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A B S T R A C T   

The 1,4-α-glucan branching enzyme (GBE, EC 2.4.1.18) has garnered considerable attention for its ability to 
increase the degree of branching of starch and retard starch digestion, which has great industrial applications. 
Previous studies have reported that the N-terminal domain plays an important role in the expression and stability 
of GBEs. To further increase the catalytic ability of Gt-GBE, we constructed five mutants in the N-terminal 
domain: L19R, L19K, L25R, L25K, and L25A. Specific activities of L25R and L25A were increased by 28.46% and 
23.46%, respectively, versus the wild-type Gt-GBE. In addition, the α-1,6-glycosidic linkage ratios of malto-
dextrin samples treated with L25R and L25A increased to 5.71%, which were significantly increased by 19.96% 
compared with that of the wild-type Gt-GBE. The results of this study suggest that the N-terminal domain se-
lective modification can improve enzyme catalytic activity, thus further increasing the commercial application of 
enzymes in food and pharmaceutical industries.   

Introduction 

The 1,4-α-glucan branching enzyme (GBE, EC 2.4.1.18) catalyzes the 
cleavage of α-1,4-glycosidic linkages in starch to form short glucan 
chains and short chains attach to the acceptor chains via α-1,6-glycosidic 
linkages to form new branches, which increases the degree of branching 
of starch (Abad et al., 2002; Feng et al., 2016; Hayashi et al., 2017). 
GBEs have significant potential of improving the slow digestion and 
anti-digestive properties of starch with their unique transglycosylation 
(Jo et al., 2016; Ren et al., 2020; Ming-Mao et al., 2011; Park, Na, Kim, 
Kang, & Park, 2018; Tetlow & Emes, 2014; Yu et al., 2021). However, 
most GBEs have problems in the process of application, such as large 
amount of enzyme addition and long reaction time. To overcome these 
drawbacks, it has become a key research point to improve the catalytic 
activity of GBEs to expand the application in food and pharmaceutical 
industries. 

Most GBEs belong to glycoside hydrolase family 13 (GH13) and 
possess 3 common domains: a carboxyl-terminal domain, a central 
(β/α)8-barrel catalytic domain, and an amino-terminal domain (Abad 

et al., 2002; Feng et al., 2016; Suzuki & Suzuki, 2016). Among them, the 
N-terminal domain, which is an important structural and functional 
domain of proteins, plays an important role in maintaining the structural 
stability and functional properties of proteins. Currently, a series of N- 
terminal domain structural modification strategies have been explored 
to improve the catalytic activity of enzymes. For example, Ni et al. found 
that truncation of the N-terminal domain of Limosilactobacillus reuteri 
121, Lactobacillus jensenii JV-V16, L. johnsonii NCC533, L. gasseri 
DSM20604 and L. reuteri LTH5448 fructansucrases showed an obvious 
effect on the catalytic activity without altering the product specificity 
(Ni et al., 2021). Zheng et al. truncated the first 10N-terminal amino acid 
residues of xylanase, and the mutant exhibited a 1.36-fold increase in 
enzyme activity (Zheng et al., 2016). Xiong et al. constructed a recom-
binant mutant PTxA-DB by replacing five residues (T10Y, N11H, N12D, 
Y15F, N30L), combined with an additional disulfide bridge (T2C-T29C) 
in the N-terminal region of xylanase PjxA. The specific activity of PTxA- 
DB was increased by 1.72-fold, compared with the wild-type (Xiong 
et al., 2019). Feng et al. mutated the highly flexible residues Ala26 and 
Gly29 of variant L6 of l-asparaginase to obtain the variant L6-A26N/ 
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G29F. The variant showed a 3.44-fold increase in specific activity in 
contrast to the wild-type (Feng et al., 2019). 

GBE from Geobacillus thermoglucosidans STB02 (Gt-GBE) has good 
thermostability with an optimum temperature of 60◦C (Ban et al., 2018). 
Compared with other GBEs, Gt-GBE is more capable of meeting high 
temperature requirement of starch gelatinization process in practical 
applications. However, Gt-GBE has problems such as large enzyme 
addition in production process, which limits their application in in-
dustries. Therefore, the catalytic activity of Gt-GBE needs to be 
enhanced by molecular modification. In the study of constructing a se-
ries of progressive N-terminal domain truncation mutants of Gt-GBE, it 
was determined that the N-terminal domain plays an important role in 
maintaining the catalytic activity and thermostability, especially the 
region where the first 10 N-terminal amino acids are located (Xin et al., 
2019). Based on this finding, we selected the region containing the first 
10 N-terminal amino acids of Gt-GBE for further molecular modification. 
Sequence analysis indicated that the surface of Gt-GBE contains many 
charged residues, which is conducive to the formation of electrostatic 
interactions (salt bridges). Thus, we analyzed the structure of the region 
containing the first 10 N-terminal amino acids and their adjacent regions 
(<5 Å) to identify potential amino acids for targeted mutagenesis to 
form intramolecular salt bridges. To reduce the blindness of constructing 
salt bridges, we searched for appropriate amino acid residue sites to 
mutate into charged amino acid residues to form salt bridges with the 
original charged amino acid residues of Gt-GBE. According to the 
analysis of the three-dimensional (3D) simulated structure of Gt-GBE, 
two amino acid sites, 19 and 25, were selected as target amino acids 
for the construction of salt bridges. In the present study, we constructed 
five GBE variants (L19K, L19R, L25R, L25K, and L25A) in the N-terminal 
domain to increase the specific activity and catalytic efficiency. 

Materials and methods 

Strains, plasmids and materials 

The DNA sequence of 1,4-α-glucan branching enzyme gene Gt-gbe 
was obtained from NCBI (GenBank: KJ660983.1). The Gt-gbe/pET-20b 
(+) was constructed in our laboratory. Escherichia coli JM109 was used 
as the cloning host, while E. coli BL21(DE3) was used for protein 
expression of the wild-type Gt-GBE and mutants. Isoamylase (I5284, EC 
3.2.1.68, 10,000,000 U/mg protein) and potato amylopectin were pur-
chased from Sigma Chemical Co. (St. Louis, MO, USA). High-fidelity 
DNA polymerase was purchased from Vazyme Biotechnology Co. 
(Nanjing, China). All other chemicals were obtained from Sinopharm 
Chemical Reagent Co. (Shanghai, China). 

Construction of mutants 

The recombinant plasmid Gt-gbe/pET-20b(+) was used as the tem-
plate to generate mutated enzyme genes by one-step PCR method. The 
PCR primers required for each mutation were recognized by two com-
plementary oligonucleotides, one for the sence and another for the 
antisence strand. Their sequences are presented in Supplementary 
Table 1. PCR-amplified products were incubated with DpnI overnight at 
37◦C and then transformed into E. coli JM109 competent cells. 

Production and purification of enzymes 

Production of GBE proteins were performed as previously described, 
with minor modifications (Liu et al., 2017). A single colony of E. coli 
BL21(DE3) cells harboring recombinant Gt-gbe/pET-20b(+) or its 
mutant plasmid was inoculated into Luria-Bertani (LB) medium con-
taining 100 μg/mL ampicillin and incubated at 37◦C for 6–8 h until the 
absorbance at 600 nm reached approximately 0.6. And then, 1% portion 
of LB culture was added to Terrific Broth (TB) medium and incubated on 
a rotary shaker at 30◦C for 48 h. Subsequently, the supernatant (crude 

enzyme) was collected after centrifugation at 10,000×g for 15 min at 
4◦C. In practice, we found that many proteins could be expressed 
without IPTG. Therefore, we expressed GBE without adding IPTG for 
cost-saving purposes. 

The crude enzyme solution was purified by His-tag affinity chro-
matography as previously described (Ban et al., 2020). The crude 
enzyme solution was loaded onto the 5 mL HisTrap™ HP Column (GE 
Healthcare) equilibrated with buffer A (20 mM imidazole, 500 mM 
NaCl, 50 mM Tris-HCl, pH 7.5). The bound enzyme was eluted with 60% 
buffer B (500 mM imidazole, 500 mM NaCl, 50 mM Tris-HCl, pH 7.5). 
The eluate was pooled and stored at − 80 ◦C. Sodium dodecyl sulfa-
te–polyacrylamide gel electrophoresis (SDS-PAGE) and Bradford protein 
assay were performed for analyzing the protein purity and the total 
protein concentration. 

Enzyme activity assay 

The activities of GBEs were measured using iodine assay as previ-
ously described (Liu et al., 2017). Potato amylopectin type III (Sigma, 
USA) was used as the substrate and dissolved in 50 mM sodium phos-
phate buffer (pH 7.5). Then, 50 μL of the enzyme extract was added to 
950 μL of the substrate solution (2.5 mg/mL) and incubated at 50◦C for 
15 min. The reaction was aborted by boiling for 30 min. The resultant 
reaction mixture (300 µL) was subsequently mixed with 5 mL of the 
iodine reagent at room temperature in the dark, followed by the mea-
surement of the absorbance at 530 nm (A530) after 15 min. One unit of 
enzyme activity was defined as the amount of branching enzyme that 
caused a 1% decrease in absorbance value per min (Ban et al., 2016; 
Palomo, Kralj, van der Maarel, & Dijkhuizen, 2009). 

Enzyme thermostability assay 

The effects of different temperatures on the activities of the wild-type 
Gt-GBE and mutants were determined at temperature ranging from 30 to 
70◦C. The activities of GBEs were measured at each temperature, and the 
one exhibiting the highest enzymatic activity was defined as the opti-
mum temperature for the enzymatic reaction. 

The thermostability of the wild-type Gt-GBE and mutants were 
determined by pre-incubating the enzymes for 2 h at 60◦C. Each pre- 
incubation mixture was sampled several times at appropriate in-
tervals, and the residual activity was measured (Palomo et al., 2009). 
The half-life of the wild-type Gt-GBE and its mutants were obtained 
when half of activity was lost (Ban et al., 2020). 

Proton nuclear magnetic resonance hydrogen-1 spectroscopic analysis 

Proton nuclear magnetic resonance hydrogen-1 (1H NMR) facilitates 
the identification of the α-1,4- and α-1,6-glycosidic linkages of starch 
samples. The differences in the catalytic ability of different GBE mutants 
could be characterized based on the amounts of α-1,4- and α-1,6- 
glycosidic linkages. The analysis was performed as described elsewhere 
(Li et al., 2016), albeit with some modifications. The control was treated 
without Gt-GBE. Freeze-dried maltodextrin samples were dissolved in 
D2O (final concentration of 20 mg/mL (W/V)) and then boiled for 
pasting. Analysis was performed using the 1H NMR spectra. The chem-
ical shifts in the anomeric protons of the α-1,4 and α-1,6-glycosidic 
linkages were detected at 5.37 ppm and 4.96 ppm, respectively. The 
α-1,6 glycosidic linkage ratio was calculated by dividing the area of 
α-1,6 glycosidic linkage peak by the total area of α-1,4 glycosidic linkage 
and α-1,6 glycosidic linkage peaks. 

Chain length distribution 

The chain length distribution of maltodextrin samples was analyzed 
as previously described, with slight modifications (Kong et al., 2018). 
Maltodextrin was incubated with the wild-type Gt-GBE and mutants 
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(L25R, L25K, L25A) at 50◦C, respectively. The reaction mixture was 
boiled for 30 min to stop the reaction. The treated maltodextrin samples 
were then dried by vacuum freeze dryer. Each lyophilized maltodextrin 
sample (10 mg) was dissolved in 2 mL of sodium acetate buffer (50 mM, 
pH 3.5) and incubated with isoamylase (100 U/mg substrate) at 40◦C for 
24 h to hydrolyze α-1,6-glycosidic linkages, followed by boiling for 30 
min to terminate the reaction. Maltodextrin treated without GBE served 
as the control. Debranched samples were analyzed by high-performance 
anion exchange chromatography with pulsed amperometric detection 
(HPAEC-PAD) using an HPAEC system (ICS-5000, Dionex Co., USA) 
equipped with a pulsed amperometric detector (PAD) and a CarboPac 
PA200 column (ThermoFisher Scientific, Waltham, MA, USA). The 
gradient elution procedure was reported in a previous study (Ren et al., 
2017). The chain length distribution was characterized as a percentage 
of the total peak area (Tian et al., 2016). 

Statistical analysis 

The values are presented as the means of triplicate observations. 
Data from the survey were analyzed using the SPSS software. Data re-
sults causing a difference of P < 0.05 were considered to indicate sta-
tistical significance. 

Structure modeling 

Based on the amino acid sequence of Gt-GBE, the crystal structure of 
E. coli GBE (PDB: 1M7X), which has high sequence identity (44.83%) of 
Gt-GBE, was selected as the template to simulate the homology model of 
GBE mutants. The SWISS-MODEL server was used to simulate the ho-
mology models. PyMOL was used to analyze the 3D structures and 
visualize the interactions between different amino acid residues. 

Results 

Expression, production, and purification of the wild-type Gt-GBE and its 
mutants 

Wild-type Gt-GBE and five mutants, L19K, L19R, L25R, L25K and 
L25A, were inserted into the pET-20b(+) plasmid and cloned in E. coli 
BL21(DE3). Using potato amylopectin as the substrate, the enzyme ac-
tivities were assayed as described in the “Materials and methods” sec-
tion. All GBEs showed the ability to form branches. SDS-PAGE analysis 
also showed that the five mutants were highly expressed in E. coli BL21 
(DE3). No significant difference was observed in the expression of the 
wild-type Gt-GBE and mutants (data not shown). 

GBEs were purified by Histidine-tag (His-tag) affinity chromatog-
raphy using the HisTrap™ HP column as described above. In SDS-PAGE 
analysis, all GBEs showed a single band, which was consistent with their 
theoretical molecular weights (Supplementary Fig. 1). 

Thermostability of the wild-type Gt-GBE and its mutants 

The increase in enzyme catalytic activity is often accompanied by an 
increase in enzyme structure flexibility, which is more conducive to 
substrate binding. On the contrary, the thermostability of enzymes re-
quires a decrease in the flexibility of the enzyme structure, which makes 
it more resistant to the thermal effects. Therefore, an increase in the 
catalytic activity may lead to a decrease in thermostability (Zhong et al., 
2009; Lonhienne, Gerday, & Feller, 2000). 

Firstly, we determined the thermostability of the wild-type Gt-GBE 
and five mutant crude enzymes at 60◦C. The thermostability assay 
showed that among these mutants, L19K and L19R lost most of their 
activities after 20 min of incubation, while L25R, L25A and L25K 
exhibited relatively high thermostability compared with the wild-type 
Gt-GBE (Supplementary Fig. 2). Thus, we selected these three mu-
tants, L25R, L25A, and L25K for further studies. 

We next determined the optimum temperature of the wild-type Gt- 
GBE and its mutants in the temperature range of 30–70◦C using 
amylopectin as the substrate. As shown in Fig. 1A, the mutants L25R, 
L25A and L25K showed the highest specific activity at 60◦C, which was 
similar to the wild-type Gt-GBE. Meanwhile, we determined the ther-
mostability of GBEs at 60◦C, the results are presented in Table 1 and 
Fig. 1B. The half-life at 60◦C (t (1/2, 60◦C)) of L25R and L25A were not 
significantly different from that of the wild-type Gt-GBE. Also, the wild- 
type Gt-GBE, L25R and L25A maintained over 40% of residual activity 
after incubating at 60 ◦C for 50 min. These results indicated that the 
mutation of Leu25 to Arg and Ala did not significantly decrease the 
thermostability. 

Enzyme activity of the wild-type Gt-GBE and its mutants 

The specific activities of GBEs were determined at 50◦C and pH 7.5 
using iodine stain assay. The specific activities of the wild-type Gt-GBE 
and its mutants are shown in Table 2. Among the three mutants, L25R 
and L25A exhibited significantly higher specific activities compared 
with the wild-type Gt-GBE, with a 1.28-fold and 1.23-fold increase in 
specific activity, respectively. In addition, the enzymatic activity of 
L25K was similar to that of the wild-type Gt-GBE. 

1H NMR analysis 

GBE catalyze the hydrolysis of α-1,4-glycosidic linkages of malto-
dextrin and form new α-1,6-glycosidic linkages by transglycosylation. 
Thus, compared with unmodified maltodextrin, GBE-modified malto-
dextrin contains more α-1,6-glycosidic linkages. To further characterize 
the changes in catalytic properties of the GBE variations, we measured 
the α-1,6-glycosidic linkage ratios of the products modified by wild-type 
Gt-GBE and its mutants using 1H NMR. The 1H NMR spectrum of 
maltodextrin samples treated with GBEs is shown in Fig. 1E, and the 
α-1,6-glycosidic linkage ratios of each sample, which were further 
calculated, are shown in Fig. 1C. The maltodextrin sample treated with 
the wild-type Gt-GBE exhibited an α-1,6-glycosidic linkage ratio of 
4.76%. The α-1,6-glycosidic linkage ratios of mutants, L25R and L25A, 
were 5.71%, which were considerably higher than that of the wild-type 
Gt-GBE. However, the mutant L25K showed the same α-1,6-glycosidic 
linkage ratio as the wild-type Gt-GBE. These results indicated that the 
mutants L25R and L25A have higher specific enzyme activities than 
wild-type Gt-GBE. 

Branched chain length distribution of GBE-treated maltodextrin 

To investigate whether changes in the transglycosylation pattern of 
mutants, we determined the chain length distribution of maltodextrins 
after incubating with the wild-type Gt-GBE and its mutants. The chain 
lengths were divided into the degree of polymerization (DP) 1–12, DP 
13–24, DP 25–36, and DP > 36. HPAEC-PAD was used to analyze the 
products after debranching with isoamylase enzyme. As shown in 
Table 3, compared with non-modified maltodextrin, the amount of short 
chains (DP 1–12) of maltodextrin modified by wild-type Gt-GBE was 
significantly higher than that of other chain lengths, with an increase of 
4.45% (from 67.04% to 71.49%). The result indicated that during the 
modification of maltodextrin, Gt-GBE hydrolyzed the longer chains and 
generated more short chains (DP 1–12). 

As shown in Table 3 and Fig. 1D, maltodextrins incubated with GBE 
variations showed a similar transglycosylation pattern as the wild-type 
Gt-GBE. Of these, compared with the wild-type Gt-GBE, maltodextrins 
incubated with L25R or L25A showed an increase in the amount of short 
chains and a decrease in the amount of long chains. This was probably 
caused by the fact that the mutation site was far from the catalytic 
center, without changing the polar environment of catalytic center, and 
the change in amino acid side-chain length did not affect the interactions 
near binding sites. 
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Structural analysis 

The crystal structure of GBE from E. coli, which shares 44.83% 
sequence identity with Gt-GBE. Based on this crystal structure, we 
modelled the 3D structure of Gt-GBE using the SWISS-MODEL homology 
modelling server (Fig. 2). As shown in Fig. 2A, Gt-GBE consists of three 
horizontally aligned domains. Through multiple sequence alignment, 

Gt-GBE contains a carbohydrate-binding module 48 (CBM48) in the N- 
terminal domain. CBM48 contains several carbohydrate binding sites 
that interacts with substrates, and is considered to play a critical role in 
enzyme-substrate binding (Palomo et al., 2009; Ruiz-Gayosso, Rodri-
guez-Sotres, Martinez-Barajas, & Coello, 2018). 

From the structural model of the wild-type Gt-GBE (Fig. 2B), Leu25 
could form a hydrogen bond with Ser22. After the mutation of Leu25 to 
Arg25, the mutant L25R introduced two salt bridges, Arg25-Glu10 and 
Arg25-Glu24, which increased the local electrostatic interactions. 
Replacement of Leu with Lys added a hydrogen bond at this position, 
Pro5-Lys25. Comparison of the homology models of the wild-type Gt- 
GBE and L25A revealed that interactions of L25A at position 25 were 
unchanged. 

Fig. 1. Characteristics of the wild-type Gt-GBE and its mutants. A: Optimum temperature of the wild-type Gt-GBE and mutants. B: Relative activity of GBEs after 
incubation of 50 min at 60◦C. C: 1H NMR of maltodextrin treated with wild-type Gt-GBE and mutants L25R, L25A, and L25K. Significant differences are indicated by 
different letters (P < 0.05). D: Chain length distribution analysis of maltodextrin before and after modification by wild-type Gt-GBE or mutant GBEs. E: 1H NMR 
spectrum of maltodextrin samples treated with GBEs. 

Table 1 
Thermostability parameters of GBEs.  

Protein samples t (1/2, 60◦C) (min)a 

WT 46.1 ± 0.2b 

L25A 48.2 ± 0.1b 

L25R 45.0 ± 0.1b 

L25K 41.1 ± 0.5a 

a Data with different superscript letters within a column are 
significantly different (P < 0.05). 

Table 2 
Specific activities of GBEs.  

Protein samples Specific activity (U/mg)a Relative enzyme activity (%) 

WT 1790.16 ± 55.60b  100.00 
L25R 2299.58 ± 54.35d  128.46 
L25A 2210.13 ± 117.28c  123.46 
L25K 1716.23 ± 19.29a  95.87 

a Values are presented as means ± standard deviation (n = 3). Data with 
different superscript letters within a column are significantly different (P <
0.05). 

Table 3 
Chain length distribution of maltodextrins treated with the wild-type Gt-GBE 
and its mutants L25R, L25A, and L25K.  

Protein 
samples 

Branch chain length distribution (%)a 

DP 1–12 DP 13–24 DP 25–36 DP > 36 

Control 67.04 ± 0.11a 26.06 ± 0.02c 5.58 ± 0.03e 1.33 ± 0.01c 

WT 71.49 ±
0.02b 

25.21 ±
0.04a 

2.98 ±
0.09d 

0.33 ±
0.05b 

L25R 72.13 ± 0.04c 25.26 ±
0.15a 

2.12 ± 0.02a 0.04 ± 0.01a 

L25A 72.01 ±
0.02d 

25.07 ±
0.01a 

2.89 ± 0.05c 0.04 ± 0.01a 

L25K 71.76 ± 0.13e 25.48 ±
0.12b 

2.70 ±
0.02b 

0.06 ± 0.02a 

a Data with different superscript letters within a column are significantly 
different (P < 0.05). 
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Discussion 

Enzymes with high catalytic activity have significant advantages in 
industrial applications, which prompts researchers to explore GBEs with 
enhanced catalytic activity. However, most GBEs have low catalytic 
activity and cannot be applied in industrial productions, such as GBE 
from Oryza sativa L, Bifidobacterium longum (see Table 4 for details). GBE 
from G. thermoglucosidans STB02 is derived from thermophilic bacteria. 
It shows optimal enzyme activity at 60◦C, which is higher than that of 
many GBEs, and has a wide range of pH tolerance (Ban et al., 2016). 
However, compared with GBEs from Geobacillus mahadia Geo-05 and 
Rhodothermus obamensis STB05, the catalytic activity of Gt-GBE is lower 
(Mohtar et al., 2016; Wang et al., 2019). Thus, it is essential to further 
improve the catalytic activity of Gt-GBE by molecular modification to 
obtain a broad range of applications. Currently, most researches have 

focused on the catalytic center of enzymes, and few have focused on the 
non-catalytic domains such as the N-terminal domain (Binderup & 
Preiss, 1998; Liu et al., 2017). Based on the results obtained from pre-
vious studies, we aimed to construct salt bridges in the N-terminal 
domain to enhance the catalytic activity. A previous study reported that 
the N-terminal domain of Gt-GBE plays the key role in enzyme activity of 
Gt-GBE (Xin et al., 2019). In the present study, we aimed to creat a series 
of point mutants in the N-terminal region of Gt-GBE to increase catalytic 
activity. The results showed that L25R and L25A exhibited an increase in 
specific activity by 28.46% and 23.46%, respectively. However, L25K 
displayed a reduction in activity. 

Gt-GBE contains CBM48 in the N-terminal domain, which plays an 
important role in the substrate-binding capacity and catalytic capacity 
of GBEs (Jiang et al., 2021). Homology modeling analysis showed that 
Glu10 and Leu25 are located on CBM48, which are located far away 
from the substrate binding pocket and do not form interactions with the 
key amino acid residues near the catalytic pocket. We considered that 
the changes in enzyme activity were related to conformational changes 
of CBM48. As shown in Fig. 2 and 3, it is evident from ball-and-stick 
models and electrostatic potential maps of the wild-type Gt-GBE and 
mutants that Glu10 and Leu25 are located on two opposite α-helices, and 
these regions are distributed with several hydrophobic amino acids with 
strong hydrophobic interaction. After mutation of Leu25 to Arg25, the 
distance of loop17-21 which connected the two α-helices became 
shorter, altering the local conformation of CBM48. Moreover, Arg is a 
positively charged amino acid, and the Leu-to-Arg mutation also 
affected the surface charge distribution and local electrostatic in-
teractions (introduced two salt bridges). These changes contributed to a 
more compact spatial structure of CBM48, which enhanced the catalytic 
activity of L25R. In addition, the formation of salt bridges increased the 
local structural rigidity of Gt-GBE and compensated for the negative 
impact on structural stability caused by the weakened hydrophobic 
interaction in the region where Glu10 and Leu25 were located, making 

Fig. 2. Structure diagram of the wild-type Gt-GBE and mutants L25R, L25A, and L25K. A: Structure visualization of the wild-type Gt-GBE. The red balls represent 
Pro5, Glu10, Ser22, Glu24, and Leu25; Glu10 and Leu25 are indicated in silver; hydrophobic residues are indicated in purple. B: Variation in interactions caused by 
mutations at 25 sites. The dashed pink lines indicate hydrogen bonds, while the dashed blue lines indicate salt bridges. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Enzymatic properties of GBEs from different sources.  

Sources Enzyme 
activity 

Optimal 
temperature 

Reference 

Oryza sativa L 20.80 U/ 
mg 

25◦C (Vu et al., 2008) 

Bifidobacterium longum 19.60 U/ 
mg 

25◦C (Li et al., 2020) 

Geobacillus 
stearothermophilus TC- 
91 

36.00 U/ 
mg 

50◦C (Aga et al., 2010) 

M. tuberculosis H37Rv 81.66 U/ 
mg 

30◦C (Garg, Alam, Kishan, 
& Agrawal, 2007) 

T. thermophilus HB8 0.29 U/mg 65◦C (Palomo et al., 2011) 
Rhizomucor miehei 10.80 U/ 

mg 
25◦C (Wu, Liu, Yan, & 

Jiang, 2014) 
Geobacillus 

thermoglucosidans 
STB02 

1790.16 U/ 
mg 

60◦C (Ban et al., 2016)  
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the heat resistance of L25R not significantly different from that of the 
wild-type Gt-GBE. 

Lys is also a positively charged amino acid, but after substituting Leu 
for Lys at position 25, Lys25 did not form intramolecular salt bridges 
with the surrounding negatively charged amino acid residues. And 
L25K, in contrast to L25R, did not display greater catalytic activity. This 
may be caused by the fact that Lys is a hydrophilic amino acid, and 
replacing Leu with Lys disrupted the local hydrophobic interaction, 
which adversely affected the structural stability of CBM48. Although, 
L25k formed an additional hydrogen bond, it did not offset the negative 
effect of the weakened hydrophobic interaction on the structural sta-
bility. This also led to a decrease in the ability of L25K to resist thermal 
inactivation. Whereas, the increase in the catalytic activity of Gt-GBE 
after the mutation of Leu25 to Ala25 may be attributed to the fact that 
the mutation changed the amino acid side-chain length and expanded 
the cavity structure of this region, which in turn affected the structure of 
CBM48. And, leucine and alanine are hydrophobic amino acids, the 
Leu25-Ala mutation had no significant effect on the hydrophobic in-
teractions in this region, and thus did not significantly affect the ther-
mostability of Gt-GBE. These results suggested that enzyme activity of 
Gt-GBE can be enhanced by rational structural modification of the N- 
terminal domain. 

Conclusion 

GBEs that can be used for industrial applications should have 
excellent enzymatic properties, especially high catalytic activity. The 
stabilized GBE mutants with a mutation at position 25, L25R and L25A, 
showed 1.28- and 1.23-fold increase in specific activity, respectively, 
compared with that of the wild-type Gt-GBE. The α-1,6 glycosidic link-
age ratios of maltodextrin samples modified by L25R and L25A were 
increased to 5.71%, which were significantly increased by 19.96% 
compared with that of the wild-type Gt-GBE. The mutants, L25R and 
L25A, did not change their optimum temperature and transfer pattern. 
Therefore, these two mutants are more suitable for future industrial 
applications. Homologous structural analysis showed that appropriate 
structural modification of the N-terminal region of GBEs could increase 
the catalytic activity of GBEs. The results of the present study are helpful 

to further determine the role of the N-terminal domain, develop an 
effective protein engineering strategy based on the N-terminal domain, 
and increase the industrial applications of GBEs. 
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