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A Genome-Wide Association Study Identifies Variants
Underlying the Arabidopsis thaliana Shade Avoidance
Response
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Abstract

Shade avoidance is an ecologically and molecularly well-understood set of plant developmental responses that occur when
the ratio of red to far-red light (R:FR) is reduced as a result of foliar shade. Here, a genome-wide association study (GWAS) in
Arabidopsis thaliana was used to identify variants underlying one of these responses: increased hypocotyl elongation. Four
hypocotyl phenotypes were included in the study, including height in high R:FR conditions (simulated sun), height in low
R:FR conditions (simulated shade), and two different indices of the response of height to low R:FR. GWAS results showed
that variation in these traits is controlled by many loci of small to moderate effect. A known PHYC variant contributing to
hypocotyl height variation was identified and lists of significantly associated genes were enriched in a priori candidates,
suggesting that this GWAS was capable of generating meaningful results. Using metadata such as expression data, GO
terms, and other annotation, we were also able to identify variants in candidate de novo genes. Patterns of significance
among our four phenotypes allowed us to categorize associations into three groups: those that affected hypocotyl height
without influencing shade avoidance, those that affected shade avoidance in a height-dependent fashion, and those that
exerted specific control over shade avoidance. This grouping allowed for the development of explicit hypotheses about the
genetics underlying shade avoidance variation. Additionally, the response to shade did not exhibit any marked geographic
distribution, suggesting that variation in low R:FR-induced hypocotyl elongation may represent a response to local
conditions.
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Introduction

Since plants are sessile organisms that rely on the harvest of light
to fulfill their energy requirements, the ability to monitor the
ambient light environment has been key to their evolutionary
success. Faced with the challenge of modulating their development
to best suit changing light environments, plants have evolved a
sophisticated array of photoreceptors to comprehensively survey
both light quality and quantity [1]. These photoreceptors are
integrated into key developmental pathways, allowing for efficient
optimization of development. One well-studied case in which
changes in light quality elicit specific developmental responses is
shade avoidance [2].

When sunlight is intercepted by a plant canopy, plant pigments
absorb light in the red and blue portions of the spectrum to use as
energy for photosynthesis, while far-red light passes through the
canopy relatively unimpeded. As a result, the ratio of R:FR light is
reduced in canopy shade or when neighboring plants are present.
Plants sense this change in light quality primarily through type II
(light stable) phytochromes and initiate a suite of plastic
developmental responses known as shade avoidance [2]. These
responses include elongation of plant organs, including hypocotyls,
internodes, and petioles, increased leaf angle, and acceleration of
flowering. In natural plant communities, the shade avoidance
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response has long been the subject of ecological genetic studies.
Initially, researchers observed that the phytochrome-mediated
response to low R:FR in species originating from shaded
environments was lower than that of species from open
environments [3]. Dudley and Schmitt [4] observed a similar
pattern between populations of a single species, Impatiens capensis. A
subsequent physiological manipulation study of this species
confirmed that in natural populations, shade avoidance elongation
responses are indeed an example of adaptive plasticity [4], while a
genetic manipulation study of transgenic tobacco and Brassica
demonstrated that this adaptive plasticity could be phytochrome-
mediated [5]. Interestingly, R:FR-mediated shade avoidance
elongation has also been shown to be adaptive in the model plant
Arabidopsis thaliana [6], and in a survey of 105 Arabidopsis accessions,
Botto and Smith observed considerable natural variation in
hypocotyl elongation in response to low R:FR [7]. Therefore,
evolutionary and ecological genetics studies of shade avoidance
present an opportunity to use the extensive genetic resources of
Arabidopsis to investigate an adaptive trait.

Shade avoidance is also relevant to agricultural settings, since
high planting densities can create low R:FR conditions, triggering
shade avoidance and thereby decreasing yield [8]. As a result,
extensive studies of the molecular nature of shade avoidance have
been undertaken, particularly in Arabidopsis. In this species, light
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Author Summary

The goal of this work was to identify genetic variants
underlying a well-characterized environmental response,
the elongation of Arabidopsis thaliana hypocotyls (seedling
stems) in response to shade, otherwise known as shade
avoidance. We performed a genome-wide association
study with four phenotypes: absolute hypocotyl height
of plants grown in both simulated sun and shade and two
measures of how height responded to shade. With this
study, we confirmed previous findings that variants in two
photoreceptors were associated with hypocotyl height
variation. We also found associations with genetic variants
in previously-identified shade avoidance genes, as well as
with variants in genes not typically considered part of the
shade avoidance pathway. By examining patterns of which
of the four phenotypes were associated with each gene,
we were then able to discriminate between genetic
variants that have a general role in hypocotyl height
variation and variants that are specifically involved in the
shade avoidance response. We also found that shade
avoidance was not broadly associated with geography,
suggesting that variation in this trait may be due to local
differences in light quality.

stable phytochromes, especially phytochrome B, initiate shade
avoidance [2]. In response to a reduction in R:FR, these proteins
undergo a conformational change to the inactive (Pr) state.
Through mechanisms that are as yet unclear, but that most likely
involve interactions with the transcription factors PIF4 and PIF5
[9], this conformational change triggers the upregulation of a suite
of transcription factors, including HFR1, ATHB-2, ATHB-4, PILI,
PARI, and PAR2 [10-12]. This upregulation ultimately leads to
hypocotyl elongation through increased synthesis and modulated
signaling of plant hormones including auxin, gibberellic acid,
brassinosteroids, cytokinins, and ethylene [13]. Of these hor-
mones, the involvement of auxin and gibberellic acid (GA) is best
supported. Genes controlling both auxin synthesis (7447 and
YUCCAs) [14,15] as well as auxin transport (BIG, PIN3) [16,17]
have been shown to play roles in low R:FR-mediated elongation.
Additionally, genes encoding two auxin-responsive proteins,
IAA19 and IAA29, are upregulated in response to shade
[10,18]. The importance of GA signaling in shade avoidance is
evidenced not only by the low R:FR-induced upregulation of two
gibberellic acid (GA) synthesis genes, GA20ox! and GA200x2 [19],
but also by the role of the DELLA proteins. These negative
regulators of PIF activity are degraded as a result of increased GA
synthesis under low R:FR conditions and therefore serve as
integrators of light and hormone signaling [20]. Although a
completely unified understanding of the shade avoidance pathway
remains elusive, the reasonably well-understood molecular nature
of the shade avoidance response is another reason why this
phenotype is well-suited for studies of natural variation that seek to
uncover the genetic control of adaptive traits.

In fact, quantitative genetics studies of Arabidopsis natural
variation have been successful in identifying genetic variation in
the phytochrome B-mediated signaling pathway. QTL studies
have identified natural variants of PH1B and ELF3 that impart a
difference in light sensitivity [21-23], while researchers taking a
candidate gene approach have identified alleles of both PHYD and
PIF4 that contribute to shade avoidance variation [24,25]. These
studies, however, have been somewhat limited in scope, as QTL
analyses with recombinant inbred lines can only assess the
variation present between the parental accessions, while candidate
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gene approaches rely entirely on previous knowledge about the
pathway in question. Studying shade avoidance responses using a
genome-wide association study (GWAS), therefore, expands upon
this work in two ways. First, by examining genetic variation in
many accessions simultaneously, GWAS not only tests more
genetic variation than the QTL approach, it also emphasizes
variation that is more likely to be broadly important in natural
populations. Secondly, the use of high-density genome-wide SNPs
in GWAS not only allows for truly de novo candidate gene
discovery, but also enables a comprehensive view of genetic
architecture of the traits in question. The goal of this study was to
capitalize upon these strengths of GWAS, combined with the
strategy of representing the shade avoidance response as a
genotype by environment (GxE) interaction, to identify genetic
variants underlying natural variation in shade avoidance.

Results/Discussion

Measurement of Natural Variation

To assess the extent of natural variation in the hypocotyl
response to shade, 180 Arabidopsis thalana accessions (Table S1)
were grown in both simulated sun (high R:FR) and simulated
shade (low R:FR) conditions. This set of accessions not only
included samples covering the broad range of Arabidopsis
throughout the world, but also incorporated focused subsampling
from Sweden to improve our ability to detect local adaptation. As
expected, when all accessions were considered together, hypocot-
yls of seedings grown in low R:FR were taller than those of
seedlings grown in high R:FR (#test P-value <2.2¢-16) (Figure 1A).

Next we asked if phenotypic variation among the accessions
could be due to genetic variation. Significant differences in
hypocotyl height among the accessions were observed in both light
conditions (P-value <2.2¢-16). Broad-sense heritability of hypo-
cotyl height was 0.54 for the high R:FR- and 0.44 for the low
R:FR-treated seedlings. Variation in the shade avoidance response
among the accessions was assessed by fitting a mixed linear model
that included genetic (accession), environment (light treatment),
and GxE (accession xlight) components. Because the experiment
was repeated with chamber-swapping, we also included an
experiment effect in the model. All variables in the model were
significant (P-value <2.2e-16, Table 1), indicating significant
differences in the shade avoidance response among accessions.
Similarly, the genetic correlation between environments was 0.78,
revealing that at least part of the genetic control of hypocotyl
height varied between the two environments [26,27]. The fitted
values for hypocotyl height in high R:FR, hypocotyl height in low
R:FR, and response to low R:FR for each genotype were extracted
from the full mixed-effects model for subsequent GWAS analysis
(Figure S1).

To explore patterns in variation among these phenotypes, a
reaction norm plot was generated from the modeled phenotypic
values (Figure 1B). The accessions that were most responsive to low
R:FR tended to have shorter hypocotyls in high R:FR, while the
least-responsive accessions tended to be taller in high R:FR. In
order to assess these relationships more thoroughly, we examined
correlations between the phenotypes (Figure 2A-2C). The high
R:FR and low R:FR phenotypes were highly positively correlated
(P-value <2.2e-16, r=0.85) and the high R:FR and response
phenotypes were strongly negatively correlated (P-value <2.2e-16,
r=—0.67). The correlation between low R:FR and response was
also significant, although this correlation was much weaker (P-value
=0.016, r = —0.18). These results suggest that much of the variation
in the shade avoidance response, as well in hypocotyl height in
shade, could be attributed to variation in hypocotyl height in sun

March 2012 | Volume 8 | Issue 3 | 1002589



- I high RFR
Jlow RFR

1500
1

frequency
1000
1

500
1

0 2 “ 6 8 10
hypocotyl height (mm)

hypocotyl height (mm)

T I
high R:FR low R:FR

Figure 1. Hypocotyl height phenotypes. (A) Histograms of
hypocotyl height for seedings grown under high R:FR (pink) or low
R:FR (blue) treatments. (B) Hypocotyl height reaction norms of 180
Arabidopsis accessions. Reaction norms for the seven highest-respond-
ing accessions (in descending order: 9057, 8242, 6929, 6009, 6914, 6968,
8231) are plotted with red lines, while reaction norms for the seven
lowest-responding accession (in ascending order: 6928, 8304, 7515,
6943, 8395, 6916, 8337) are plotted in blue. The three lowest-
responding accessions showed a slight negative response to low R:FR
(—0.41, —0.25, and —0.11 millimeters).

doi:10.1371/journal.pgen.1002589.g001

conditions, with tall accessions responding less strongly to reduced
R:FR. This relationship, however, was not absolute; analysis of the
residuals from a regression of response against height in high R:FR
revealed that the some accessions responded more or less strongly
than predicted (Figure 2D). In order to capture this “corrected”
variation in response, we used these residuals as a fourth phenotype.
Unlike the response phenotype, this corrected response phenotype is
significantly correlated with height in low R:FR (P-value = 5.8e-14,
r=0.52) and response to low R:FR (P-value =2.2¢-16, r=0.75)
without being significantly correlated with height in high R:FR (/-
value =1, r=4.6e-16) (Figure S2). Therefore, the inclusion of this
corrected phenotype in our analysis permitted the differentiation of
genetic variants that specifically underlie variation in low R:FR
mediated elongation from alleles that underlie general elongation
variation.
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Table 1. Parameters from the phenotype mixed effects
model.

Effect Variance Standard Deviation
Genotype 1.01 1.00
Genotype xEnvironment 0.32 0.56
Experiment 0.04 0.20
Residual 0.72 0.85

Estimates of the variance and standard deviation of random effects from the
mixed effect model used to generate GWAS phenotypes.
doi:10.1371/journal.pgen.1002589.t001

Previous studies have found negative correlations between
hypocotyl height and latitude of accession origin in European
Arabidopsis  accessions  [28-30], suggesting that this natural
variation in light sensitivity could be a result of adaptation to the
north-south gradient in ambient light intensity. Since the
population structure of Arabidopsis in Europe is best thought of as
isolation-by-distance [31], confounding due to population struc-
ture is a risk when using geographically-correlated phenotypes in
GWAS. To test whether phenotypes measured for this study were
correlated with latitude, and therefore potentially at risk of
population structure problems in GWAS analysis, we examined
the relationships between these phenotypes and the latitude of
origin for European accessions. Both hypocotyl height in high
R:FR and response to low R:FR were significantly correlated with
latitude (P-value =0.0001 and P-value<0.0001, respectively)
(Figure 3). Hypocotyl height in low R:FR was also correlated,
but with lower significance (P-value=0.021). Although these
correlations were not particularly strong (r=—0.32, 0.32, and
—0.19, respectively), we still concluded that a population structure
correction was necessary in our GWAS study. Interestingly, the
corrected response phenotype was not significantly correlated with
geography (P-value =0.09), although the ratio of R:FR light
decreases with latitude [32]. This result suggests that variation in
the corrected shade avoidance response, if adaptive, might not be
due to the same selective pressure responsible for the more
generalized differences in light sensitivity seen in Arabidopsis. An
interesting possibility is that shade avoidance is locally adaptive
and 1s therefore driven more by local variation in plant community
composition than by larger-scale patterns of R:FR. Evidence of
local adaptation has been found in Arabidopsis [33], and the idea
that shade avoidance is locally adaptive would be consistent with
the adaptive population-level variation in shade-induced elonga-
tion seen in both Impatiens capensis [34] and Abutilon theophrasti [35].

Association Mapping

To uncover the genotypic variation underlying these shade
avoidance traits, the significance of associations between pheno-
types and the approximately 210,000 genome-wide SNP markers
from Atwell et al. [36] was evaluated using both linear mixed
model (EMMA) [37] and non-parametric (Kruskal-Wallis) ap-
proaches. Genotype information was not available for twelve of
the accessions phenotyped for shade avoidance, bringing the total
number of accessions used for association testing to 168 (Table S1).
When the results of these tests were plotted as genome scans
(Figure 4), significant SNPs, some arranged in distinct peaks, were
visible for all phenotypes using both association methods. These
scans show many peaks of moderate significance rather than the
single dominant peak seen in GWAS studies of sodium
accumulation and response to bacterial elicitors [36,38]. This
result suggests that variation mapped here is polygenic, as might
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doi:10.1371/journal.pgen.1002589.9002

be expected for an environmentally-sensitive developmental trait
(for other examples, see [36]). Comparing across phenotypes, the
differences between the significance and location of these peaks
allude to differences in the genetic variation underlying the
observed variation in the four traits. Differences in peak number
and significance were also seen between the two statistical
methods, with a greater number of more highly significant peaks
seen in the Kruskal-Wallis (KW) scans. The Kruskal-Wallis test
includes no correction for population structure, resulting in
inflated P-values genomewide for all phenotypes, while the use
of a kinship matrix to correct for population structure, as
implemented in the EMMA method, reduced this P-value inflation
(Figure S3). Although the Kruskal-Wallis method results in more
false positives than the EMMA method, it does have two
advantages. First, as a non-parametric test, it is more robust than
EMMA. Secondly, since it includes no correction for population
structure, the KW method presents no risk of P-value overcorrec-
tion when applied to traits that are correlated with population
structure. Gomparisons between the KW and EMMA P-values for
all SNPs (Figure S4) show that while some SNPs were considered
significant in both EMMA and KW tests, the vast majority of
SNPs were significant in either one test or the other, most likely for
the reasons mentioned above. Therefore, we felt that it was
important to consider associations made with both EMMA and
KW, keeping the limitations and advantages of both tests in mind.

To assess whether genome-wide associations were a result of
“true” signal rather than noise, associations in the genomic region
+/—20 kb around the genes PHY( and PHYB were examined.
Natural genetic variation in both of these photoreceptors has
previously been shown to underlie variation in hypocotyl
elongation in white and red light [21,30,39]. Indeed, significant
SNPs in linkage disequilibrium with both PHYC and PHYB were
identified using the KW method (maximum —logl0 P-value in a
+/—20 kb window around the genes =4.83 and 5.09, respectively;
Figures S5 and S6) and the predicted effect directions of these
SNPs were consistent with those of the polymorphisms identified
from previous work (data not shown). However, these SNPs were
not identified as significant in EMMA tests (although their P-values
appeared elevated in comparison to surrounding SNPs). Given the
geographical distribution of the high R:FR phenotype, which
broadly mirrors population structure [40], it is possible that these
tests were overcorrected in EMMA, resulting in false negatives.
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Alternatively, it is possible that these associations truly are false
positives caused by the confounding effects of population structure.
To distinguish between these two possibilities, we genotyped our
panel of accessions for the previously-identified PHYC and PHYB
variants and tested associations between these variants and the
high R:FR phenotype. The PHY(C causative variant was
significantly associated with hypocotyl height in high R:FR using
KW yet not with EMMA (Table 2), supporting the hypothesis that
EMMA overcorrected a true association. On the other hand, none
of the PHYB polymorphisms that we tested were significant using
either association method (Table 2).

There are a variety of possible explanations for this negative
result. First, although statistical tests identified polymorphism three
as the most significant of the SNPs tested in Filiault et al. [39], the
effect of this specific polymorphism was not functionally verified; it
is possible that an alternate SNP is the true causative SNP and
would show a significant association if tested. A second possibility
1s that the genome-wide KW association, while true, is not the
same assoclation that was identified in Filiault et al. [39], either
due to a polymorphism that does not segregate in the parental
accession used in Borevitz et al. [21] or due to differences in light
treatment between the experiments. Finally, the GWAS PHYB
association peak could truly be a false positive. Although the
difference between the Ler and Cvi alleles of PHYB was significant
in a QTL study and has been verified in transgenics [21,39], it is
possible that this difference does not contribute significantly to
hypocotyl height either in a broader population sample or under
our study conditions. Although additional work is needed to
understand these PHYB results, the identification of an experi-
mentally verified natural variant of PH1C is evidence that the
GWAS is identifying true signal in our data set.

Identification of A Priori Candidate Genes

With the GWAS successfully identifying at least one known
natural variant, we next looked for novel genetic variation
underlying our phenotypes. The first strategy was to focus on a
list of a priori genes whose specific roles in vegetative shade
avoidance responses have been experimentally confirmed
(Table 3). A gene was considered significantly associated with a
phenotype if at least one SNP in the genomic region +/—20 kb
around the gene had a P-value of <0.0001. The number of SNPs
passing this cutoff is provided in Table S2 and detailed
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descriptions of the individual SNPs used to call a priori genes
significant can be found in Tables S3 and S4. These criteria were
applied to all TAIR9-annotated genes to generate a significant
gene list for each combination of phenotype and association
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method. Fisher exact tests were then used to determine whether
the resulting lists were enriched in a priori genes. None of the gene
lists generated from KW results showed significant enrichment,
although associations with a priori genes were found for all four
phenotypes (Table 3). EMMA results, on the other hand, were
significantly enriched in @ prior: candidate genes for both high and
low R:FR phenotypes (P-value<0.016 and P-value<0.005).
Given the P-value inflation observed when using non-popula-
tion-structure-corrected KW tests, we expected more false
positives with these tests than when using EMMA, potentially
explaining the disparity in enrichment P-values. Regardless, these
results suggested that our GWAS results represented biologically
relevant associations rather than noise.

Next, the individual @ priori candidate gene associations were
examined in more detail, with the goal of looking for patterns in
the genetic control of phenotypic variation. When the significance
of both KW and EMMA associations across the four phenotypes
was considered, candidate genes seemed to fall into three main
patterns (Table 3 and Figure S7, row1), which corresponded to the
phenotypic correlation patterns observed in Figure 2 and Figure
S2. The first pattern consisted of genes associated with hypocotyl
height under high and/or low R:FR conditions without showing
significant associations with response or corrected response
phenotypes. These genes could be responsible for variation in
general elongation without causing variation in shade avoidance.
Even though a priori genes were chosen specifically as known shade
avoidance loci, five of the ten significantly-associated genes fell into
this generalist category. The functions of these five genes are quite
diverse; GA20ox1 and GAZ200x2 are involved in gibberellic acid
(GA) biosynthesis [19], 14419 is part of the auxin signaling
pathway [41], RGL2 encodes a DELLA protein involved in the
integration of the GA and light signaling pathways [42], and
ATHB? is a transcription factor involved in phytochrome B
signaling [43]. Notably, while all five genes have been shown to be
upregulated in response to low R:FR, their expression under high
R:FR conditions has also been demonstrated [11,18,19], suggest-
ing a mechanism whereby variation in these genes could
potentially underlie variation in elongation in a more general
fashion.

The other two patterns of significance observed involved either
the response or the corrected response to low R:FR. The first of
these patterns was association with both height in high R:FR and
response to low R:FR without a significant association with the
corrected R:FR response. Candidate genes which fit this pattern
might underlie variation in the shade avoidance response primarily
by controlling hypocotyl height in sun conditions, reflecting the
high inverse correlation between these two phenotypes (Figure 2).
Two a priori candidate genes fell into this category: the auxin-
responsive transcription factor /4429, which has been shown to be
responsive to both red and far-red light [44], and the
photoreceptor PHYB, the primary photoreceptor involved in
sensing the changes in R:FR that initiate shade avoidance [2].
Genes specifically affecting the shade avoidance response would be
predicted to fall into the final pattern of significance: significant
assocliation with response to low R:FR and/or corrected response
to low R:FR without a significant association with high R:FR.
Three a priori genes 1UCCAS, YUCCAY, and RGAI exhibited
significance patterns consistent with this third group of genetic
control. YUCCAS and YUCCAY are involved in auxin biosynthesis
[15], while RGAI is another member of the five-gene DELLA
family discussed above [20].

One candidate gene that was not significantly associated with
our phenotypes was ELF3. Although natural variation between the
Bayreuth and Shahdara alleles of ELF3 has been shown to
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underlie variation in shade avoidance between these two
accessions [22,23], we found no evidence of associations with this
variant in our data. This result is perhaps not unexpected as the
polymorphism presumed to cause reduced response to shade in the
Shahdara accession seems to be rare [23], a condition which
would result in very little power to detect this polymorphism in
GWAS. Overall, however, the strategy of using an a priori gene list
was useful one for two reasons. First, significant enrichment of «
priore genes lends additional support to the hypothesis that the
GWAS is indeed identifying true positives. Second, the resulting
lists of significantly-associated a priori genes and their correspond-
ing significance pattern groups can easily be used to generate
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specific testable hypotheses about both the identity and molecular
nature of natural variants.

Identification of De Novo Candidate Genes

Our final goal was to look beyond our a prior gene list to find de
novo candidates. As in the a priori analysis, genes +/—20 kb of a
significant SNP were considered significant, but for de novo
discovery, a more stringent P-value cutoff was instituted for KW
tests (P-value <0.00001). This cutoft P-value was chosen to be
slightly lower than that of the association between height in high
R:FR and PHYC, since this association was considered confirmed.
For EMMA tests, a cutoff that resulted in a similar number of
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Table 2. Associations with previously-identified SNPs in PHYC
and PHYB.

SNP Kruskal-Wallis EMMA
PHYC 443 1.72
PHYB Site 1 0.20 0.27
PHYB Site 3 1.14 0.09
PHYB Site 4 0.70 0.17
PHYB Site 7 0.41 0.19
PHYB Site 12 1.32 0.08

—log10 P-value of Kruskal-Wallis and EMMA associations between hypocotyl
height in high R:FR and candidate SNPs in PHYC and PHYB identified in
Balasubramanian et al. [30] and Filiault et al. [39].
doi:10.1371/journal.pgen.1002589.t002

significant genes for both EMMA and KW tests was chosen (F-
value <0.0001). SNPs with a minor allele frequency <0.1 were
also removed from the analysis, since these SNPs can produce
misleading results in EMMA tests; this filter reduced the number
of SNPs considered from ~210 k to ~170 k. The number of
SNPs matching these criteria is provided in Table S2 and detailed
descriptions of the individual SNPs used to call de novo genes
significant can be found in Datasets SI1 and S2. Applying these
selection criteria, we identified significant SNPs for all phenotypes
(Table S2), defining 1709 genes as significant. As in the a priori
gene analysis, genes identified using the de novo criteria were easily
separable into the same three significance pattern groups (Figure
S7, row 2). Of the unique genes identified, 192 were significant for
both KW and EMMA. Although genes that were significant in
both KW and EMMA were considered particularly interesting, all
associated genes were included when looking for de novo
candidates.

To sort through this gene list, we took advantage of metadata to
help identify possible de novo candidate genes. First, microarray
data from previously-published experiments [10,14] was reana-
lyzed to generate a list of genes differentially regulated in response
to low R:FR treatment. Secondly, the biological process GO terms
and other annotation for all the genes on the list were retrieved.
No significant enrichment either for differential regulation or for
specific GO terms was seen in this list, nor was any GO term
significantly different either between EMMA and KW de novo
candidate gene lists or among the lists of candidate genes for the
four different phenotypes (data not shown). This lack of GO term
enrichment is not surprising given both the incomplete nature of
the GO resource and the presumed low ratio of causative to non-
causative genes in the analysis, resulting both from the +/—20 kb
window used for candidate gene identification and from lack of
population structure correction in KW tests. Both differential
regulation and GO terms were, however, used to manually parse
through this comprehensive de novo gene list to identify potentially
interesting candidates. This selection process reduced the de novo
candidate list to 53 genes which were subsequently easily assigned
to the three significance pattern groups established in the a prior
analysis (Figure S7, third row). The resulting de novo gene list is in
Table S5.

Although this list of candidate genes included many a priorn
genes, we were able to identify truly de novo candidates, as well.
From the filtered list of 53 de novo genes, 28 genes fell into the first
significance group pattern: genes responsible for general hypocotyl
height variation. Here, two genomic regions stood out as being
significant in both KW and EMMA tests. The first region
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contained [AA419, which had been found as an a prior: candidate
gene, and the second region contained CGAI. This low R:FR-
regulated GATA family transcription factor functions downstream
of the DELLAs to control elongation growth, and its expression is
increased in piffamily (PHYTOCHROME INTERACTING FAC-
TOR) knockout plants. This regulation seems to be direct, since an
element of the CGAI promoter co-immunoprecipitates with PIF3
[45]. Given this de novo association, as well as those of two DELLAs
(RGA and RGL2) seen in the a priori analysis, it seems that
modulating the integration of light and GA signals could be a
common mechanism for generating general hypocotyl height
variation in natural populations.

Genetic variants of the loci in the second significance pattern
group are hypothesized to cause hypocotyl height-dependent
variation in shade avoidance. Two of the seven de novo genes in this
group, PHYB and 14429, had also been analyzed as a priori genes.
The only group two gene to be significant in both EMMA and
KW tests, however, was a locus near, yet not in the same +/
—20 kb window as, 14429. This gene is ATHI (AT4G32980), a
homeobox transcription factor implicated in photomorphogenesis
[46] that has also been shown to be involved in stem growth and
shoot apical meristem maintenance in older plants, as well [47,48].

Significance group three contains genes with variants that
potentially influenceshade avoidance in a specific manner.
Interestingly, many group three de novo genes seemed to be
involved in phytochrome A signaling. PHYA and PIF3, a
transcription factor that interacts directly with both phyA and
phyB, are separated only by about 16 kb in the Arabidopsis genome.
A significantly-associated SNP fell into this interval, making both
of these genes potential de novo candidates. Two additional genes
involved in phyA signaling, ATNAP2/ABCI21 and FRSI11 [44,49]
were also significant. A fifth gene, PP5Pa, a proposed inorganic
pyrophosphatase, initially seemed an unlikely candidate despite
being differentially-regulated in response to low R:FR and being
significant in both EMMA and KW tests. However, transcription
of this gene has been shown to be under the control of FAR! [50],
a transcription factor in the phytochrome A signaling pathway that
is involved in the nuclear accumulation of phyA [51]. Altogether,
five of 18 group three de novo candidate genes are involved in phyA
signaling, suggesting that variation in this pathway could be
responsible for at least some of the observed variation in the shade
avoidance response. This phenomenon could be explained by the
light-labile nature of phyA itself. Although phytochrome A is
rapidly degraded in red light, it becomes more stable as the ratio of
R:FR decreases, allowing increased signaling through the phyA
pathway and a concomitant inhibition of elongation growth in
shade conditions [52].

Variants in both PHYA and PHYB were associated with
variation in shade avoidance, yet the association/phenotype
significance patterns seemed to suggest that PHYB variation
affected shade avoidance in a strictly height-dependent way, while
PHYA control was more specific for the response itself. We
decided, therefore, to ask whether these two variants exerted
independent effects on our phenotypes. Two-way ANOVAs with
the most significant PHYB and PHYA SNPs as factors found no
significant interaction term for any of the four phenotypes used in
this study (data not shown), and the loci seemed to be acting
additively (Figure S8). These results indicate that genetic variants
linked to PHYA and PHYB were exerting independent control over
shade avoidance. 7-tests between the means of the allelic variants
of both SNPs showed effect sizes and P-values that were consistent
with the patterns seen in the GWAS (Table S6). The notion that
PHYA and PHYB act independently in shade avoidance is in
agreement with a microarray study of shade avoidance using phyB
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and phyAB mutants which identified a number of shade-responsive
genes under independent control of PHYA [53]. Again, however,
PIF3 and PHYA are situated quite nearby each other in the
genome, so the SNP identified as significant here could be a
marker for variation in either gene. Nonetheless, this particular
association is one of many promising targets for which validation
of these GWAS results using crosses and functional studies seems
warranted.

Finally, intrigued by the result that variation in PHYA/PIF3
seemed to underlie specific shade avoidance variation, we asked
whether the PHYA/PIF3 variant could shed light on the idea that
the shade avoidance response could be locally adaptive. We
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Table 3. Associations with a priori candidate genes.

Gene KW Kw KwW Kw EMMA EMMA EMMA EMMA Pattern
Locus name high low response corrected high low response corrected category*
AT1G02340 HFR1 2.29 240 1.77 2.30 1.61 1.24 1.17 1.16
AT1G04180 YUCCA9 225 2.06 4.18 4.06 1.56 3.01 243 3.03 3
AT1G14920 GAI 3.82 2.51 298 2.09 1.73 1.76 1.51 1.56
AT1G65310 XTH17 2.6 217 2.56 2.74 2.06 3.25 1.86 2.45
AT1G66350 RGL1 2.01 3.29 2.47 3.75 1.12 1.86 1.47 3.03
AT1G70560 TAAT 2.65 331 2.01 1.86 3.15 292 0.95 1.51
AT1G70940 PIN3 332 236 3.77 1.66 2.25 1.64 234 1.51
AT1G75450 CKX5 2.70 1.99 1.06 1.08 259 1.54 1.73 0.66
AT1G75540 AtBBX21 3.15 1.33 213 1.65 1.22 1.60 1.90 1.39
AT2G01570 RGA 3.05 2.1 4.12 252 1.57 1.20 1.80 1.59 3
AT2G18790 PHYB 5.09 2.77 6.18 1.84 2.56 1.56 3.97 1.91 2
AT2G25930 ELF3 2.74 2.49 2.15 0.80 1.83 2.22 1.34 1.04
AT2G32950 COP1 2.30 1.87 233 3.71 1.76 2.25 1.20 2.30
AT2G42870 PAR1 1.11 1.09 1.27 233 1.86 1.80 1.30 1.73
AT2G43010 PIF4 2.49 1.47 3.02 1.46 1.52 1.69 1.39 1.40
AT2G44910 ATHB4 1.91 1.00 341 3.25 1.66 143 227 273
AT2G46970 PILT 2.62 248 1.97 245 1.9 1.47 221 1.95
AT3G02260 BIG 1.87 1.62 1.57 3.19 1.78 2.85 2.01 3.29
AT3G03450 RGL2 4.58 3.23 3.79 1.94 1.46 3.19 1.14 1.68 1
AT3G15540 IAAT9 7.05 6.15 3.73 0.73 4.84 4.41 231 0.87 1
AT3G58850 PAR2 3.62 2.21 2.03 1.78 1.43 1.19 1.06 1.49
AT3G59060 PIF5 2.61 3.56 1.05 1.87 2.08 2.64 0.51 1.45
AT4G13260 YUCCA2 1.67 1.82 2.04 2.27 2.14 2.14 2.06 1.66
AT4G14130 XTH15 348 3.03 261 1.38 2.00 1.51 215 1.44
AT4G16250 PHYD 3.02 2.98 3.02 336 2.20 2.15 1.43 222
AT4G16780 ATHB2 3.39 3.26 3.19 1.84 4.02 4.89 227 1.69 1
AT4G18130 PHYE 1.74 1.96 2.00 1.97 1.76 1.71 1.47 2.10
AT4G25420 GA200x1 2.68 232 2,68 1.52 443 4.33 1.53 1.24 1
AT4G28720 YUCCA8 261 1.30 2.76 1.12 249 2,65 232 1.49
AT4G32280 1AA29 5.14 173 5.68 1.69 2.19 1.51 2.30 1.24 2
AT4G39400 BRI1 1.96 2.23 1.80 1.45 2.21 1.57 2.01 0.81
AT5G17490 RGL3 1.42 1.56 1.21 1.12 1.35 1.91 0.91 1.28
AT5G43890 YUCCAS 338 2.40 3.79 2.89 2.61 1.70 4.13 2.59 3
AT5G51810 GA200x2 4.22 4.55 3.21 223 3.80 4.47 1.47 2.29 1
AT5G61380 TOCT 2.68 2.08 3.91 1.88 1.66 1.84 2.09 1.68
—log10 P-value of most significant Kruskal-Wallis and EMMA associations between hypocotyl phenotypes and a priori candidate genes.
*Significance pattern categories: 1=general control of hypocotyl height, 2 = control of shade avoidance via hypocotyl height, 3 = specific control of shade avoidance
response.
doi:10.1371/journal.pgen.1002589.t003

decided to focus on Swedish accessions, since 43 of the 168
accessions used for the GWAS study originated from Sweden.
When the phenotypes of these accessions were plotted on a map
(Figure S9A-S9D), no obvious geographic patterns could be seen
and in fact, none of the phenotypes were significantly correlated
with latitude (data not shown). On the contrary, phenotypes from
accessions in very close proximity to one another often had quite
disparate phenotypes, especially for the response and corrected
response phenotypes. This observation is consistent with the
population-level phenotypic variation that could result from
adaptation to local R:FR conditions. The allelic distribution of
the most significant PHYA/PIF3 SNP showed a similar pattern of
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local co-existence, with the exception of the 14 most northern
accessions which all carried the same variant (Figure SOE). 7-tests
for differences between the mean phenotypes of the two alleles
were performed for all four phenotypes (Figure S9F). These tests
indicated that just as in the main set of accessions, the PHYA/PIF3
variant had a specific effect on the shade avoidance response in the
Swedish subset. Given that Arabidopsis exhibits isolation by distance
[31], we cannot rule out the possibility that these associations are
false positives due to population structure, especially since the most
northern accessions all carry the same allele of the SNP under
consideration. However, if the variation in shade avoidance that
has been measured in this study is indeed adaptive, then the
evidence presented here is a solid starting point for further
exploration of hypothetical local adaptation in shade avoidance in
Swedish Arabidopsis populations.

Conclusions

We performed a genome-wide association study (GWAS) to
look for genetic variants underlying four phenotypes: hypocotyl
height in both high and low R:FR, the response of hypocotyl
height to shade, and the response to shade corrected for hypocotyl
height. Rather than the few peaks of large effect size seen in some
earlier published Arabidopsis GWAS, our results showed many
peaks with small to moderate effect sizes. Instead of representing a
shortcoming with the study or method, these results suggest that
variation in the shade avoidance response is complex trait that is
controlled by many genetic variants. Through analysis of known
variants, a priori candidate genes lists, and metadata-enabled de novo
candidate discovery, we were able to identify genetic variants
associated with shade avoidance phenotypes. One goal of future
work will be to verify these associations in lines that minimize
confounding due to population structure, such as F2 populations
or recombinant inbred lines. A second goal will be to identify and
characterize causative polymorphisms through functional molec-
ular work.

While previous GWAS studies in Arabidopsis have found
environment-dependent associations [54-56], the results of the
study described here emphasize the strength of explicitly
incorporating GxE interactions into the GWAS approach. First,
our study design enabled the identification of genetic variants
specifically underlying the response to low R:FR. As many aspects
of plant development and physiology are intrinsically environ-
mentally-sensitive, an improved understanding of genotype-by-
environment interactions will be a key part of exploring the
genotype-phenotype map for these traits. As statistical methods
and mapping designs improve [57], our power to examine these
interactions will only continue to grow.

The second benefit of our study design is that the results serve as a
springboard to ecological and population genetics studies exploring
the evolutionary relevance of environmental responses. For
example, in this study, the observation that the shade avoidance
response is not correlated with latitude lead us to hypothesize that
the response to low R:FR is locally adaptive. Our subsequent
GWAS identified variants that were specifically associated with the
shade avoidance response, suggesting a set of experiments that can
be performed to explore this hypothesis. First, our candidate variant
list can be used in designing physiological and/or genetic
manipulations to assess whether this variation in shade avoidance
is an example of adaptive plasticity [58,59]. Second, the resequen-
cing of hundreds of Arabidopsis accessions [60] will provide a
powerful resource to look for genomic evidence of selection around
candidate SNPs. Finally, if the variants identified in our GWAS are
adaptive, it would be interesting to understand the scale of this
adaptation. Since little information about habitat or ecology was
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collected at the time of accession sampling, this work would require
returning to the field, assessing the light environment in field sites
and taking new population samples. If our candidate SNPs are
responsible for local adaptation, then population-level differences in
the frequency of these variants should correspond with local
differences in the R:FR ratio. This suite of experiments, which has
the potential to shed light on the genetics of phenotypic plasticity, is
made possible by the specific nature of the candidate SNP lists
generated as a result of the incorporation of genotype by
environment interactions into GWAS, indicating that this strategy
promises to be a useful tool in furthering our understanding of
evolution and natural variation.

Materials and Methods

Plant Culture and Measurement

180 Arabidopsis thaliana accessions (Table S1) were phenotyped.
Seeds were gas sterilized, plated on 0.5x MSMO with 0.7% agar,
and stratified for four days in the dark at 4°C. Plates were then
moved to two LED chambers with constant light conditions set to
34 uE/m?/s red light and 7 pE/m?*/s blue light. After 24 hours,
far-red light was added to bring the red-to-far-red ratio (R:FR) to
2. After an additional 24 hours, non-germinated seeds were
marked and excluded from further analysis in order to minimize
hypocotyl height variation due solely to variation in germination
time. 24 hours after this marking, the R:FR ratio in one chamber
was lowered to 0.5 and plants were grown for an additional 4 days.
Seedings were harvested to transparencies and scanned to .jpg
files. Hypocotyl height was measured from these images using
Image J [61]. A completely randomized design of two repetitions
of 20 plants each per treatment was used. The experiment was
repeated with a reversal of the R:FR treatment assignments for the
two chambers.

Phenotype Modeling

This, and all subsequent analyses were done using the R
statistical programming language [62]. Phenotypes were modeled
with the following mixed linear model using the Ime4 package
[63]:

HYP=ENV +GEN +EXP+GEN x ENV +e

where HYPis hypocotyl height, KNV is light treatment (high or low
R:FR), GEN is genotype (accession), LXP is experimental repeat,
GEN*ENV is the genotype by environment interaction, and ¢ is the
error. NV is fitted as a fixed effect while all other variables are
fitted as random effects. Significance of each model term was
assessed using the anova.lm method implemented in R. The
predicted effects for hypocotyl height in high and low R:FR, as
well as for response to R:FR were extracted and used as
phenotypes in GWAS analysis.

To determine heritability of hypocotyl height, the following
model was fit for both high and low R:FR data:

HYP=GEN+EXP+e

where HYP is hypocotyl height, GEN is genotype (accession), XP
is experimental repeat, and e is the error, with all variables fitted as
random effects. Heritability was then calculated as the genotypic
variance divided by the total variance.

Genetic correlation across high and low R:FR environments
was calculated as in Falconer and MacKay [64] using variance
estimates from the above models.
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Genome-Wide Associations

All analyses were done in R [62]. Two methods were used to
perform association tests between modeled phenotypes and the
genome-wide SNP data from Atwell et al. [36]. The first method
was EMMA, the mixed linear model approach with a K matrix as
populations structure correction as outlined in Kang et al. [37],
and the second method was a Kruskal-Wallis test. Linkage
disequilibrium was calculated using the genetics package [65].
Phytochrome B and C genotyping was done as in Balasubrama-
nian et al. [30] and Filiault et al. [39], with results in Table S7.

Enrichment Analysis

Genes differentially regulated in response to R:FR treatment
were determined by reanalyzing data from Sessa et al. [10] and
Tao et al. [14] using the limma package [66] in Bioconductor [67].
A false discovery rate (FDR) cutoft of 0.1 was used for determining
gene significance. GO annotation and other annotation was taken
from the org.At.tairGO package [68] in Bioconductor [67].
Enrichment for a priori genes and for R:FR differentially-regulated
genes was assessed with a Fisher’s exact test. The GOstat program
[69] with default settings, an FDR of 0.05, and the TAIR GO
database was used to look for overrepresentation of GO terms in
candidate gene lists.

Supporting Information

Dataset S1 A .csv file providing the minor allele frequency
(MAF), —logl0 P-value, and P-value rank of all SNPs with a KW
P-value <0.00001.

(CSV)

Dataset 82 A .csv file providing the minor allele frequency
(MAF), —logl0 P-value, P-value rank, effect size, and EMMA

variance components of all SNPs with an EMMA P-
value <0.0001.
(CSV)

Figure S1 Distributions of phenotypes derived from the mixed
effects model. Histograms of the fitted values for hypocotyl height
in high R:FR (A), height in low R:FR (B), and response to low
R:FR (C). The distribution of the corrected response phenotype is
shown in Figure 2D.

(PDF)

Figure 82 Correlations with the corrected response phenotype.
Correlations between the corrected response phenotype and
hypocotyl height in high R:FR (A), height in low R:FR (B), and
response to low R:FR (C).

(PDF)

Figure 83 Q-Q plots. Quantile-quantile plots of Kruskal-Wallis
and EMMA P-values for all four phenotypes showing the distribution
of observed P-values (black dots) compared to the expected P-value
distribution (red lines). The upward shift of observed P-values away
from the diagonal represents P-value inflation.

(PDF)

Figure S4 Comparison of P-values between Kruskal Wallis and
EMMA tests. Scatter plots comparing —loglO P-values for
Kruskal-Wallis (KW) and EMMA tests for all four phenotypes.
Shaded boxes delimit SNPs that are considered significant for de
novo candidate gene discovery. The green boxes contain SNPs
significant in EMMA only, SNPs in the purple boxes are
significant for KW only, and the pink boxes denote SNPs that
are significant for both tests. The numbers printed within each box
represent the number of SNPs in each box. The number of points
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in each box may not match this number exactly due to
overplotting of SNPs with identical or nearly-identical P-values.
(PDF)

Figure 85 Detailed view of associations with high R:FR around
PHYC. The lower panel is a detailed view of the area highlighted
by the green box in the upper panel. In both panels, open circles
indicate the —log10 P-value of the SNPs in the region. Blue circles
represent EMMA  P-values while red circles represent Kruskal-
Wallis P-values. Green rectangles running horizontally through
the lower panel represent the genes +/—20 kb around PHYC. The
pairwise linkage disequilibrium (R?) between SNPs is indicated
below the genes in the lower panel, with darker colors representing
higher linkage disequilibrium.

(PDF)

Figure S6 Detailed view of associations with high R:FR around
PHYB. The lower panel is a detailed view of the area highlighted
by the green box in the upper panel. In both panels, open circles
indicate the —log10 P-value of the SNPs in the region. Blue circles
represent EMMA P-values while red circles represent Kruskal-
Wallis P-values. Green rectangles running horizontally through
the lower panel represent the genes +/—20 kb around PHYB. The
pairwise linkage disequilibrium (R?) between SNPs is indicated
below the genes in the lower panel, with darker colors representing
higher linkage disequilibrium.

(PDI)

Figure 87 Venn diagrams of candidate gene lists. Venn
diagrams showing the number of significant genes common to
all combinations of the four study phenotypes. Diagrams for both
Kruskal-Wallis and EMMA tests for the three candidate gene lists
described in the text are presented.

(PDF)

Figure S8 Phenotypes of accessions carrying the most significant
SNPs around PHYA and PHYB. Box plots for all phenotypes. The
four groups in each plot represent the four possible allelic
combinations of the most significantly-associated SNPs around
PHYA and PHYB. The PHYA SNP is Chr1:3079229 and the PHYB
SNP is Chr2:8139482 (TAIR 9 annotation). The letter A in each
genotype group designation denotes the PH1A genotype, while the
letter B denotes the PHYB genotype.

(PDF)

Figure S9 Phenotypes and PHYA/PIF3 variation in Swedish
accessions. (A-D) Geographic distribution of phenotypic values.
Phenotypic values are represented by a gradient in both size and
color; small blue circles represent smaller values, while large red
circles indicate larger values. (E) Geographic distribution of
the alleles of the most significant SNP near PHYA/PIF3
(Chr1:3079229) for the Swedish accessions used in this study. (I)
Box plots for all phenotypes grouped by the alleles represented in
panel E. T-test P-values for differences in trait means between the
alleles are presented above each box plot.

(PDF)
Table S1
(PDF)

Table $2 Number of SNPs consided significant for all cutoff
criteria used in this study.
(PDF)

Arabidopsis thaliana accessions used in this study.

Table 83 Characterization of the significant SNPs identified in a
priort Kruskal Wallis tests, including position, minor allele
frequency, and P-value rank.

(PDF)
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Table 84 Characterization of the significant SNPs identified in a
priorr EMMA tests, including position, minor allele frequency, P-
value rank, effect size, and EMMA variance components.

(PDE)
Table 85 GWAS results for loci selected as interesting de novo
candidate genes.

(PDF)
Table S6 Difference in allelic means and #test P-values for the

most significant PHYA and PHYB SNPs.
(PDF)

Table 87 Phytochrome B and C genotyping results.
(PDF)
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