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Freshly ejaculated spermatozoa are incapable or poorly capable of fertilizing an oocyte. The fertilization aptness of spermatozoa
depends on the appropriate and time-dependent acquisition of hyperactivation, chemotaxis, capacitation, and the acrosome
reaction, where calcium (Ca2+) is extensively involved in almost every step. A literature review showed that several ion channel
proteins are likely responsible for regulation of the Ca2+ uptake in spermatozoa.Therefore, manipulation of the functions of channel
proteins is closely related to Ca2+ influx, ultimately affecting male fertility. Recently, it has been shown that, together with different
physiological stimuli, protein-protein interaction also modifies the Ca2+ influx mechanism in spermatozoa. Modern proteomic
analyses have identified several sperm proteins, and, therefore, these findings might provide further insight into understanding the
Ca2+ influx, protein functions, and regulation of fertility. The objective of this review was to synthesize the published findings on
the Ca2+ influx mechanism in mammalian spermatozoa and its implications for the regulation of male fertility in the context of
sperm proteins. Finally, Pathway Studio (9.0) was used to catalog the sperm proteins that regulate the Ca2+ influx signaling by using
the information available from the PubMed database following a MedScan Reader (5.0) search.

1. Introduction

Spermatozoa are atypical cells with peculiar functionality:
they are produced in one organism and released, and then
they invade another organism and deliver their genetic
material into a host cell to produce offspring by sexual
reproduction. It is a well-known fact that only about 1 in
25,000 spermatozoa finally reaches the fallopian tube and
gets the opportunity to fertilize an oocyte. In the mid-20th
century, it had been claimed that mammalian spermatozoa
are unable to fertilize an oocyte before achieving functional
maturation, which occurs during their journey through the
female reproductive tract for a finite period of time [1, 2].
This fundamental maturational process is chiefly regulated
by numerous signaling cascades, and calcium (Ca2+) plays
a dynamic role in this process, as an intracellular second
messenger. Several studies have hypothesized that elevation
of sperm intracellular Ca2+ ([Ca2+]i)/Ca

2+ influx regulates
motility, hyperactivation, chemotaxis, capacitation, and the

acrosome reaction and facilitates the spermatozoa reaching
and fertilizing of an oocyte [3–8]. Therefore, understanding
the mechanism that regulates the Ca2+ influx in spermatozoa
is a matter of utmost importance.

Previous studies have shown that the Ca2+ entry mecha-
nisms are regulated via numerous Ca2+ permeable channel
proteins in spermatozoa [6, 9, 10]. Therefore, the factors
that regulate the functions of those channels will ulti-
mately help us understand how male fertility is regulated.
Recent applications of proteomic approaches such as two-
dimensional polyacrylamide gel electrophoresis, mass spec-
trometry, and differential in-gel electrophoresis have yielded
the identification of several sperm-specific proteins [11, 12].
These discoveries have provided new insight into protein
functions and enabled us to recognize diverse sperm-specific
processes in order to differentiate normal from abnormal
spermatozoa [11]. Mature spermatozoa are widely known to
be silent in both transcription and translation [11, 13, 14]
or poorly capable of translation [15]; therefore, studies on
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individual sperm proteomes have described the importance
of spermatozoal posttranslational modifications and their
ability to induce physiological changes as a prerequisite for
successful fertilization.

Torres-Flores et al. [16] have shown that human sperma-
tozoa exposed to the phosphodiesterase inhibitor papaverine
cause activation of protein kinase A (PKA) and stimulate the
progesterone-induced Ca2+ influx via the cyclic adenosine
monophosphate- (cAMP-) dependent pathway. Although
these authors did not evaluate the relationship between in
vitro fertility and Ca2+ influx, changes in intracellular pH
and increased tyrosine phosphorylation ultimately provide
a potential clue regarding sperm fertility competence. In
another study, to evaluate hamster spermatozoa capacitation
capability, comparative association was observed between
pyruvate dehydrogenase A, Ca2+ influx, cAMP, and reactive
oxygen species [17]. Additionally, Breitbart et al. [18] reported
that polymerization of globular- (G-) actin to filamentous-
(F-) actin occurs during capacitation. As capacitation and
the acrosome reaction are Ca2+-mediated events [4, 5], one
can, without considering further signaling cascade, assume
that remodeling the actin structure might be linked with the
regulation of Ca2+ influx in spermatozoa.

Recently, in our laboratory, we found that the manip-
ulation of sperm proteins such as ubiquinol-cytochrome-c
reductase core protein 2 (UQCRC2) [39], voltage-dependent
anion channels proteins (VDACs) [4], and arginine vaso-
pressin [5] could control the Ca2+ influx in spermatozoa and
regulate capacitation, the acrosome reaction, and fertility.
Therefore, design and construction of a similar study with
most of the identified sperm proteins available from several
protein databases might provide a more realistic insight into
the Ca2+ influx, protein functions, and fertility. The present
work reviews the latest information published by other labo-
ratories as well as our research team on the aforementioned
aspects of spermatozoa and their potential implications for
diagnosis and prognosis of male fertility.

2. Mechanism of Ca2+ Influx in Mammalian
Spermatozoa

The ultimate goal of fertilization of mammalian sperm is to
fuse with and deliver their geneticmaterials into an oocyte [2,
40, 41]. For fertilization to occur completely, the spermatozoa
must experience various obstacles both in vitro and in vivo
[40, 41]. Ca2+ ions act as central signaling molecules; once
they enter the spermatozoa, they exert allosteric regulatory
effects on enzymes and many proteins [10, 21, 42]. Indeed,
numerous elegant research findings have contributed signif-
icantly to our understanding of the molecular signaling of
Ca2+ influx, especially through monitoring the activity of
individual cells. However, most of the studies are discrete
and often do not represent a cumulative idea. This section
presents a compilation of some basic information regarding
the Ca2+ entry mechanism into mammalian spermatozoa by
recapitulating scientific evidence.

The literature reviewed shows that the primary source of
Ca2+ for spermatozoa is the external environment: the fallop-
ian tube in the female reproductive tract (in vivo) and culture
media (in vitro) [8], and simultaneously increasing [Ca2+]i
regulates the release of Ca2+ into the cell.Therefore, howCa2+
crosses into cells through the sperm plasma membrane is
a matter of paramount importance. In eukaryotic cells, the
Ca2+ influx occurs through specificCa2+ permeable ion chan-
nel proteins located on the plasmamembrane [43, 44] such as
classical voltage-gated (high and low) Ca2+ (Cavs), transient
receptor potential (TRP), and cyclic nucleotide-gated (CNG)
channels [9]. Recently, Ren and Xia have proposed four
criteria to identify sperm ion channel proteins: detectability
in sperm, preferably with knockout sperm as a negative
control; ability to produce ion channel current detectable by
patch-clamp recording; blocking of the channels that impairs
normal sperm function; and mutations of gene encoding the
ion channel proteins leading to sperm malfunctions [10].

The CatSper family of channels is the newest and only
family of voltage-gated Ca2+ channels that meets most of the
aforementioned criteria and essentially regulates Ca2+ entry
into cells and is therefore crucial for sperm fertility [9, 45].
Four pore-forming CatSper channel proteins, CatSper 1–4,
and at least two auxiliary subunits, CatSper𝛽 and CatSper𝛾,
have been identified in a wide range of animals, including
humans andmice [46, 47]. Physiologically, CatSpermembers
are permeable to Ca2+,whereas the CatSper knockdown
sperm does not have the channel current that is detected
in the principal piece of wild-type sperm [20, 48]. Most
of the channel proteins, including CatSper members, have
been identified in the principal piece of spermatozoa [20,
46, 47, 49] (Figure 1). Although the explanation of such
subcellular localization is still debated, it might be because
of interactions among the channel proteins and with the
auxiliary subunits, although a further study is needed to
resolve this issue. Collectively, these proteins play a key role
in various cellular processes via regulation of the membrane
potential and intracellular ionic balance. Carlson et al. [50]
and Quill et al. [51] have conclusively proved that CatSper1
and CatSper2 null mice are sterile owing to their inability
to generate the sperm-hyperactivated motility prerequisite
for penetration of an oocyte extracellular matrix. In effect,
the complete or partial absence of single or multiple Ca2+
channels is responsible for infertility or subfertility, although
their underlying signaling cascade has not been properly
studied.

Previously, it has been reported that CatSper-dependent
increases of [Ca2+]i in spermatozoa are induced by
several psychological stimuli such as cyclic nucleotides
(e.g., cAMP and cGMP) [29, 30, 52], soluble adenylyl
cyclase [29, 52], zona pellucida glycoprotein [34, 35, 38],
serum albumin [37, 38], secretion of cumulus oophorus
[38], intracellular alkalization [3, 53], and pH [6, 21]. A
recent study showed that endocrine disruptors such as p,p󸀠-
dichlorodiphenyldichloroethylene (p,p󸀠-DDE) promoted
Ca2+ entry into spermatozoa by activating CatSper channels,
even at a physiological concentration [36]. In addition,
several other components are also known to play an
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Figure 1: Possible signal transduction mechanisms of mammalian sperm Ca2+ influx through the Ca2+ permeable channel proteins.
Previously published studies were used as references to summarize the list of channel proteins in spermatozoa. The channel proteins are
localized mainly in the principle piece of spermatozoa. The follicular fluid and several factors in the fallopian tube (in vitromedia) stimulate
the receptors for spermatozoa Ca2+ influx. Ca2+ influx in spermatozoa is principally regulated by CatSper channels; however, the possible
interaction between other channels that are responsible for controlling the opening of CatSper and allowing the Ca2+ into cells is indicated
by arrow signs (red circle). The different channel proteins that are depicted in the diagram include the Na+-coupled HCO

3

− transporter
(NBC) family, soluble adenylyl cyclase (sACY), adenosine triphosphate (ATP), cyclic adenosine monophosphate (cAMP), cyclic guanosine
monophosphate (cGMP), cyclic nucleotide-gated ion channel (CNG), hyperpolarization-activated cyclic nucleotide-gated channel (HCN),
zona pellucida (ZP), the voltage-gated proton channel (Hv1), glutamate receptor family class-C (GPCRC), and an unknown mechanism (?).

important role in Ca2+ influx mechanisms in mammalian
spermatozoa by regulating the opening of CatSper members,
including the flagellar voltage-gated proton channel (Hv1)
[21], Ca2+-ATPase pump [33], several cyclic nucleotide-gated
ion channels (CNG) [27, 54], hyperpolarization-activated
cyclic nucleotide-gated (HCN) channels [27], and G-protein
coupled receptors (GPCRs).

A hypothetical signaling cascade of Ca2+ influx pathways
and interaction of several channel proteins is depicted in
Figure 1. Although the functions of several ion channel
proteins together with their concurrent relationship with
numerous stimuli have been well studied [21, 27, 38], several
fundamental questions remain unanswered; for example,
howdo these channels/stimuli regulate theCa2+ influx during
spermatozoa processes such as capacitation, the acrosome
reaction, and fertilization? Do they work alone or together
with other channel proteins to regulate Ca2+ influx? More-
over, which other parameters that remain undetected could
have an effect on Ca2+ influx? Therefore, future research
should focus on resolving these issues. Table 1 summarizes
the proposed effect of Ca2+ ion channels and their physio-
logical role that ultimately helps Ca2+ influx into mammalian
spermatozoa.

3. Effect of Ca2+ Influx on Male Fertility

Ca2+ triggers multiple physiological events in sperma-
tozoa, such as hyperactivation, chemotaxis, capacitation,
and the acrosomal reaction, all of which are essential for

successful fertilization. In mammalian spermatozoa, numer-
ous Ca2+ permeable channel proteins control intracellular
pH, and the pH-dependent Ca2+ influx is measured by the
whole-cell patch clamp technique [9, 20]. A review of the
literature showed that a potential functional interaction exists
between the sperm proteins and Ca2+ permeable chan-
nel proteins, thus modulating the Ca2+ influx mechanism
[4, 5, 39] and playing a vital role in adjusting male fertility.
However, themechanism bywhich Ca2+ triggers intracellular
signaling to regulate physiological events in spermatozoa
and the role of sperm proteins in adjustment of Ca2+
influx into cells remains unclear. This topic is emphasized
below.

3.1. Ca2+ Influx, Sperm Hyperactivation, Chemotaxis, and
Protein Functions. In general, mature spermatozoa are held
immotile within the epididymis. However, they quickly begin
to swim following release. This is known as activation of
motility and is characterized by symmetrical flagellar beats
[55, 56].The terms sperm activation and hyperactivation have
quite different meanings. The spermatozoa become hyperac-
tivatedwhen the amplitude of the flagellar bend increases and
produces a highly asymmetrical beat. In vivo, hyperactivation
of spermatozoa facilitates the release of sperm from oviductal
storage and boosts them through mucus in the oviductal
lumen and matrix of the cumulus oophorus during fertiliza-
tion [7]. In contrast, chemotaxis is a formof spermmovement
in which spermatozoa move toward a concentration gradient
of a chemoattractant released from the oocyte [57, 58].
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Table 1: Summary of published works on ion channels and physiological stimuli of mammalian spermatozoa that regulate the Ca2+ influx
mechanism.

Name of
channel/stimuli

Localization on
spermatozoa/availability Role in Ca2+ influx Role in sperm

physiology
Effect of knocking
down/absence Reference

CatSper
CatSper 1
CatSper 2
CatSper 3
CatSper 4
CatSper𝛽
CatSper𝛾

Principal piece Regulates Ca2+ influx
Ca2+ uptake,
hyperactivated

motility
Sterile Barratt and Publicover,

[19]; Qi et al. [20]

Hv1 Principal piece
Intracellular pH,
alkalization thus

stimulate Ca2+ influx

Extrudes
protons from

flagella,
alkalization

Fertile Lishko et al. [21],
Lishko et al. [22]

𝐼ATP Midpiece Selectively transports the
Ca2+

Ca2+ influx,
alkalization Fertile Navarro et al. [23]

TRPC Principal piece,
midpiece

Stimulates opening of
CatSper

Ca2+ influx, cell
depolarization Fertile Gees et al. [24],

Castellano et al. [25]

CNG Sperm flagellum, head
Stimulates opening of

CatSper via
cAMP/cGMP

Ca2+ influx Fertile Biel and Michalakis [26]

HCN Flagellum Depolarization and
opening of CatSper Ca2+ influx Fertile Wiesner et al. [27]

SOC Plasma membrane ZP-induced Ca2+ influx Sperm
chemotactic Subfertile Yoshida et al. [28]

sACY
cAMP/cGMP

Intracellular space and
cell membrane

Activates CatSper, CNG,
and HCN to regulate

Ca2+ influx

Ca2+ influx,
alkalization Sterile Esposito et al. [29],

Hess et al. [30]

GPCR(s) Principal piece,
midpiece

ZP-induced Ca2+ influx
increases in [Ca2+]i

Maintains
fertilization Subfertile Fukami et al. [31]

Fukami et al. [32]

PLC𝛿 Acrosome ZP induced increases in
[Ca2+]i

Ca2+ influx Subfertile Fukami et al. [32]

Ca2+-ATPase
pump Principal piece Intracellular pH and

alkalization
Ca2+ influx,
capacitation

Motility loss results
in infertility Wennemuth et al. [33]

ZP
glycoproteins Follicle Induced Ca2+-dependent

increase in [Ca2+]i
Hyperactivation,
capacitation

Delayed
capacitation

Florman [34],
Florman et al. [35]

Endocrine
disruptor
(p,p󸀠-DDE)

Female reproductive
tract Activates CatSper Ca2+ influx

Motility loss,
delayed

capacitation
Tavares et al. [36]

BSA Extracellular space Similar to ZP
glycoprotein

In vitro
capacitation

Motility loss,
subfertility

Xia and Ren [37]
Bailey and Storey [38]

Oviductal and
follicular fluid

Extracellular space
(in vivo)

Ca2+-dependent increase
in [Ca2+]i in sperm Ca2+ influx

Motility loss
delayed

capacitation
Xia and Ren [37]

Hv1: voltage-gated proton channel; 𝐼ATP: ATP-gated channel; TRPC: transient receptor potential channels; CNG: cyclic nucleotide-gated ion channel; HCN:
hyperpolarization-activated cyclic nucleotide-gated channel; SOC: store-operated Ca2+ channel; cAMP: cyclic adenosine monophosphate; cGMP: cyclic
guanosine monophosphate; sACY: soluble adenylyl cyclase; GPCR: glutamate receptor family class-C; PLC𝛿: phospholipase C zeta; ZP: zona pellucida; p,p󸀠-
DDE: p,p󸀠-dichlorodiphenyldichloroethylene; BSA: bovine serum albumin.

However, themolecular event that characterizes spermatozoa
chemotaxis is only partially known [57].

There is strong evidence to support that sperm hyper-
activation and chemotaxis are required for penetrating the
zona pellucida [48, 57, 59, 60]. Incubation of spermatozoa
with an extracellular Ca2+ source induces hyperactivation
in mammalian spermatozoa [61, 62] and chemotaxis in
starfish [57]. In addition, measuring cytoplasmic Ca2+ levels

by using the fluorescent Ca2+ indicator indo-1 proved that
spermatozoa hyperactivation is potentially regulated by Ca2+
influx. However, it is unknown whether Ca2+ influx indepen-
dently induces hyperactivation/chemotaxis in mammalian
spermatozoa.Ho and Suarez [56] proposed that spermhyper-
activation induced by Ca2+ influx is mainly pH-dependent
because sperm require a pH of 7.9–8.5 for hyperactivation,
whereas activation can occur at a pH < 7.0. The proposed
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model of Ca2+-induced hyperactivation is represented in
Figure 2.

It has recently been found by our laboratory that
treatment of mouse spermatozoa with nutlin-3a, a small
molecule antagonist of the mouse double minute 2 repressor,
potentially downregulates the functions of the ubiquinol-
cytochrome-c reductase complex component UQCRC2 and
correlated with significantly reduced [Ca2+]i and sperm
hyperactivation. This study provided insight that the Ca2+
influx in spermatozoa is partially regulated by UQCRC2
protein. Kwon et al. [4] reported that blocking VDAC
with 4,4󸀠-diisothiocyanostilbene-2,2󸀠-disulfonic acid (DIDS)
significantly decreased sperm hyperactivation. A signifi-
cant decrease in [Ca2+]i was observed in (−) DIDS con-
ditions, while [pH]i significantly increased in (−) DIDS,
regardless of Ca2+. Simultaneously, a significantly elevated
[pH]i was observed in (+) Ca2+. This study provides
strong evidence that the modulation of Ca2+ influx by
VDACs is pH-dependent, which is consistent with the result
of a previous study by Ho and Suarez [56]. Moreover,
another study proposed that deamino [Cys 1, d-ArgS] vaso-
pressin (dDAVP), an AVPR2 agonist, significantly decreased
sperm motility and intracellular pH, but, interestingly, it
increased [Ca2+]i by regulating the function of arginine
vasopressin in mice spermatozoa. However, it remains to
be clarified as to why spermatozoa motility is decreased even
in increased [Ca2+]i conditions.

On the basis of the findings of the aforementioned
studies, it is tempting to hypothesize that spermatozoa
hyperactivation is mostly controlled by Ca2+ influx. How-
ever, potential interactions exist between protein func-
tions. Therefore, Ca2+ influx, protein interaction, and
hyperactivation might give numerous different annotations
of upcoming research in this field. We have illustrated
a schematic representation of different signaling path-
ways involving sperm proteins by using Pathway Studio.
These proteins exhibit significant modifications to induce
sperm hyperactivation and chemotaxis in spermatozoa by
regulating Ca2+ influx (Figure 3).

3.2. Ca2+ Influx versus Capacitation, the Acrosomal Reaction,
Fertilization, and Sperm Proteome. Mammalian fertilization
is a species-specific episode that is accomplished by a complex
set of molecular events. To fertilize an oocyte, multiple
extreme changes occur in spermatozoa that begin from its
formation in the testes of the male reproductive tract to its
penetration and fusionwith an egg in the female reproductive
tract. Although spermatozoa are motile as well as
morphologically normal after ejaculation, they are unable to
fertilize an oocyte [59].They gain the fertilization ability only
after educating in the female reproductive tract [40], and the
modifications that spermatozoa experience during this time
are collectively known as “capacitation.” Only capacitated
spermatozoa can undergo the acrosome reaction through
binding to the egg zona pellucida, and they finally become
capable of penetrating and fertilizing the egg [4, 18, 39].

The term “capacitation” was proposed by Austin in 1952
[1], although this concept was initially described by both
Chang and Austin in 1951 [2, 41]. In fact, in vivo capacitation
takes place in the female reproductive tract; however, it is also
possible to capacitate spermatozoa in vitro by using particular
media containing appropriate electrolytes and pH [2]. In
an elegant review, Visconti summarized that the early stage
of capacitation mainly comprises the bicarbonate-mediated
activation of sperm motility, whereas the late stages include
intracellular alkalinization, increase in protein tyrosine phos-
phorylation, and preparation for the acrosomal reaction [63].
These temporal differences in capacitation and the acrosome
reaction require numerous mechanisms, and Ca2+ influx
plays a significant role in the process [63, 64]. Fraser [65]
reported that capacitation is a comparatively slow event that
requires several hours to complete and is mainly regulated by
a modest rise in [Ca2+]i, whereas the acrosome reaction is an
exocytosis process that occurs very rapidly (within a minute)
and is triggered by a large influx of [Ca2+]i [65, 66].

Although the biochemical phenomenon of Ca2+
regulated capacitation and the acrosome reaction have
been known for the last two decades, the molecular basis
of this process is still poorly understood. For capacitation,
the cholesterol influx initially stimulates the elevation
of [Ca2+]i and bicarbonate into the spermatozoa and
finally activates PKA and tyrosine phosphorylation,
respectively, via the production of the cAMP [66–68].
In addition, binding to the zona pellucida causes additional
activation of cAMP/PKA and protein kinase C (PKC)
[68–70]. Spermatozoa need [Ca2+]i influx to proceed further,
and they are believed to be activated by PKC through the
opening of the calcium channels. Interestingly, PKA together
with a secondary messenger, inositol trisphosphate, activates
calcium channels localized in the outer acrosomalmembrane
and increases the calcium concentration in the cytosol.
Further increase of cytosolic Ca2+ influx occurs through a
store-operated calciumentrymechanism in the plasmamem-
brane, resulting in further depletion of Ca2+ in the acrosome
[68, 69].

In support of the aforesaid studies, several recent stud-
ies on the same topic have also hypothesized that, after
the morphological maturation of spermatozoa for sperm-
oocyte fusion, [Ca2+]i decreases because acrosome-reacted
spermatozoa release a substantial amount of Ca2+ from their
inner cell layers [71, 72]. Ca2+-mediated capacitation and the
acrosome reaction have been illustrated in Figure 2 for better
understanding.However, for amore in-depth understanding,
we recommend reading some excellent reviews on this topic
[63, 67, 73–77].

A review of the literature showed that several sperm
proteins potentially regulate the Ca2+-dependent capacita-
tion and the acrosome reaction in mammalian spermato-
zoa [4, 5, 39]. However, how these proteins regulate the
Ca2+ influx in spermatozoa is a matter that remains to
be elucidated. Breitbart et al. [18] reported that forma-
tion of F-actin mostly depends on PKA, protein tyrosine
phosphorylation, and phospholipase D activation during
capacitation. Ca2+ is one of the principle regulators of
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Figure 2: Schematic diagram showing the mechanism of Ca2+ regulated hyperactivation, capacitation, and the acrosome reaction of
spermatozoa, which are three principal events of fertilization. Ca2+ together with ZP3 (zona pellucida glycoprotein-3) exhibits the most
important role in sperm binding and acrosomal reaction. Ca2+ triggers the zona pellucida (ZP) receptors of cell membrane that activate
G-proteins in the sperm head. Activated G-proteins stimulate the H+ transporter to increase intracellular pH, ultimately inducing the
acrosomal reaction and hyperactivation by catalyzing the acrosomal enzymes [91]. Cyclic adenosine monophosphate (cAMP) and cyclic
guanosine monophosphate (cGMP) are produced from adenosine triphosphate (ATP) owing to enzymatic catalysis by soluble adenylate
cyclase (sAC) and guanylate cyclase (sGC), respectively, in mature spermatozoa. The bicarbonate ions activate the sAC; however, follicular
fluid also stimulates the sAC through release of Ca2+ ions via the CatSper channel (principal piece). However, G-protein mediated signal
transduction activates sAC and phospholipase-C (PLC) that ultimately causes tyrosine phosphorylation [51, 92], which is responsible for
events such as capacitation and the acrosomal reaction. Likewise, extracellular signals such as nitric oxide (NO) and carbon monoxide (CO)
stimulate membrane-bound GC (mGC) and sGC, respectively, to synthesize cGMP. Increases in cGMP level evoke a concomitant increase
in cAMP by inhibiting its PDE3. However, the increased Ca2+ level can also directly catalyze cAMP [93, 94]. Activated sAC, sGC, and PLC
stimulate the generation of the second messengers’ inositol trisphosphate (IP3) like cAMP, cGMP. The IP3 binds to the IP3 receptor (IP3R)
to increase [Ca2+]i via the release of the [Ca2+]i storage ions. Concurrently, the second messengers activate protein kinases (PKA, PKC,
and PKG), in turn gating ions through the T-type calcium channels, cyclic-nucleotide gated ion channel (CNG), and so on, that together
with the activation of protein tyrosine kinases (PTK) and serine/threonine protein kinase (STK) cause increased protein phosphorylation
[93, 94]. Additionally, the CatSper Ca2+ activates calmodulin (Calm), phospholipase-A (PLA), and phospholipase-D (PLD) with increased
generation of other second messengers during the acrosome reaction. Ca2+ influx together with increased protein phosphorylation brings
about the capacitation response that is responsible for the waveform asymmetry of motility termed hyperactivation during fertilization. Both
hyperactivation and the acrosomal reaction boost flagellar beating, ultimately resulting in the penetration of the outer egg coat and subsequent
fertilization of the mature ovum [91–95].

capacitation, and it is therefore tempting to hypothesize
that organizational modification of F-actin in spermatozoa
together with interacting with other sperm proteins has
potential influence on Ca2+ influx. A similar finding has
been established more precisely by another study [78], where
boar sperm capacitation was studied by combined applica-
tion of computational and experimental approaches. These
authors reported that the boar spermatozoa capacitation
network contains several connecting cascades, whereas only
three nodes bound to all the subcellular compartments are

involved in spermatozoa postejaculatory signaling, such as
[Ca2+]i, ATP, and actin polymerization. Removal of the actin
polymerization node from this aforesaid network causes
disorganization of the network topography and affects capac-
itation, and this has been confirmed by zona pellucida-
induced capacitation and the acrosomal reaction in an in vitro
demonstration [78].

In another study, Patrat et al. [79] showed that pro-
gesterone (P

4
) that is secreted by cumulus cells directly

acts on the sperm plasma membrane and triggers the
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intracellular signals and enzymatic pathways involved in
the acrosome reaction. P

4
regulates the acrosome reaction

and is mediated by a compulsory Ca2+ increase. This study
found that P

4
induced the activation of Gi/Go protein-

coupled and protein tyrosine kinase receptors, and it affected
capacitation and the acrosome reaction. In contrast, Ca2+ reg-
ulated exocytosis of spermatozoa requires active acrosomal
proteins such as N-ethylmaleimide-sensitive factor (NSF)
[66]. Additionally, the same research team showed that the

ras-related protein Rab-3A (RAB3A) is also necessary for
Ca2+-dependent exocytosis. Interestingly, Rab3A activation
of acrosomal exocytosis requires active NSF. Therefore,
protein-protein interaction might also play a potential role
in regulating Ca2+ influx. All of these observations seem
to be consistent with the idea that Ca2+ functions are
regulated by sperm proteins during fertilization. However,
the key question is how do these proteins modify Ca2+ influx
in spermatozoa?
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Recently, in our laboratory, we used mice spermatozoa
to evaluate the interrelationship of proteins related to Ca2+
influx, includingUQCRC2 [39], arginine vasopressin [5], and
VDACs [4], and evaluate their effects on capacitation and
the acrosome reaction. It is likely that a sustained phase of
Ca2+ is required for fertilization andmight be regulated by the
complex interaction of numerous sperm proteins. Therefore,
studies to identify proteins that might have the ability to
induce such a change are worth undertaking. Application

of Pathway Studio helped us represent over 40 proteins
that are potentially implicated in Ca2+ mediated regulation
of capacitation, the acrosome reaction, and male fertility
(Figure 4).

3.3. Ca2+ Influx and Postfertilization Egg Activation in Con-
text of Sperm Proteome. Ca2+ influx in spermatozoa is not
only important for sperm maturation, but it is also equally
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PLC𝜁 stimulation, leading to the positive feedback loop of Ca2+ and InsP

3
rise.The hypothesis has beenmodified from Swann [96] and Swann

et al. [97].

important for activation and development of the oocyte. A
study of egg activation by Ca2+ was conducted by Steinhardt
and colleagues in 1974 and showed remarkable findings
[80]. Steinhardt et al. [80] reported that administration of
Ca2+ ionophores induced the early events of hamster egg
activation.Thus far, it has been shown that the eggs of almost
all species are activated by an increase in Ca2+ oscillation
by spermatozoa during fertilization [81, 82]. However, how
the spermatozoa trigger the oocyte Ca2+ oscillation remains
to be elucidated. Several hypotheses have been proposed to
describe these mechanisms [83–86].

It has been reported previously [83] that the spermatozoa
introduce Ca2+ influx into oocytes by a specific protein
called oscillogen in hamsters. Recent studies have shown
that phospholipase C zeta (PLC𝜁), a novel sperm-specific
agent, is responsible for induction of Ca2+ oscillation in
eggs after sperm-egg membrane fusion [87–89]. According
to this mechanism, the sperm protein PLC𝜁 causes the
release of [Ca2+]i in eggs and is mediated via inositol 1,4,5-
trisphosphate (InsP

3
) receptors (hypothetical depiction in

Figure 5). Even when the InsP
3
or its derivatives are injected

into unfertilized, mature eggs, oscillation occurs due to the
unique feedback properties of the InsP

3
receptors in mouse

eggs [90]. However, it is still unknown whether there are
any other factors/proteins available in spermatozoa that also

have similar effects. We illustrated the relevant signaling and
metabolic pathways by using sperm proteins to facilitate the
understanding of the mechanisms behind Ca2+ mediated
activation of oocytes (Figure 6).

4. Future Prospects

The maturational events of mammalian spermatozoa are
strictly regulated through the well-coordinated Ca2+ influx. It
is the central regulator of many key activities in spermatozoa,
all of which are necessary for fertilization. However, our
current understanding at the molecular level concerning
Ca2+ signaling in the spermatozoa is insufficient. Therefore,
a better understanding of such an event can provide a more
complete comprehension of Ca2+ regulated sperm functions
and fertility optimization.

A large number of Ca2+ permeable ion channel proteins
have been identified [10, 43] that collectively regulate the
Ca2+ influx mechanism in spermatozoa. Although the recent
application of patch-clamp recordings of channel current
significantly improves our understanding of the functions of
these channel proteins, several basic aspects remain unsolved,
such as identifying the functions of individual channels in
spermatozoa and how these channels coordinate Ca2+ influx.
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Therefore, production of knockdown animals and using them
as negative controls compared with their wild counterparts
might provide more specific ideas about channel functions.
CatSper is the one of the well-studied channel proteins [10]
and the functions of different pore-forming CatSper channels
(1–4) and auxiliary subunits (CatSper𝛽 andCatSper𝛾) remain
a matter to be elucidated.

A literature review found that the Ca2+ influxmechanism
in spermatozoa is regulated by several physical stimuli,

although the underlying mechanism is less clearly defined.
Protein-protein interactions also potentially regulate the
Ca2+ uptake mechanism in spermatozoa. Although recently
applied proteomic approaches have identified several sperm-
specific proteins, their functions in Ca2+ regulation and
interaction with channel proteins are unclear. Therefore,
future research should target this topic to provide a robust
understanding of Ca2+ andmale fertility in both humans and
other animal species.
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receptor potential (TRPC) channels in human sperm: expres-
sion, cellular localization and involvement in the regulation of
flagellarmotility,” FEBSLetters, vol. 541, no. 1–3, pp. 69–74, 2003.

[26] M. Biel and S. Michalakis, “Cyclic nucleotide-gated channels,”
Handbook of Experimental Pharmacology, vol. 191, pp. 111–136,
2009.

[27] B. Wiesner, J. Weiner, R. Middendorff, V. Hagen, U. B. Kaupp,
and I. Weyand, “Cyclic nucleotide-gated channels on the flagel-
lum control Ca2+ entry into sperm,”The Journal of Cell Biology,
vol. 142, no. 2, pp. 473–484, 1998.

[28] M. Yoshida, M. Ishikawa, H. Izumi, R. de Santis, and M. Mori-
sawa, “Store-operated calcium channel regulates the chemo-
tactic behavior of ascidian sperm,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 100, no.
1, pp. 149–154, 2003.

[29] G. Esposito, B. S. Jaiswal, F. Xie et al., “Mice deficient for soluble
adenylyl cyclase are infertile because of a severe sperm-motility
defect,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 101, no. 9, pp. 2993–2998, 2004.



12 BioMed Research International

[30] K. C.Hess, B.H. Jones, B.Marquez et al., “The “soluble” adenylyl
cyclase in sperm mediates multiple signaling events required
for fertilization,” Developmental Cell, vol. 9, no. 2, pp. 249–259,
2005.

[31] K. Fukami, K. Nakao, T. Inoue et al., “Requirement of phospho-
lipase C𝛿4 for the zona pellucida-induced acrosome reaction,”
Science, vol. 292, no. 5518, pp. 920–923, 2001.

[32] K. Fukami, M. Yoshida, T. Inoue et al., “Phospholipase C𝛿4 is
required for Ca2+ mobilization essential for acrosome reaction
in sperm,”The Journal of Cell Biology, vol. 161, no. 1, pp. 79–88,
2003.

[33] G.Wennemuth, D. F. Babcock, and B. Hille, “Calcium clearance
mechanisms of mouse sperm,” The Journal of General Physiol-
ogy, vol. 122, no. 1, pp. 115–128, 2003.

[34] H.M. Florman, “Sequential focal and global elevations of sperm
intracellular Ca2+ are initiated by the zona pellucida during
acrosomal exocytosis,”Developmental Biology, vol. 165, no. 1, pp.
152–164, 1994.

[35] H. M. Florman, R. M. Tombes, N. L. First, and D. F. Bab-
cock, “An adhesion-associated agonist from the zona pellucida
activates G protein-promoted elevations of internal Ca2+ and
pH that mediate mammalian sperm acrosomal exocytosis,”
Developmental Biology, vol. 135, no. 1, pp. 133–146, 1989.

[36] R. S. Tavares, S.Mansell, C. L. R. Barratt, S. M.Wilson, S. J. Pub-
licover, and J. Ramalho-Santos, “𝑝, 𝑝󸀠-DDE activates CatSper
and compromises human sperm function at environmentally
relevant concentrations,” Human Reproduction, vol. 28, no. 12,
pp. 3167–3177, 2013.

[37] J. Xia and D. Ren, “The BSA-induced Ca2+ influx during sperm
capacitation is CATSPER channel-dependent,” Reproductive
Biology and Endocrinology, vol. 7, article 119, 2009.

[38] J. L. Bailey and B. T. Storey, “Calcium influx into mouse
spermatozoa activated by solubilized mouse zona pellucida,
monitored with the calcium fluorescent indicator, fluo-3. Inhi-
bition of the influx by three inhibitors of the zona pellucida
induced acrosome reaction: tyrphostin A48, pertussis toxin,
and 3-quinuclidinyl benzilate,” Molecular Reproduction and
Development, vol. 39, no. 3, pp. 297–308, 1994.

[39] K. K. Shukla, W.-S. Kwon, M. S. Rahman, Y.-J. Park, Y.-A.
You, and M.-G. Pang, “Nutlin-3a decreases male fertility via
UQCRC2,” PLoS ONE, vol. 9, no. 8, Article ID e76959, 2013.

[40] R. Yanagimachi, “Mammalian fertilization,” inThePhysiology of
Reproduction, E. Knobil and J. D. Neill, Eds., pp. 189–317, Raven
Press, New York, NY, USA, 1994.

[41] C. R. Austin, “Observations on the penetration of the sperm in
themammalian egg,”Australian Journal of Scientific Research B:
Biological Sciences, vol. 4, no. 4, pp. 581–596, 1951.

[42] T. Strünker, N. Goodwin, C. Brenker et al., “The CatSper
channel mediates progesterone-induced Ca2+ influx in human
sperm,” Nature, vol. 471, no. 7338, pp. 382–386, 2011.

[43] A. Darszon, J. J. Acevedo, B. E. Galindo et al., “Sperm channel
diversity and functional multiplicity,” Reproduction, vol. 131, no.
6, pp. 977–988, 2006.

[44] D. Pietrobon, F. di Virgilio, and T. Pozzan, “Structural and
functional aspects of calcium homeostasis in eukaryotic cells,”
European Journal of Biochemistry, vol. 193, no. 3, pp. 599–622,
1990.

[45] Y. Kirichok, G. Krapivinsky, and D. E. Clapham, “The mito-
chondrial calcium uniporter is a highly selective ion channel,”
Nature, vol. 427, no. 6972, pp. 360–364, 2004.

[46] J. Liu, J. Xia, K.-H.Cho,D. E. Clapham, andD.Ren, “CatSper𝛽, a
novel transmembrane protein in the CatSper channel complex,”
The Journal of Biological Chemistry, vol. 282, no. 26, pp. 18945–
18952, 2007.

[47] H. Wang, J. Liu, K.-H. Cho, and D. Ren, “A novel, single, trans-
membrane protein CATSPERG is associated with CATSPER1
channel protein,” Biology of Reproduction, vol. 81, no. 3, pp. 539–
544, 2009.

[48] D. Ren, B. Navarro, G. Perez et al., “A sperm ion channel
required for sperm motility and male fertility,” Nature, vol. 413,
no. 6856, pp. 603–609, 2001.

[49] D. Wang, S. M. King, T. A. Quill, L. K. Doolittle, and D. L.
Garbers, “A new sperm-specific Na+/H+ exchanger required for
sperm motility and fertility,” Nature Cell Biology, vol. 5, no. 12,
pp. 1117–1122, 2003.

[50] A. E. Carlson, R. E. Westenbroek, T. Quill et al., “CatSper1
required for evoked Ca2+ entry and control of flagellar function
in sperm,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 100, no. 25, pp. 14864–14868, 2003.

[51] T. A. Quill, S. A. Sugden, K. L. Rossi, L. K. Doolittle, R. E.
Hammer, and D. L. Garbers, “Hyperactivated sperm motility
driven by CatSper2 is required for fertilization,” Proceedings of
the National Academy of Sciences of the United States of America,
vol. 100, no. 25, pp. 14869–14874, 2003.

[52] Y. Chen, M. J. Cann, T. N. Litvin et al., “Soluble adenylyl cyclase
as an evolutionarily conserved bicarbonate sensor,” Science, vol.
289, no. 5479, pp. 625–628, 2000.

[53] D. E. Clapham, “Sperm BerserKers,” eLife, vol. 2, Article ID
e01469, 2013.

[54] I. Weyand, M. Godde, S. Frings et al., “Cloning and functional
expression of acyclic-nucleotide-gated channel from mam-
malian sperm,” Nature, vol. 368, no. 6474, pp. 859–863, 1994.

[55] S. S. Suarez and X. Dai, “Hyperactivation enhances mouse
sperm capacity for penetrating viscoelastic media,” Biology of
Reproduction, vol. 46, no. 4, pp. 686–691, 1992.

[56] H.-C. Ho and S. S. Suarez, “Hyperactivation of mammalian
spermatozoa: function and regulation,” Reproduction, vol. 122,
no. 4, pp. 519–526, 2001.
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