgery (morbidity of 40–50% and mortality around 5% [5, 6]) usually fol-

lowed or preceded by chemo(radio)therapy. During surgery, it is important to achieve a com-

plete (R0) resection, as a distance of the tumor from the resection margin of�1 mm (R1

resection) is one of the most important prognosticators for poor survival in Europe [2, 7–9].

However, adequate intraoperative judgment is challenging, because the surgeon has to rely on

visual inspection and palpation only. The presence of peritumoral inflammation in pancreatic

cancer makes the distinction with normal tissue even more difficult. The incidence of R1 resec-

tions is up to 60–80% in published series of standardized pathological assessment [8–13],

underlining the importance of adequate intraoperative resection margin assessment.

Although various imaging modalities (such as CT, MRI, EUS and PET) are used to diagnose

pancreatic cancer and assess its resectability prior to surgery, only few techniques are suitable

during surgery [14]. Frozen section analysis is currently the most used intraoperative modality,

especially to assess extra-pancreatic lesions [15]. However, it has low sensitivity (38%) evaluat-

ing resection margins, and is therefore only used in selected cases at our institution [15].

Intraoperative ultrasound can be used to detect metastases or assess resectability, but its value

in reducing positive resection margins is unknown, [14] and is the study object of an ongoing

clinical trial at our institution. An emerging technique is near-infrared fluorescence imaging,

which is based on a fluorescent tracer and dedicated cameras. Pre-clinical results demarcating

pancreatic tumor are promising, but use tracers that are currently not yet FDA approved [16].

Thus, the current state-of-the art surgical approach encompasses high-risk intervention with

limited success and little to no intraoperative visualisation of the malignant process. Novel

intraoperative imaging tools are needed to improve the assessment of resectability and to

guide subsequent resection.

Optical coherence tomography (OCT) was first described in 1991 and uses low-coherence

interferometry to produce 2-dimensional cross-sectional images [17]. It is already standard-

of-care in ophthalmology and cardiology, and with the development of new OCT modalities,

other fields of interest—like oncology—are being discovered [18]. Full-field OCT (FF-OCT) is

such a newly developed modality, based on the principles of white light interference micros-

copy, and acquires en face images by illuminating the whole field of view without scanning
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[19]. It enables non-invasive high-resolution imaging up to several millimetres of tissue with-

out the need for tissue processing, by measuring the backscattered light of tissue structures

with different refractive indices. Several studies report the use of FF-OCT in the field of oncol-

ogy, i.e. on ovarian [20], skin [21] and brain tissue [22]. All showed encouraging results; archi-

tectural changes could be identified, and in a quick fashion a large surface could be scanned.

Only one study has been conducted in pancreatic cancer, but this was to evaluate fine needle

aspirates [23]. FF-OCT has not yet been tested in pancreas resection specimens to discriminate

malignant and benign tissues.

In this feasibility study, we investigated whether pathologists were able to distinguish malig-

nant from normal and benign pancreatic tissue based on FF-OCT images, obtained from sur-

gical specimens.

Materials and methods

Patient and sample selection

Twenty-nine patients who underwent surgery for suspect pancreatic cancer at the Leiden Uni-

versity Medical Center (LUMC) were included in this study. Fresh tissue samples were col-

lected prospectively (October 2015 until January 2016) from surgical specimens from 17

patients with (pre)malignant pancreatic lesions. Formalin-fixed paraffin embedded (FFPE)

samples from 12 patients were collected retrospectively (January 2014 until December 2014)

from both benign and malignant pancreatic neoplasms to acquire FF-OCT images of different

pancreatic neoplasms. No patients with a preoperative diagnosis of benign disease were

included, for instance, patients with chronic or auto-immune pancreatitis were not included.

From each of the 29 patients, if achievable, minimal one tissue section with presence of tumor

and one tissue section without tumor were obtained. For the fresh samples, the selection was

based on the macroscopic assessment by the pathologist; for FFPE samples, the selection was

based on microscopic assessment. This resulted in 50 tissue samples (25 fresh samples and 25

FFPE samples). Per tissue sample, two regions of interest were selected by the study coordina-

tor, LM, based on the corresponding H&E slides. These two regions of interest from a single

tissue sections could be either both benign, both malignant or one malignant and one benign.

FFPE tissue blocks were deparaffinised, using a standard protocol. The study protocol was

approved by the local medical ethics committee of the LUMC. The prospective collection of

the fresh tissue samples was performed within the framework of routine clinical care. There-

fore patient consent was not obtained, as this study was not subject to the Dutch Medical

Research Involving Human Subjects Act, according to our local medical ethics committee.

One author (LM) had access to patient information during clinical data acquisition after

which patient data were anonymized. All patient samples and clinical data were handled in

accordance with the medical ethics guidelines described in the Code of Conduct for the Proper

Secondary Use of Human Tissue of the Dutch Federation of Biomedical Scientific Societies

[24].

FF-OCT imaging and sample processing

Images were obtained using a high resolution FF-OCT system (Light-CT™ scanner, LLTech

SAS, Paris, France). In short, the setup consists of an upright microscope with a 10x objective,

a halogen light-source with wavelength of 700±125 nm, and a reference arm in Linnik interfer-

ometric configuration [25, 26]. It generates high resolution (1.5 μm isotropic), 0.8 by 0.8 mm

en face images, but the field of view is increased using image mosaicking (with a maximum

diameter of 25 mm), at an image rate of 35 Hz. Image depth is adjustable, with a maximum

depth of several millimeters, depending on tissue properties [27].
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Tissue samples were placed in a sample holder in 0.9% NaCl solution with the surface to be

imaged facing upward. A glass slide was positioned above the tissue to which it was gently flat-

tened, and a layer of silicone oil was applied between the optical window and the microscope

objective. A macroscopic image was obtained using a wide-field camera, followed by FF-OCT

images. To ensure good correspondence with the histology images, FF-OCT images were

acquired at a depth of around 20 μm. Imaging time for one sample was on average 30 minutes.

After FF-OCT imaging, tissue samples were formalin fixed and embedded in paraffin. H&E

slides were obtained and digitalised with a digital pathology slide scanner (IntelliSite Ultra Fast

Scanner, Philips, Eindhoven, the Netherlands). FF-OCT images were viewed using in-house

developed analysis software based on MeVisLab (MeVis Medical Solutions AG and Fraunho-

fer MEVIS, Germany).

Study design

Two pathologists—one experienced and one resident—followed a brief training prior to

assessment of the FF-OCT images. The training was divided in two parts: in the first part the

technique and method of tissue imaging were explained, and in the second part FF-OCT

images were shown with their corresponding H&E images. The images of this training atlas

were magnified regions of interest showing details of the different pancreatic tissues (such as

normal pancreas, pancreatitis and pancreatic ductal adenocarcinoma (PDAC)); the whole

slide was not presented to the pathologists. Moreover, the regions of interest used in the train-

ing atlas were different in the test cohort.

The 100 regions of interest to be assessed by the pathologists were shown in the context of

both the total FF-OCT image, and an enlarged (detail) image. They were offered to the pathol-

ogists in both the original and inverse setting, as shown in Fig 1. During assessment patholo-

gists were able to digitally zoom the images. FF-OCT images were randomly presented in the

same order to the pathologists who were blinded to the H&E slides, patient information and

final pathological diagnosis of the specimen. The pathologists had to classify the marked

region-of-interest as malignant or benign. If the pathologists found that the image quality was

too poor to reach a decision, it was classified as not interpretable.

Fig 1. Example FF-OCT image of a well-differentiated pancreatic ductal adenocarcinoma as shown to the pathologist for assessment. The

whole FF-OCT images were shown to the pathologists, but they were asked to only assess the selected regions of interest (two per FF-OCT image). Both

the original (A,C,E) and the inverse (B,D,F) FF-OCT images are shown. Scale bars, 5 mm (A,B), 2 mm (C,D), and 1 mm (E,F).

https://doi.org/10.1371/journal.pone.0175862.g001
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Statistical analysis

The results of the individual region-of-interest scores were put in a 2x2 contingency table to

calculate sensitivity, specificity, positive predictive value (PPV), negative predictive value

(NPV) and accuracy for the complete cohort. In addition, diagnostic test characteristics and

the interobserver variability were calculated after each cohort of 25 consecutive FF-OCT

images. SPSS version 23 (IBM Corporation, Armonk, NY, USA) was used to calculate the

interobserver variability and to compare the agreement in tumor identification by both pathol-

ogists, for which chi-squared tests were used. Kappa values were interpreted as described by

Landis et Koch [28]. P<0.05 was considered statistical significant. Graphs were created using

Graphpad version 7 (Graphpad Software, La Jolla, CA, USA).

Results

In FF-OCT images of normal pancreatic tissue, the morphologic features of major compo-

nents could be identified, like interlobular septae, acinar tissue, islet cells, pancreatic ducts and

blood vessels (Fig 2). Recognition of nerve bundles in normal pancreatic tissue was difficult

(Fig 2). Interlobular septae are visible as light grey strands which are located between the

lobuli. Islet cells were recognised as highlighted groups of cells located in acinar tissue.

Histomorphology of pancreatic cancer in general and especially of PDAC is complex, being

sometimes challenging to distinguish between malignant and reactive, benign glands in the

context of pancreatitis even on H&E images [29]. On H&E images various criteria are used to

distinguish between benign and malignant tissue. First of all, the pathologists look at low mag-

nification level to detect the presence of normal pancreatic architecture. Desmoplastic stroma,

irregular ducts and disorganised glands are characteristics that indicate potential malignancy.

Atypical cell nuclei, intraluminal necrosis, perineural invasion and ingrowth into structures as

Fig 2. Examples of FF-OCT images of normal pancreatic tissue and corresponding histology. Structures that are easily identified on

FF-OCT images include normal pancreatic parenchyma (A-B), vessels (C-D), and a large pancreatic duct (E-F). Harder to recognize are

nerve bundles (G-H). Scale bars, 250 μm (A-B, G-H), and 150 μm (C-F). Inset shows an islet of Langerhans (A-B) at 2.5 times higher

magnification.

https://doi.org/10.1371/journal.pone.0175862.g002
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lymph nodes, blood vessels and fat tissue are all characteristics that point toward malignancy.

If the lobular structure is maintained even in the presence of irregular ducts with some cyto-

nuclear atypia, pancreatitis should be considered. However, the difficulty resides in the fact

that these essential features for the diagnostic on H&E slides are regularly not evaluable on the

FF-OCT images. As shown in Table 1, only stroma and architectural distortion of pancreatic

tissue and tumor glands are easily recognizable on FF-OCT images.

Scoring FF-OCT images

Fifty samples from 29 patients have been included in this study. Patient and tumor characteris-

tics are presented in Table 2. Of these tissue samples, 100 FF-OCT images were available for

assessment: 57 benign and 43 malignant sections. The results of the FF-OCT assessment by the

pathologists are detailed in Table 3 (and in S1 File). The more experienced gastrointestinal

pathologist scored 6 images as not interpretable, the pathologist in training none. Of these 6

images– 3 fresh and 3 deparaffinised FFPE– 3 were benign and 3 were malignant. These

images were scored by the pathologist in training; 3 images were scored correctly, and 3 images

were scored incorrectly. Leaving these 6 images out of the analysis, the experienced pathologist

achieved a higher accuracy than the less experienced pathologist: 80% versus 67%, respectively.

The combined results showed the following test characteristics: sensitivity of 72%, specificity

of 74%, PPV of 67%, NPV of 79% and an accuracy of 73%.

A more detailed overview of the scores per histologic type is provided in Table 4. Normal

pancreatic parenchyma was correctly recognised by both pathologists in 32 of the 40 cases.

Atrophy and fibrosis (Fig 3) were wrongly scored by both pathologists in 63%, serous cystade-

noma in 100% and neuroendocrine tumors in 25% of the cases. Pathologists evaluated 35

FF-OCT images of a PDAC (Fig 4), of which 34 were correctly scored as malignant by at least

one pathologist. Well (grade 1) and moderately (grade 2) differentiated PDAC were scored as

malignant by both pathologists in 67% and 57% of cases, respectively (Table 4). Whereas,

poorly differentiated (grade 3) PDAC was scored as malignant by both pathologist in 1 out of

8 cases (13%).

The first 50 FF-OCT images given to the pathologists were taken from deparaffinised FFPE

pancreatic tissue specimens, whereas the others were taken from fresh specimens. Univariate

analysis showed no significant difference (P = 0.24) in evaluating fresh or deparaffinised FFPE

FF-OCT images, however, fresh FF-OCT images appear to provide a more detailed view and

improved visualization of tumor stroma.

Table 1. Comparison of features of pancreatic ductal adenocarcinoma detectable on H&E and on FF-OCT images.

Features of malignancy Detectable on H&Ea Detectable on FF-OCT

Disorganisation of lobuli and glands + +

Presence of atypical glands + ±b

Atypical cell nuclei + -

Presence of tumor stroma + +

Ingrowth into structures (a.o. lymph nodes, blood vessels, fat) + ±
Intraluminal necrosis + ±
Perineural invasion + ±

a Adapted from Hruban et al, these diagnostic characteristics are used in assessment of H&E images.
b Large atypical glands could be detected, but smaller glands are less visible and sometimes mistaken for blood vessels.

https://doi.org/10.1371/journal.pone.0175862.t001
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Table 2. Patient and tumor characteristics.

Characteristics

Age, mean (y) 65.7

Sex, n (%)

Male 13 (45)

Female 16 (55)

ASA score, n (%)

1 5 (17)

2 19 (66)

�3 5 (17)

Tumor size (mm), mean 33.2

Tumor location, n (%)

Pancreatic head 13 (45)

Pancreas body/tail 10 (35)

Distal CBD 1 (3)

Peri-ampullar 5 (17)

Histological diagnosis, n (%)

PDAC 23 (79)

Well differentiated 3

Moderately differentiated 10

Poorly differentiated 7

Unknowna 3

IPMN 1 (3)

MCN 2 (7)

NET 2 (7)

Serous cystadenoma 1 (3)

Surgical procedure, n (%)

PPPD 17 (59)

Whipple 1 (3)

Distal pancreatectomy 9 (31)

Central pancreatectomy 1 (3)

Total pancreatectomy 1 (3)

a Differentiation grade could not be determined in 3 cases, because of pancreatic fibrosis after neoadjuvant

(chemo)radiotherapy.

Abbreviations: ASA: American Society of Anesthesiologists; CBD: Common bile duct; PDAC: Pancreatic

ductal adenocarcinoma; IPMN: Intraductal papillary mucinous neoplasm; MCN: Mucinous cystic neoplasm;

NET: Neuroendocrine tumor; PPPD: Pylorus-preserving pancreaticoduodenectomy

https://doi.org/10.1371/journal.pone.0175862.t002

Table 3. Test characteristics of FF-OCT on pancreatic tissue. True positives are FF-OCT images which were correctly identified as malignant. True nega-

tives are FF-OCT images which were correctly identified as benign. False positives are FF-OCT images which were incorrectly identified as malignant. False

negatives are FF-OCT images which were incorrectly identified as benign. Pathologist 1 is the experienced pathologist, pathologist 2 is the pathologist in

training.

Pathologist True positive True negative False positive False negative Not inter-pretable Sensitivity Specificity Accuracy

1 28 47 8 11 6 72% 85% 80%

2 30 37 21 12 0 71% 64% 67%

Overall

(mean)

29 42 15 12 3 72% 74% 73%

https://doi.org/10.1371/journal.pone.0175862.t003
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Interobserver variability

The overall interobserver variability (Kappa) was calculated and there was a fair agreement

between the pathologists (Kappa: 0,33). After presentation of each set of 25 consecutive

FF-OCT images the interobserver variability was measured and an increase of 0.1 to 0.5 was

observed, as shown in Fig 5.

Discussion

In this study we investigated whether pathologists were able to distinguish malignant from

benign pancreatic tissue based on FF-OCT images. We found that normal, healthy pancreatic

tissue could be distinguished from malignant tissue very well due to the characteristic architec-

ture of normal pancreatic parenchyma. Distinguishing other benign tissue types like chronic

pancreatitis was harder. We also found that the experienced pathologist was better in assessing

the FF-OCT images than the pathologist in training. To our knowledge this is the first study to

evaluate the correlation between H&E slides and FF-OCT in detecting malignancies in fixated

and fresh pancreatic resection specimens. The diagnostic accuracy of 73% obtained in this

study is not yet adequate, but we believe this can be improved upon by taking several measures:

using other contrast mechanisms, improving knowledge on collagen topology, and more

extensive training.

Pancreatic pathology and in particular morphological differentiation between pancreatic

ductal adenocarcinoma and pancreatitis is challenging even on H&E. On FF-OCT this differ-

entiation is difficult as well; although FF-OCT provides high resolution, the endogenous con-

trast is not proficient to see cell nuclei. Techniques to reveal subcellular metabolic contrast are

being developed, showing encouraging results [30]. Other contrast mechanisms can provide

additional information and thereby increase diagnostic accuracy.

Secondly, improved knowledge on the collagen topology could increase the diagnostic

accuracy. As collagen reflects light very well, tumor stroma is evidently visible on FF-OCT

images. The pathologists mostly evaluated the FF-OCT images based on these architectural

features. However in this study, both pathologists often misdiagnosed pancreatic atrophy and

Table 4. Accuracy per histological diagnosis.

Correctly identified by both pathologists Correctly identified by one pathologist None correctly identified

Benign

Normal pancreatic parenchyma 32 8 0

Pancreatitis 1 2 0

Atrophy or fibrosis 1 2 5

Serous cystadenoma 0 0 2

Mucinous cystic neoplasm 1 0 0

Malignant

Grade 1 NET 0 1 1

Grade 2 NET 1 1 0

Grade 1 PDAC 4 2 0

Grade 2 PDAC 12 8 1

Grade 3 PDAC 1 7 0

Malignant IPMN 1

Totala 54 31 9

a 6 images were scored as not interpretable by one of the pathologists, these are excluded from this analysis.

https://doi.org/10.1371/journal.pone.0175862.t004
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fibrosis as malignant. In these cases the presence of collagen fibers dominating the image

could be mistaken for tumor stroma as PDAC is characterized by extensive and disorganized

desmoplastic stroma [31]. Recently it was shown that its collagen topology differs significantly

from that of pancreatitis [32]. Improved knowledge on the collagen topology of these benign

conditions, and possibilities to detect these differences and correlation between stromal align-

ment and organization, and diagnosis, could increase the diagnostic accuracy. This feature

could also be exploited in the future by automated detection of collagen characteristics, as was

previously done for second harmonic generation images of breast cancer [33].

Our study consisted of two parts: 50 image regions of deparaffinised tissue and 50 image

regions of fresh tissue shown to the pathologists in that order. In tissue imaged both fresh and

deparaffinised we see that the intensity of collagen is higher in fresh tissue (S1 Fig). We did not

find significant differences in the assessment between these parts. However, an increase in

accuracy was shown for both pathologists in the second half (images 26–50 and 76–100) of

each part, suggesting a learning curve. Another study on FF-OCT where they looked at pros-

tate biopsies showed an overall accuracy of 70%, with a learning curve from 60% to 80% after

evaluation of 119 images; this is concordant with our data [34]. A later study on FF-OCT

images of prostate core biopsies showed, after extensive training an overall accuracy of 93%.

This implies that for pancreatic tissues further improvement is possible [35], therefore we

believe that more training could further improve the diagnostic accuracy. We made a flow-

chart for assessment of pancreatic FF-OCT images which could support pathologists, although

it should be validated in future studies (Fig 6).

Fig 3. Example of benign pancreatic tissue FF-OCT images and corresponding histology. Fibrotic pancreatic tissue after neoadjuvant therapy

(A-B), pancreatitis (C-D), and a serous cystadenoma (E-F). Scale bars all 500 μm.

https://doi.org/10.1371/journal.pone.0175862.g003
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Finally, we did not provide any clinical data to the pathologists. This lack of clinical infor-

mation made interpretation even more difficult as compared to daily practice when such infor-

mation is available and taken into account in the interpretation of the histomorphology.

We have not imaged resection margins of the surgical specimens as that would have

affected the clinical workflow too much, however, we included fresh pancreatic tissue for

imaging to mimic the future application of intraoperative use. Moreover, we selected interest-

ing and clinically relevant locations on the H&E and the corresponding FF-OCT images; for

example, transition zones of infiltrating tumor glands and surrounding tissue (S2 Fig). Fur-

thermore, to achieve an R0 resection margin in Europe, imaging up to 1 mm is necessary. In

this study, we imaged at a depth of 20 μm to ensure good correspondence with reference H&E.

As resolution decreases with increasing imaging depth, future studies should analyze the influ-

ence on accuracy with increased imaging depth.

The more experienced pathologist did not find the imaging quality good enough to give a

diagnosis in six cases that were excluded from further analysis. These images were equally

Fig 4. Example FF-OCT image of a well differentiated pancreatic ductal adenocarcinoma. A shows a n overview. B shows a magnified view of

stromal disorganization, and C shows nests of tumor cells. Scale bars, 2 mm (A), 1 mm (B), and 500 μm (C).

https://doi.org/10.1371/journal.pone.0175862.g004
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Fig 5. Accuracy and interobserver variability. Pathologist 1 is the experienced pathologist, pathologist 2 is the pathologist in training.

https://doi.org/10.1371/journal.pone.0175862.g005

Fig 6. Proposed decision tree to evaluate pancreatic FF-OCT images. Scalebars are all 500 μm. *The FF-OCT image and corresponding histology

image only depict lymph node invasion.

https://doi.org/10.1371/journal.pone.0175862.g006
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distributed between the different groups (malignant, benign, fresh, deparaffinised) we believe

that this exclusion does not represent a specific bias.

Several other groups tried to identify pancreatic tumor tissue in order to reduce the amount

of positive margins during surgery using various techniques. Hu et al. [36] used nonlinear

optical microscopy to image pancreatic tumor xenografts harvested at different stages. They

also saw an increased density of the collagen fibers in tumor compared with normal tissue.

However, they did not do a blind reading of the images. Eberlin et al. [37], used mass spec-

trometry imaging and an automatic classifier to distinguish normal from cancer human pan-

creas tissue. They obtained a high agreement with pathology, but excluded cellular

compositions that were not accounted for in their classifier, such as inflammation and necro-

sis, which is in contrast with our study, which included a broad spectrum of benign areas of

disease to mimic clinical scenarios. Also our group studied the use of fluorescence-guided sur-

gery during pancreatic resections. However, in human studies the results have been disap-

pointing so far, as no useful tumor demarcation could be visualized with non-specific contrast

agents [38, 39]. Currently, studies using tumor-specific fluorescent contrast agents are ongoing

(Trial ID:NTR5673) [40].

Resection margins can either be examined in vivo before and during resection and after

resection in the resection bed, or ex vivo on the resected specimen. Erickson-Bhatt et al. [41],

used a portable OCT system to image the resection bed after a wide local excision of breast

cancer. Tao et al. [42], also looked at resection margins in breast cancer, but examined ex vivo
frozen sections using nonlinear microscopy, reaching an accuracy of 94.1%. We envision that

FF-OCT could eventually be used during surgery at clinically suspect resection margins to fur-

ther improve radical resection rates by extending the resection margin to facilitate en bloc
tumor removal or by resecting additional tissue after suggestion of residual disease.

The FF-OCT device used in this study is not yet applicable in surgery. For translation into

the operating room for in vivo imaging a handheld and faster device is necessary; for ex vivo
assessment of resected specimens a bench top system is sufficient. Progression is made on both

accounts. The first handheld endomicroscope based on FF-OCT was recently described by

Benoit a la Guillaume et al. [43], which opens new perspectives for in vivo imaging. Further-

more, a 7 times faster and 3 times more sensitive camera was introduced in the device, also

bringing it closer to clinical implementation [44].

In conclusion, FF-OCT could distinguish normal pancreatic tissue from pathologic pancre-

atic tissue, however, further development of the FF-OCT device and more experience in evalu-

ating FF-OCT images of the pancreas is necessary before introduction in the clinical practice

of pancreatic surgery.

Supporting information

S1 Fig. Influence of tissue processing on FF-OCT image quality. A pancreatic adenocarci-

noma scanned freshly (A), after formalin fixation (B), and after deparaffinisation (C), with the

corresponding H&E image (D). Scale bars all 500 μm.

(TIF)

S2 Fig. An example of a transition zone of a well-differentiated pancreatic ductal adeno-

carcinoma and surrounding normal tissue. The FF-OCT image (A), inversed FF-OCT image

(B), and the corresponding H&E image (C) are shown. The arrow shows normal pancreatic

tissue and the arrowhead marks malignant glands. Scale bars all 500 μm.

(TIF)
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