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Abstract

The low body mass index (BMI) phenotype of less than 18.5 has been linked to medical and psychological morbidity as well
as increased mortality risk. Although genetic factors have been shown to influence BMI across the entire BMI, the
contribution of genetic factors to the low BMI phenotype is unclear. We hypothesized genetic factors would contribute to
risk of a low BMI phenotype. To test this hypothesis, we conducted a genealogy data analysis using height and weight
measurements from driver’s license data from the Utah Population Data Base. The Genealogical Index of Familiality (GIF) test
and relative risk in relatives were used to examine evidence for excess relatedness among individuals with the low BMI
phenotype. The overall GIF test for excess relatedness in the low BMI phenotype showed a significant excess over expected
(GIF 4.47 for all cases versus 4.10 for controls, overall empirical p-value,0.001). The significant excess relatedness was still
observed when close relationships were ignored, supporting a specific genetic contribution rather than only a family
environmental effect. This study supports a specific genetic contribution in the risk for the low BMI phenotype. Better
understanding of the genetic contribution to low BMI holds promise for weight regulation and potentially for novel
strategies in the treatment of leanness and obesity.
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Introduction

Genetic factors increase the risk for a high body mass index

(BMI), overweight and obesity [1]. The role of genetic factors in

low BMI is less well understood.

Family studies have found family clustering for low BMI [2–4].

However, family studies cannot distinguish between genetic and

familial factors. Twin studies have estimated the heritability of

BMI across the entire BMI range at between 50 and 74% [5–6].

Molecular genetic studies have identified a series of candidate

genes for low BMI including a thyrotropin-releasing hormone

(TRH) receptor polymorphism [7], the Ser23 allele of the

serotonin 2C receptor [8], a genetic variant on chromosome

16p11.2 [9] and a copy number variant identified as gremlin1

[10]. Allelic variants of the FTO gene linked to obesity risk are

infrequently found in thin individuals [11].

Understanding the genetic and environmental contributions to

low BMI are important because low BMI has been linked to

medical and psychiatric illnesses as well as increased mortality. In

females, low BMI during childhood and adolescence increases

women’s risk for later endometriosis [12], preterm birth [13], low

infant birth weight [14] and increased risk for placental abruption

[15]. Infants born to mothers with low BMI have an increased risk

for atrial septal defect, genital abnormalities including hypospadias

[16].

The psychiatric illness anorexia nervosa is defined by a low BMI in

association with extreme fear of becoming fat [17].

Mortality rates across BMI categories in many studies display a

U-shaped curve with increased death rates for the low BMI as well

as those with a high BMI. Mortality rates are higher by an

estimated 73% in those with BMI below 18.5 [18]. A Japanese

study estimated the mortality risk increased by 78% in those with a

BMI,18.5 and increased by 155% in those with a BMI,16 [19].

The exact mechanism for the mortality increase in low BMI

populations is unclear. Some of the increase may be due to higher

rates of death in severe illness and surgical procedures such as lung

transplantation [20].

A study of excess deaths related to being low BMI and high

BMI in the United States provides a reference for the relative

contribution of low BMI to mortality [21]. High BMI was

estimated to contribute to 111,909 deaths in the U.S. in 2000

while low BMI was estimated to be associated with 33,746 deaths.

Thus, low BMI is estimated to contribute about three deaths for

every ten deaths related to being high BMI.

To further understand the prevalence and genetic contributions

of leanness, we examined the low BMI phenotype in the Utah

Population Data Base (UPDB). The UPDB provides a strategy to
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examine the possibility of both environmental and genetic

contributions to a phenotype by estimating risk in both close

and distant relatives and by testing for excess familial clustering.

An observation of excess close relationships alone would not have

allowed discrimination between shared genes and shared environ-

ment, but the UPDB allows us to consider more distant

relationships that are unlikely to represent lifestyle sharing beyond

what is expected in the Utah population. We hypothesized that

low BMI individuals would demonstrate near and distant familial

clustering consistent with a genetic contribution.

Methods

Ethics Approval
The protocol for this study was approved by the University of

Utah Institutional Review Board and the Resource for Genetic

and Epidemiologic Research. The Resource for Genetic and

Epidemiologic Research is the oversight board for the Utah

Population Data Base. All data used in this research study contains

no individual identifiers. A waiver of consent was approved for this

study due to the lack of individual identifiers for all subjects.

Consent requirements were waived for this study since obtaining

consent would have unnecessarily identified individuals in the

anonymous database. Review of this protocol by the University of

Utah Institutional Review Board and the Resource for Genetic

and Epidemiologic Research includes a review and approval of

consent issues and other ethical aspects of the research.

Utah Population Data Base (UPDB)
The UPDB is a unique computerized database primarily

representing the pioneer founders of Utah and their modern day

descendants. It includes up to 15 of genealogy data dating back to

the original Utah founding pioneers [22], as well as current

generations. The genealogy data has been linked to statewide data

including driving license (DL) data, births, deaths, the Utah

Cancer Registry, and Utah Hospital Discharge Data, among other

data sets (www.huntsmancancer.org/groups/ppr). The DL data

includes height and weight and is available for over three million

Utah drivers.

For the genetic analyses performed here we selected only from

those 1,192,768 individuals in the UPDB who have genealogy data

for both parents, all four grandparents, and six of their eight great

grandparents and whose genealogy connects to the original Utah

genealogy, and the 593,704 of these individuals who have Utah

Drivers License data. These strict criteria allow for appropriate

matching of cases and controls in terms of quality and quantity of

genealogical data.

The oversight board for the UPDB encourages collaboration

with outside investigators and institutions. Researchers with

interest in using the UPDB to test hypotheses may contact the

board or one of the authors for information about methods to

apply for access.

The UPDB has been successfully used to define familial

clustering and genetic influences in a variety of disorders including

cancer [23–27], coronary artery disease [28], diabetes [29] rotator

cuff disease [30], and deaths due to influenza [31] and asthma

[32]. The methods used to identify phenotypes, assess familial and

genetic effects and identify pedigrees using UPDB data have been

described in detail in these studies. The study of high-risk

pedigrees identified in the UPDB has led to multiple gene

identifications, including BRCA1 [33], BRCA2 [34], CDKN2A

(melanoma) [35–36] and HPC2/ELAC2 [37].

Low BMI phenotype
The phenotype of adult leanness was established using Utah DL

data available for 593,704 individuals (with acceptable genealogy

data as described) included in the UPDB. We identified all male

and female drivers whose most recent calculated BMI (from height

and weight provided) was ,18.5. Rates for the low BMI

phenotype were calculated by age group and are shown in

Table 1, which includes the age group, the number of lean

individuals in the age group, the total number of individuals with

DL data in the age group, the leanness prevalence and the 95%

confidence interval for prevalence by age group, estimated by the

method of Clopper and Pearson [38].

Statistical Analysis
The Genealogical Index of Familiality (GIF) statistic was used to

test the hypothesis of excess relatedness among individuals in the

low BMI phenotype. The GIF was developed specifically for the

UPDB [39–40]. Briefly, the GIF measures the average pair-wise

relatedness of a set of individuals and compares that measurement

to the average pair-wise relatedness expected in the Utah

population. The GIF test differs from relative risk (RR) in that it

includes analysis of all genetic relationships, both close and distant.

The GIF utilizes the Malecot coefficient of kinship to measure

pair-wise relatedness. The coefficient is defined as the probability

that randomly selected homologous genes from two individuals are

identical by descent from a common ancestor [41]. The coefficient

is 0.50 for parent/offspring, 0.25 for a sibling pair, 0.125 for an

uncle/nephew pair, 0.0625 for a first cousin pair, and so forth.

The contribution to the GIF statistic is therefore smaller for

individual pairs with greater genetic distance between them; more

closely related pairs contribute more.

To evaluate the significance of the GIF test, we estimated the

average pair-wise relatedness for 1,000 sets of controls matched to

the cases by birth year, sex, and birthplace (Utah or not). These

controls are chosen from among the 593,704 individuals with

acceptable quality genealogy data who also have DL data. The

empirical significance of the GIF test is measured by comparing

the case GIF to the distribution of 1,000 control GIF values.

The GIF statistic measures familial clustering, which can be due

to genetic (genes related to low BMI phenotype), or to shared

Table 1. Prevalence Rates for Low BMI (,18.5) in the UPDB.

Age BMI,18.5 N Prevalence (%) 95% CI

15–19 6,259 57,010 11.0 10.7, 11.2

20–24 2,847 62,070 4.6 4.4, 4.8

25–29 1,629 63,548 2.5 2.4, 2.7

30–34 922 49.069 1.9 1.8, 2.0

35–39 544 39,353 1.4 1.3, 1.5

40–44 400 36,097 1.1 1.0, 1.2

45–49 311 40,719 0.8 0.7, 0.9

50–54 258 42,998 0.6 0.5, 0.7

55–59 176 38,040 0.4 0.3, 0.5

60–64 135 26,947 0.5 0.4, 0.6

65–69 191 27,076 0.7 0.6, 0.8

70–74 255 26,207 1.0 0.9, 1.1

75–79 354 25,122 1.4 1.3, 1.6

80 or older 569 26,979 2.1 1.9, 2.3

doi:10.1371/journal.pone.0080287.t001

Genetic Analysis of Low BMI Phenotype
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familial environmental effects (i.e. familial preference for low calorie

diet or rigorous physical exercise), or to a combination of both. In order

to better distinguish these effects, we recalculate the case GIF and the

control GIFs while ignoring close relationships (first and second

degree). If this distant GIF (dGif) test is significant, it provides strong

evidence that there is significant distant excess relatedness that is

unlikely to be due to shared environment.

The calculation of RR in relatives provides the more traditional

mechanism for identifying genetic effects. A genetic contribution to a

phenotype is supported when both close and distant relatives have

elevated risk. RRs for the low BMI phenotype were estimated for first-,

second- and third degree relatives of low BMI individuals as follows.

First-degree relatives include parents, siblings and offspring; second-

degree relatives are the first-degree relatives of the first-degree relatives

(e.g. uncle, grandmother); third-degree relatives are the first-degree

relatives of the second-degree relatives (e.g. first cousin, great

grandchild), All 593,704 individuals in the UPDB with acceptable

quality and quantity genealogy data as described and with DL data

were assigned to one of 132 cohorts based on birth year (in five year

groups), sex, and birthplace (Utah or not). Cohort-specific rates of low

BMI were estimated by dividing the total number of low BMI

individuals per cohort by the total number of individuals with DL data

per cohort. Expected numbers of low BMI first-degree relatives were

estimated by counting the number of first-degree relatives with DL

data and genealogy data by cohort (without duplication), multiplying

by the rate of low BMI in each cohort, and summing over all cohorts.

Observed numbers of low BMI individuals (BMI,18.5) among

relatives were counted without duplication. RRs were estimated for

each degree of relationship as observed/expected number of low BMI

individuals; 95% confidence intervals for the RR were calculated using

the method of Agresti [42]

High-risk Pedigree Identification
It is possible to identify pedigrees in the UPDB with a significant

excess of low BMI using the same tools listed above. We first

identify all possible related clusters of individuals with low BMI; no

cluster is a subset of any other cluster, but individuals can be

identified in more than 1 cluster. These clusters represent all sets of

related individuals with low BMI descending from a common

founder (a pedigree), but they are not necessarily high-risk for low

BMI, they can represent chance clusters. To identify which of the

clusters are high-risk for low BMI, we apply the internal cohort-

specific rates for low BMI we estimated from the UPDB (see above

methods for Relative Risks) to all of the descendants of each

cluster. We compare the observed number of low BMI cases

among the descendants to the expected number of low BMI cases

among the descendants to identify those pedigrees with a

significant excess of low BMI cases.

Results

Prevalence Rates and Proband Selection
The prevalence of BMI,18.5 in the UPDB individuals with

acceptable quality and quantity genealogy are summarized by age

group in Table 1. The prevalence of BMI,18.5 ranged from .4%

in the 55 to 59 year old age group to 11.0% in those aged 15 to 19

years. The BMI in the sample ranged from a minimum of 12.10 to

a maximum of 62.93.

Table 1 illustrates some developmental factors associated with

weight: i) stable adult weight often is not reached until midlife; ii)

younger individuals have different ranges in BMI as they progress

through adolescence and young adulthood, and iii) in older

geriatric age groups, rates of low BMI increase with the loss of lean

body mass with aging. To minimize phenotypic heterogeneity due

to these other factors, we elected to include individuals between

the ages of 25 and 64. This age period showed relatively stable low

BMI population prevalence rates and occurred outside the periods

of early and late adult development. We identified 4,375

individuals between the ages of 25 and 64 years with BMI,18.5

with acceptable quality genealogy data.

Genealogy Index of Famililiality (GIF)
The GIF test for excess relatedness in low BMI was performed

on all of the 14,867 low BMI individuals and the results were

compared to the average relatedness observed among 1,000 sets of

matched controls selected from all individuals who had a Utah

driver’s license. Table 2 shows the number of cases, the average

relatedness of the cases, the mean control relatedness, the

empirical p value for the test for excess overall relatedness, and

the empirical p value for the test for excess distant relatedness. The

overall GIF test for excess relatedness for everyone with low BMI

shows a significant excess over expected (p-value,0.001). The

distant GIF test, ignoring close relatives (genetic distance,4) also

showed a significant excess (p-value = 0.031).

Table 2 also shows the results of the GIF test for the 4,375 low

BMI adults aged 25–64 years of age. Similar results were obtained

for this subgroup of lean individuals from which individuals at the

extremes of the age distribution were removed to reduce bias.

Figure 1 shows the contribution to the GIF statistic, separately for

cases and controls, by pairwise genetic distance where genetic

distance 1 = parent/offspring, 2 = siblings, 3 = avunculars, 4 = first

cousins, and so forth for the low BMI individuals aged 25–64

years. As seen, the distribution of relatedness for cases is in excess

up to genetic distance = 4 (e.g. first cousins) and beyond genetic

distance = 9 (e.g. second-cousins once-removed. Although the

pairwise relatedness distributions for cases and matched controls

cross at some points, as seen in Figure 1, the pairwise relatedness

for cases is significantly elevated over that for matched controls

when all genetic distances are considered as determined by distant

Gif test (dGif p = 0.031).

Relative Risks (RRs)
Estimates of relative risks in relatives of lean adults are shown in

Table 3. The table shows the total number of each type of relative

with BMI data (# relatives), the observed number of those

relatives with BMI,18.5 (obs), and the expected number of

relatives with BMI,18.5 (expected) based on birth year, sex, and

birthplace cohort-specific rates for low BMI among all UPDB

Table 2. GIF Test for Low BMI (,18.5) in the UPDB.

Group N Case GIF Control GIF GIF p-value dGIF p-value

All BMI,18.5 14,867 4.47 4.10 ,0.001 0.031

BMI,18.5, ages 25–64 4,375 4.84 4.19 ,.0.001 ,0.001

doi:10.1371/journal.pone.0080287.t002

Genetic Analysis of Low BMI Phenotype
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individuals with BMI data.RRs for adult leanness were signifi-

cantly elevated among first-, second-, and third-degree relatives of

lean adults. The smaller number of second degree lean adults

observed is not unexpected, given that second degree relatives are

primarily in different generations (avunculars, grandparent/child),

while first and third-degree relatives occur in the same generation

(siblings and cousins, respectively) as well as in different

generations (parent/offspring). Since the DL data exist only after

1980, there is a very narrow window that limits observations across

generations; however, our results support the GIF results, where

the contribution from first- (genetic distance 1 and 2), second-

(genetic distance = 3) and third-degree relatives (genetic dis-

Figure 1. The contribution to the GIF statistic by genetic distance for 4,375 low BMI cases aged 25–64 years old compared to 1,000
sets of matched UPDB controls with BMI data. Genetic distance between pairs is shown on the x-axis and represents an increasing measure of
relatedness (1 = parent/offspring; 2 = siblings, e.g.; 3 = uncle/niece, e.g.; 4 = first cousins, e.g.) from close to distant; the most distant relationships
noted (genetic distance = 16) could represent, for example, two individuals who have a common ancestor 8 generations past. The cumulative
contribution to the GIF statistic for each relatedness (as measured by genetic distance) for all pairs identified at that genetic distance is represented
on the y-axis. The contribution to the GIF statistic for each larger genetic distance is one-half as large; the contribution for genetic distance 1 = K, for
genetic distance 2 = J, and so forth. The distribution for controls represents the expected relatedness of a group of individuals just like the cases
(ignoring BMI) and is smoother because it is averaged over 1,000 different sets of controls tested. The distribution for cases represents only the
analysis of the single set of cases and is more irregular. The peak at genetic distance = 2 (e.g. siblings) in comparison with genetic distance = 1
(parent/offspring) is seen for both cases and controls and represents that we observe more sib pairs than parent/offspring pairs in our data. A similar
peak for cases at genetic distance 4 also indicates that we observed more cousins (same generation) than avunculars, for example.
doi:10.1371/journal.pone.0080287.g001

Table 3. Relative Risk of Low BMI (,18.5) in Relatives of All Lean Utah Adults.

Relatives N Observed Expected p-value Relative Risk 95% CI

First-degree 54,324 3,565 1,615.5 ,0.00001 2.21 2.13, 2.28

Second-degree 96,151 2,236 1,799.7 2.1 e-23 1.24 1.19, 1.30

Third-degree 175,286 5,204 4,546.0 7.7 e-22 1.14 1.11, 1.18

Fourth-degree 317,807 6,897 6,773.4 0.133 1.02 .99, 1.04

Fifth-degree 501,420 12,417 12,271.5 0.191 1.01 .99, 1.03

Sixth-degree 571,643 14,180 14,147.9 0.788 1.00 .99, 1.02

Seventh-degree 588,223 14,796 14,772.6 0.849 1.00 .99, 1.02

doi:10.1371/journal.pone.0080287.t003

Genetic Analysis of Low BMI Phenotype
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tance = 4) was in excess for cases compared to controls. Table 4

shows the RR for leanness among the relatives of those lean Utah

adults who were aged 25–65 years. Although the RR estimates are

slightly larger, the conclusions are not different.

Pedigree Identification
We identified all possible clusters of the 4,375 low BMI

individuals between 25 and 65 years of age. These clusters merely

represent all related sets of individuals with low BMI, they are not

necessarily high-risk for BMI. We further evaluate each cluster by

testing for an excess of low BMI among all the descendants of the

founding pair of the cluster using the low BMI rates estimated

from the UPDB. We identified over 4,000 clusters of low BMI

relatives, ranging in size from 2 related cases (n = 789 clusters) to

size 168 (n = 1 cluster).

We were able to identify thousands of individual pedigrees that

may assist in future molecular genetic studies of the low BMI

phenotype. As an example, we have identified 63 pedigrees with a

significant excess of individuals with low BMI (p,0.0001) with at

least 10 cases. An example of one of these pedigrees is shown in

Figure 2. As can be observed, Utah driver’s license data is only

available for the most recent two or three generations of the Utah

genealogy; earlier generations remain unknown for the phenotype

of interest.

Discussion

Familial clustering of the low BMI phenotype in the UPDB is

consistent with both genetic as well as environmental contributions

to low BMI humans. Increased relative risks for the low BMI

phenotype in first-, second-, and third-degree relatives suggests

that genetic factors contribute to the familial clustering pattern.

The GIF analysis confirms a genetic contribution to low BMI in

relatives with an even more distant degree of relatedness. Excess

relatedness among close relatives could represent either shared

environment or shared genetics, or a combination,. However, the

finding of excess relatedness in distant relatives is much more likely

to result from shared genes than shared environment.

Our study represents the largest genealogical population

genetics study of low BMI to date. There are no comparable

low BMI studies using a similar methodology. However, our

identification of a genetic contribution to low BMI is consistent

with findings in family studies [2–4] and in a single adoption study

[43].

A primary limitation of this study is the reliability and validity of

Department of Motor Vehicle height and weight self-reported

measures. There is limited study of the accuracy of self-reported

height and weight in DL data. Self-reported weights in overweight

and obese individuals might be significantly underestimated due to

the social stigma of obesity. In contrast, social stigma issues in

reporting an accurate weight in the low BMI may be less than in

obesity. Nevertheless, it remains possible that there is some social

pressure to overestimate weight among the low BMI.

Utah driver’s license BMI data from the Utah Population Data

Base has been compared to BMI data obtained by the CDC

Behavioral Risk Factor Surveillance System (BRFSS). This

analysis found BMI means generally varied in males by only

three percent between the databases with no bias toward over or

underestimation across age categories. In younger female age

groups (between 25 and 34 years), BMI means from Utah driver’s

license data was 5 to 8% lower than means from the BRFSS [44].

Table 4. Relative Risk of Low BMI (,18.5) in Relatives of Lean Utah Adults Ages 25–65 Years.

Relatives N Observed Expected p-value Relative Risk 95% CI

First-degree 20,551 1,177 458.0 ,0.00001 2.57 2.42, 2.72

Second-degree 32,849 1,056 775.4 ,0.00001 1.36 1.28, 1.45

Third-degree 63,856 1,668 1,363.8 7.0 e-16 1.22 1.17, 1.28

Fourth-degree 153,915 3,597 3,427.9 0.0039 1.05 1.02, 1.08

Fifth-degree 309,372 6,899 6,774.1 .130 1.02 0.99, 1.04

Sixth-degree 474,053 11,512 11,376.2 .204 1.01 0.99, 1.03

Seventh-degree 562,037 12,984 13,955.3 .809 1.00 0.99, 1.02

doi:10.1371/journal.pone.0080287.t004

Figure 2. Example UPDB pedigree with a statitstical excess of low bmi (,18.5) individuals. Individuals with bmi ,18.5 are fully shaded
and BMI is shown beneath subjects where available.
doi:10.1371/journal.pone.0080287.g002
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We compared rates of low BMI in the UPDB to the National

Health and Nutrition Examination Survey (NHANES) to look for

evidence of a self-report bias. [45–46]. The NHANES includes

data from direct measurement of weight and height in a

representative sample of individuals in the United States. The

overall NHANES estimated prevalence of low BMI (BMI,18.5) is

1.8% in the U.S. adult population.

Prevalence rate estimates of low BMI in the UPDB generally are

in close agreement with estimates from the NHANES. Rate

estimates for BMI,18.5 by age group for the UPDB and

(NHANES) were:20 to 39 years of age, 3.3%, (2.6%), 40 to 59

years of age, 0.9%, (1.2%), 60 to 74 years of age, .9%, (.9%), 75

years of age and older, 2.0%, (1.7%). This agreement supports the

validity of the low BMI phenotype in the UPDB. Nevertheless,

there is no easy method to directly measure the reliability and

validity of the drivers license self-reported weight and height in the

UPDB.

Some degree of inaccurate self-report of weight may be present

and contribute to variance in our relative risk estimates. However,

weight self-report bias would likely lead to underestimation of the

relative risk.

Identification of familial relationships in the UPDB is also based

on self-report. It is possible, self-reported relationships may differ

from biological relationships. However, thousands of UPDB high-

risk pedigrees have been genotyped with a very high rate of

accuracy between self-reported relationships and genotype.

The UPDB cohorts cross several generations. Environmental

dietary and physical exercise patterns likely change across

generations and may have influenced a portion of BMI data.

Despite these potential limitations, this study finds excess

clustering of the low BMI phenotype among both close and

distant relatives supporting a significant genetic contribution.

Environmental factors are also likely to contribute to familial

clustering of low BMI. Families often share diet, exercise and other

lifestyle patterns that contribute to body weight.

Pedigrees in the UPDB with a significant excess of low BMI

individuals among the descendants of founder couples have been

identified. These pedigrees could prove valuable for additional

molecular genetic studies of low BMI. Figure 2 shows an example

pedigree with a significant excess of individuals with low BMI. The

pedigree founder has 257 descendants with BMI data. Eighteen of

these individuals have a BMI,18.5. This is significantly greater

than 5.3, the number expected in the pedigree (p = 1.13 e5).

Further studies to confirm our results and to explore the

molecular genetics of the low BMI phenotype are needed. Such

studies may uncover the mechanisms for increased morbidity and

mortality in low BMI populations. Additionally, further under-

standing of the genetic and environmental contributions to low

BMI may provide insight for prevention and treatment of both low

BMI as well as obesity.
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