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Abstract: European law now requires AI to be explainable in the context of adverse decisions affecting
the European Union (EU) citizens. At the same time, we expect increasing instances of AI failure as
it operates on imperfect data. This paper puts forward a neurally inspired theoretical framework
called “decision stacks” that can provide a way forward in research to develop Explainable Artificial
Intelligence (X-AI). By leveraging findings from the finest memory systems in biological brains, the
decision stack framework operationalizes the definition of explainability. It then proposes a test that
can potentially reveal how a given AI decision was made.
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1. Background

The recent crashes of two Boeing 737-Max commercial airliners have raised important
questions about an embedded computational system (MCAS), which was installed to make
the new 737 models feel more like the older models for human pilots [1]. Among the
key issues raised is that the human pilots were not informed about the existence of the
system and that the system’s “intelligence” was subject to a single point of failure (an
angle of attack sensor) [1]. Increasingly, Artificial Intelligence (AI) will play a significant
role in such systems, particularly as autonomous machines operate in remote and hostile
environments such as space or deep ocean [2]. In that harsh context, when failures occur, it
will be essential to precisely assess what went wrong so that the designers can learn from
failures. Meanwhile, when such systems make evidence-based decisions, explaining why
and how a given decision was made is crucial. European Union law warrants such an
explanation as part of the “Right to Explanation” enacted in 2016, mainly in the context of
adverse decisions affecting citizens.

Modern AI systems operate on noisy and often uncertain data to make decisions on
behalf of humans. When these systems work they are of great utility allowing for, among
other things, self-driving cars and autonomous robots that operate in hostile environments.
Beyond utility, these systems can also engage in self-teaching modes that allow them to
excel beyond human capabilities at games like chess and Go [3–5].

However, as with human intelligence, sometimes AI fails to deliver. A well-known
instance of such a failure is a Tesla Model S that was involved in a fatal crash while
the car was in “self-driving mode” due to inaccurate feature extraction and intelligent
comprehension of a white-colored truck by the AI [6]. The failure of AI is not surprising.
Intelligence is the act of making decisions based on uncertainty. This fact differentiates AI
from non-intelligent decision systems based on the flow-chart design, as in most computer
programs [7]. For human beings, such failures are required for many kinds of learning
during childhood and adulthood. Most machine learning (ML) AI algorithms also depend
on a “training phase” whereby the artifact is instructed on a human-labeled dataset and
learns from its failures before being allowed to operate in the “wild” on non-labeled data [8].
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Therefore, it is understandable that, despite training, both humans and AI might mislabel a
new instance of data that had never been seen or used before.

In the case of human intelligence, only recently has neuroscience offered a clearer
picture of the cellular basis of learning and memory [9]. Furthermore, neuroscience provides
evidence of a concrete hierarchy with the human body–brain system at the top and neuronal
synapses at the base, allowing for a framework for explaining human decisions and their
concomitant failures [10]. However, for AI, the explanation of why failures occur is not
readily explainable [11]. This is in spite of European Union law requiring that such
explanative AI be available to EU citizens to protect them from potential adverse effects of
AI-based decisions such as the denial of credit [12,13].

Explainable AI (X-AI) is an artificial intelligence system capable of describing its
purpose, rationale, and decision-making process in a manner that the average person can
understand [14]. Here, we propose to advance the idea of a decision stack as a framework
for explaining AI decisions, including failures. The term is beneficial as it reflects the idea
that explanations must cross different levels of an organization in terms of complexity and
abstraction [15]. In the next section, we will briefly lay out the literature that defines the
field of X-AI and describe how our theoretical model fits in the field to explore a new way
of looking at X-AI.

2. Explainable AI

The problem of explaining the outcome of a decision process is not new [16,17]. What
makes X-AI fundamentally different is the added scale and dimensionality in modern AI
decision systems compared to traditional decision trees or regression models [18]. This is
where the problem of explainability becomes critical. As Paudyal puts it, X-AI is not an
artificial intelligence system that can explain itself, but it is what we can try to interpret from
the outcomes of an AI system based on our limited understanding of a process [19]. That is
why some researchers use the word explainable AI interchangeably with interpretable AI.
In other terms, how can we interpret an AI outcome to satisfy a specific question regarding
the process that produced the outcome? It is important to note that in the attempt to
understand the explainability of AI, we are not interested alone in the accuracy of the
outcome of AI per se. In other words, not only do we want to explain why and how a
wrong decision was made, but we also want to know why and how a correct decision
was made.

Our interest in the process of decision arrival stems from the fact that a decision
outcome could be true, but an AI system’s process to reach that outcome might not be
desirable based on our values. For example, an AI classifier that was designed to detect
wolves among dogs, although it had perfect accuracy, based its decision on the presence of
snow in the background of pictures with wolves [20]. In another instance, a law enforcement
AI model designed to predict the risk of repeating criminal activity was found to have a
strong racial bias [21]. AI systems can take shortcuts to arrive at a decision; however, these
shortcuts are not always desirable. Therefore, the explainability of an AI system is separate
from the accuracy of that decision system. This makes the attempt to develop an X-AI
framework even more vital.

Various critical voices in the AI literature fundamentally challenge the concept of X-AI.
We summarize these criticisms here in two groups. The first group believes AI is essentially
too complex to be explainable. For example, researchers in the first group argue that the
most popular AI systems have close to 100 million parameters, making it impossible to
explain any specific outcome objectively; thus, this group believes that X-AI is a pointless
endeavor [19].

The second group believes X-AI is possible but points out the challenge of the
performance–explainability tradeoff. This tradeoff refers to the theory that in deep machine
learning algorithms, more inputs and more hidden layers in a prediction model increase the
accuracy of a model while interpreting the outputs becomes more challenging [19]. Thus,
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they warn us that emphasizing too much on explainability might significantly damage the
performance of a model.

In line with the first group’s criticism, we acknowledge the complexity of AI. However,
like most researchers, we believe that the question is not whether we can explain complex
AI or not, but to what extent can we explain AI, what is a satisfactory explanation, and for
what problem is the explanation needed [22]. As for criticism from the second group, we
believe that line of criticism is concerned with the matter of design, i.e., how to implement
a sufficient level of explainability to the design of an AI system. In our case, we focus
on the problem of explaining an AI outcome post its design and development. Thus, the
performance–explainability tradeoff is irrelevant here.

Explainability is crucial in policymaking and litigation [23]. Policymakers are espe-
cially expressing concerns over the emergence of “Blackbox” systems, which challenges
the effectiveness of regulations [23]. That is why the “right to an explanation” move-
ment, as mentioned, has been gaining momentum in policy circles, especially in Europe.
Concurrently, the past few years have seen a plethora of literature on the importance
of X-AI [24–27]. Parallel to the technical side of X-AI, a separate body of literature has
been addressing explainability from the perspective of human rights, social justice, and
fairness [28–31]. Felten has previously surveyed the X-AI literature and explains that any
successful X-AI endeavor should help AI systems reach these four goals: transparency,
accountability, safety, and fairness [32]. The X-AI framework presented in this paper aims
to be used as a foundation for any domain-specific X-AI system to improve its transparency,
accountability, safety, and fairness.

One final critical aspect of X-AI that has gained attention in the literature is the issue
of evaluating the explainability power of an X-AI framework. Simply, how can we assess if
an X-AI framework has adequately explained a decision process to an end-user? Scholars
point out to the fact that the final goal of X-AI is eventually to convince a person about
the credibility of an AI outcome [22]. This puts the end-user at the heart of X-AI. That is
why ‘the power to convince’ is central to most X-AI evaluation frameworks. Hoffman et al.
have proposed the most comprehensive guidelines for evaluating X-AI frameworks [25].
They built their guidelines based on the idea that “the property of ‘being an explanation’ is
not a property of statements; it is an interaction” [25]. They also note that an explanation
depends on end-users needs and their understanding of the AI outcome. Hoffman et al.
essentially propose a qualitative effort using satisfaction surveys, questionnaires, mental
models, and checklists.

While Hoffman et al. have successfully offered an evaluation model for X-AI frame-
works, it relies heavily on end-users subjective understanding and satisfaction. Unfortu-
nately, the literature lacks a universal objective framework that can explain an AI outcome
independent of the end-user, i.e., an explanation that can be used in a court of law or to
solve a policy problem where objectivity is desired. Our proposed theoretical framework
in this paper aims to satisfy this need. However, before we offer our framework, we
summarize existing X-AI methods and some of their issues below.

3. Current State-of-the-Art Explainable AI Methods and Approaches

Machine learning interpretable techniques (or X-AI methods) aim to understand ML
models’ decisions (predictions) and explain them in human terms to establish trust with
stakeholders, including engineers, scientists, consumers (users), and policymakers. The
field is not nascent [33]; its early days trace back to the origins of AI research in the
development of human ML systems [34]. Since about 2015, there has been a resurgence in
X-AI research that parallels the advance in increasing problems of applied ML systems in
society. As a result, we have seen a suit of interpretable ML or X-AI methods particularly
to untangle deep learning models [34]. One can choose from various ML interpretability
techniques (shown in Figure 1) for any use case [34–37].
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Below, we summarize a landscape of the techniques (listed in Figure 1) from the
literature based on certain criteria, including structure, design transparency, agnosticity,
scope, supervision, explanation type, and data type.

3.1. Intrinsic vs. Post-Hoc: The Criterion of Structure

This criterion differentiates whether interpretability is achieved by containing the
complexity of ML models, known as intrinsic (aka simple models), or by applying methods
that analyze models after training (called post-hoc models) [35,38,39]. Intrinsic models are
easily interpretable because of their simple structure [39]. Examples of the intrinsic model
are linear regression, logistic regression, decision trees, and k-nearest neighbors. Post-
hoc are complex structure models that achieve interpretability after model training [39].
Examples include permutation feature importance and neural networks [40]. Such models
take into account changes in the feature or neural space and how these changes affect
the outputs.

Generally, intrinsic models return simple interpretable explanations, but they lack in
offering high-level predictions for complex problems [34]. On the other hand, post-hoc
models perform better on most tasks but are too complex to understand for humans [34].
Neural network models, for instance, have millions of parameters that surpass human
capabilities. These post-hoc models necessitate the need to derive human explanations for
complex ML models.

3.2. Blackbox vs. Whitebox vs. Greybox Approaches: The Criterion of Transparency in Design

This criterion distinguishes based on what we know about the design of a method.
A Whitebox approach is more transparent and explainable by design than a Blackbox
approach [41]. Examples of Whitebox approaches include simple decision trees, rule-based
models, patterns-based models, linear regression models, bayesian networks, and fuzzy
cognitive maps [42,43]. Other methods following the Whitebox approach include fuzzy
decision trees and fuzzy rules-based models. As opposed to Boolean logic (true/false
statements, for instance), such algorithms follow a fuzzy logic (human-like reasoning with
statements that could lie in a spectrum of truth/false) and hence take into account an
uncertainty underlying analyzed data in explaining the decision [44–49].

As opposed to the aforementioned Whitebox methods, deep neural networks and
random forests are some examples of Blackbox approaches [41,50]. Blackbox approaches
usually contain complex mathematical functions like support-vector machine and neuronal
networks; thus, they are generally hard to understand and explain [43]. On the other hand,
most Whitebox models can be comprehended by experts as their models are closer to the
human language [43].
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In the Blackbox approach, we only know the relations between inputs and outputs
and the response function to derive explanations [51]. As far as Whitebox approaches, we
have access to the model-internal parameters [51]; in other words, we can access weights
or gradients of a network. In general, Whitebox approaches are more interpretable but less
accurate, whereas Blackbox approaches are more accurate but less interpretable [41].

Finally, there are Greybox approaches as well, which lie in between Blackbox and
Whitebox models [41,52]. Examples of such approaches include Local Interpretable Model-
agnostic Explanations (LIME) and Interpretable Mimic Learning [41]. In Greybox models,
an expert knows when how some part of a system works mathematically (Whitebox) and
is uncertain about the others (Blackbox). The Whitebox part of such models is fixed due
to the underlying physical structure and constraints, whereas Blackbox part needs to be
learned from the data. Greybox models, combining Blackbox and Whitebox features, may
acquire the benefits of both, causing an explainable model which could be both accurate
and interpretable simultaneously [41].

3.3. Local vs. Global: The Criterion of Scope

This criterion distinguishes methods based on whether the scope of the interpretability
applies to the whole or part of the model. In local approaches, the scope of interpretability
is limited to individual predictions or a small portion of the model prediction space [53,54].
On the other hand, global methods cover the entire model prediction space [53,54]. This
is accomplished by aggregating input variables’ ranked contributions towards prediction
space (or decision space).

Local approaches provide a larger precision particularly of individual prediction (or a
specific decision) but lower recall understanding of model behavior across all examples [54].
On the other hand, global approaches have a higher recall view of the model prediction (i.e.,
help one comprehend complete decision structure) but lower precision due to aggregations
such as medians or means, which obscure individual contributions [54].

Some examples of local approaches are Local Interpretable Model-agnostic Explana-
tions (LIME) [20]. SHapley Additive exPlanations (SHAP) [55], and Individual Conditional
Expectation (ICE) [56]. Examples of global approaches include Partial Dependence Plot
(PDP) and Accumulated Local Effects (ALE) [56,57].

3.4. Model Specific vs. Model Agnostic: The Criterion of Agnosticity

This criterion differentiates XAI methods on the level of agnosticity. Model agnostic
methods refer that their X-AI algorithm can be applied to any kind of ML model [54,58].
Such methods do not depend on model internals. Instead, they rely on changes in input
features or their values to understand how they influence the outputs of a use model.
Examples include SHAP and LIME, which are portable across different model types [20,58].
Conversely, model-specific methods are designed for specific types of ML model [58].
Examples are methods that depend upon some intrinsic parts of model learning methods,
such as neural network methods [54,58].

Agnosticity criterion could be a blurry boundary between various methods. One may
aggregate the scores of some local model-specific methods (such as integrated gradients
or SHAPLY) to revive the entire prediction space employing aggregation operations like
averages and medians. Such methods would be termed as hybrid methods [59,60].

3.5. Supervision-Based Methods

This criterion distinguishes among methods based on the degree of supervision.
Some examples of these methods are AI attribution methods, rationale-based methods,
and disentanglement representations. While attribution methods entail an active ma-
nipulation of input data (supervised), rationale and disentanglement representations
are unsupervised methods in the sense that researchers assume no explicit annotations
about input data. Examples of attribution methods include LIME, SHAP, Integrated
Gradients, SmoothGrad, Layer-wise Relevance Propagation, and Perturbation meth-
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ods [61]. In rationale methods, pieces of input texts are extracted to determine a possible
justification (Rationale) for prediction [62,63]. Researchers have no say in determining
which words should be included in the Rationale [62]. Similarly, in disentanglement
representations, latent-variable models learn representations of high-dimensional data
in an unsupervised manner [64].

3.6. Explanation Type-Based Methods

There is a variety of interpretability methods that further differ in explanation
output [35,58]. For instance, techniques such as feature summary return feature statis-
tics, measuring a feature’s proportional contribution to the prediction [65]. Similarly,
other returning data points help us better understand the models [66]. Some different
approaches help us build simple models around complex ones. Those simple models,
called surrogate models, can be used to derive explanations [35]. Finally, other explana-
tion type-based methods extract concepts, decision rules, correlation plots, and other
visualizations [67–69].

3.7. Data Type-Based Methods

Besides all the above criteria, we can further differentiate according to the data type a
method can handle [70]. Not all X-AI algorithms can work with all data types. Examples of
data types may include graph, image, text/speech, and tabular [35,71–74].

The above paragraphs provide an overview of the various methods that have already
been developed. Readers interested in more details can refer to other established and
emerging literature [34–38,70]. Overall, each X-AI method has different guarantees, limita-
tions, and computational requirements in explaining outputs. Nevertheless, these excellent
foundational methods help create some model understanding and offer bits of human
interpretable understanding. However, there is still so much for the scientists and engineers
to understand how the AI implemented a decision while explaining the model decision to
the public, policymakers, and regulators.

The methods are not a panacea to all our problems in the X-AI research field [75–77]. One
issue discussed in the previous section is the interpretability–performance tradeoff [77–79].
For the last decade, as researchers and engineers have tried to increase performance or even
exceed human-level performance through AI algorithms (for instance, via deep learning
algorithms), the effort has costed reduction in the level of explainability.

High-profile ML deployment failures from these Blackbox models offer convincing
evidence of the claim made in the preceding paragraph [80–84]. The failures point out
that the models, particularly Blackbox (post-hoc) models and methods, are very opaque,
uncontestable, exhibit unpredictable behavior, and in some cases reinforce undesirable
racial, gender, and demographic biases [85]. All these affect crucial outcomes for the public,
engineers, scientists, and policymakers. High-stake settings such as healthcare, criminal
justice, and lending have already reported significant harms because of the problems
inherent in Blackbox methods [85].

Another issue is the kind of explanation these X-AI methods return. So far, the
explanation is incomplete (i.e., still model output is not fully predicted) [86,87]. Similarly,
the explanation lacks accuracy. For example, four X-AI methods (including LIME) were
deployed to predict a matchstick [86]. In other words, researchers were curious to know
what makes an image of a matchstick a matchstick. Is it a matchstick because of the flame
or a wooden stick? In their default settings, by changing a single parameter, the methods
returned 12 unique explanations suggesting the methods are unstable in prediction [88].
The X-AI methods may also misdiagnose cancer if medical images can get modified in
ways unknown to human understanding [89]. In a similar vein, the explanation must be
meaningful and understandable. Unfortunately, X-AI methods have yet to make strides
to return meaningful explanations. In one instance, deep neural networks mislabeled the
image of a lion as a library [90]. All these issues might get resolved once the scientists
thoroughly research and understand the intricacies within Blackbox models.
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Finally, another vital challenge these methods face is the challenge of internal and
external validation. Internal validation demands that we rule out alternative explanations,
establish causality direction, and account for simultaneity and selection bias [91]. However,
we have seen the internal validation of a method severely challenged by changing the
input data (features or other data parameters). For instance, in the famous example of
husky vs. wolf, the X-AI method (LIME as developed by Ribeiro et al. [18]) failed to
predict a husky on the snow due to a bias in data. As opposed to the training set (a husky
on the grass, a wolf in the snow), in the validation set the researchers flipped the usual
background in some images (husky on the snow and wolf on the grass). Another instance
of failed internal validity is when autonomous vehicles misread (mispredict) a slightly
blurred stop sign [81], or, by changing a single pixel on an image makes an AI think a
horse is a frog [82], or in the case of medical imaging, X-AI algorithm misclassify a brain
tumor [89]. Similarly, AI methods failed to predict a school bus’ right-side-up when the
bus was rotated [80], suggesting AI’s brittleness and weak internal validity. All these have
repercussions for users.

Unlike the model’s precision and internal mechanics, external validation would de-
mand a successful application of X-AI methods from a small validation dataset to a larger
population or on a range of data [91]. This is essential as AI moves from toy lab experiments
and returns results on wild data in different circumstances. Existing X-AI methods suffer
from external validity concerns and cannot handle all sorts of data. Some methods work
with visuals; other techniques take only text and speech. The validity issue is even more
problematic when the methods applied to the same data return different predictions, as
elaborated in the example of matchstick prediction [86,92]. In the exact matchstick predic-
tion, some researchers increased the sample size from 50 to 800, and the prediction space of
heatmaps changed [93], suggesting the X-AI method is not robust when the sample size
increases. Such external validity issues will be highly concerning as AI applies to human
ML systems in healthcare, legal, defense, and security arenas.

There is an urgent need for an X-AI framework that explains the model and educates
the users about AI decisions, building trust among various societal stakeholders. Such
a framework will ideally return complete, accurate, consistent, reliable, and meaningful
explanations comprehendible in various instances across multiple domains both in the
lab and the practical world. In this concept paper, we look to the human brain for in-
spiration and derive a neurally inspired framework named as decision stack framework.
Our goal for the framework is to employ any dataset, mimic human brain circuitry, and
generate meaningful understanding, thus disclosing the AI decision Blackbox in its entirety.
Furthermore, since the human brain is intelligent, chosen for throughout evolution, and
universal [2,94], we believe the framework will be robust and efficient in prediction. In the
following paragraphs, we elaborate on the lessons from neuroscience for motivation and
explain the non-AI machine decision stacks for comparison before elucidating our neurally
inspired framework.

4. Existence Proof: The Lessons from Neuroscience

Since the advent of non-invasive human functional brain imaging in the last decades
of the 20th century, it has become commonplace to observe the brain correlates of conscious
human subjects as they make decisions at a resolution approximately 1000-fold greater
in space and time than the neural code itself [14,95–99]. These blurred images of human
brains “caught in the act” of making intelligent decisions have been striking, albeit prob-
lematic, from the standpoint of reproducibility. Nevertheless, scientists have observed clear
localized neural signatures of learning and memory [100,101]. Impressively, AI systems
have been trained on such signatures and can correctly label them with appropriate nouns
(e.g., cup, banana).

Blurred images of human brains in action have been connected to the lower levels
of the human decision stack by numerous animal studies that recorded from individual
nerve cells and even individual synapses [102,103]. These animal studies assume that
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mechanisms of mnemonic function have been conserved across phylogeny. Recent work
on human epilepsy patients supports this notion [102,103]. Operationally, neuroscience
has coined the word “engram” to represent the cell assembly of neurons that participate
in an individual memory [104]. These engrams can be visualized in animal models and
correlated precisely to cognitive and behavioral states in the same experimental subject.

Most importantly, scientists have developed novel optogenetic techniques that enable
experimenter-controlled switching on and off of specific engrams to produce corresponding
amnesia and subsequent memory rescue in animal models, including mice [105]. Thus,
the base of the decision stack, at the level of the cell assembly, has been connected to
the top of the stack, at the level of the brain-body. The intermediate components of the
neurobiological decision stack correspond to various cortical modules, brain nuclei, and
their associated connections, as illustrated in Figure 2.
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Figure 2. The Human Brain Decision Stack. Primary control flows from the bottom to the top of the
stack, albeit with top-down feedback. A set of individual neurons (c. 1000 out of 1011) make up a cell
assembly representing a perception, concept, memory, or decision. The synchronous behavior of the
cell assembly results in specific activations in brain cortical modules and nuclei via short-range and
long-range axonal connections, known as the connectome. Those activations produce a cognitive
response in the human body-brain, manifesting as decisions and human behaviors.
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The revealing of the animal decision stack allows for a full explanation of animal
decisions, as evidenced by the optogenetic studies described above [105]. By extension,
such explanatory capability should be available in human subjects, provided that the
spatio-temporal resolution of non-invasive functional brain imaging can be extended
to the level of the human neural code (engrams). While a problem can explain an
intelligence failure in the lowest level of the stack, it might also be explained by a
problem above that layer. The entire functioning stack framework is necessary to explain
neural intelligence failure.

While the primary flow of control in human brains is from the bottom of the stack to
the top, there is an additional phenomenon that adds to the complexity and functionality
of the human decision stack: feedback information and control from higher to lower levels.
Such feedback is known to optimize the computational efficiency of neural computation. It
has been selected for throughout the evolution of brains because of energy constraints, i.e.,
the human brain operates on about 20 watts of electricity, the same power as a refrigerator
light [106].

5. Non-AI Machine Decision Stacks

Non-AI failures occur, often manifesting on our electronic devices. When a software
engineer debugs a computer program, that process reveals the explanation for failures
embedded in the program’s source code. Such debugging has been evolved and engineered
over the years to facilitate the central roles of human beings in debugging. While source
code resembles a written language like English, it must be translated into machine code
to execute on a digital computer. Machine code ultimately becomes the binary sequence
of 1′s and 0′s that drive the transistors that populate the Complementary Metal–Oxide–
Semiconductor (CMOS) circuitry of extant devices. Programing languages and debugging
routines are human-engineered tools for explaining non-AI machine failures in digital
computers. However, it is the framework of the machine decision stack illustrated in
Figure 3 that enables the full explanation of such failures. Source code bugs must be
compiled before they produce failure. The failure eventually manifests in the incorrect
behavior of CMOS electronics.

Reviewing the machine code to derive the explanation of a program failure is an
alternative to current software debugging routines. However, this would be very difficult,
as evidenced by the slow speed of debugging the earliest digital computers that used
machine language [107].

Since the machine code drives billions of transistors in modern computers, the
Gedanken experiment of reading out each of their states to explain failure would be daunting.
In contrast to the human brain, most explanation for failure comes from observing the
system at the top, not the bottom. We observe this in a web browser that freezes on our
computer desktop. The explanation is usually found in error in the source code written by
a human that has propagated to the machine code level and then to transistor hardware.
Hardware malfunctions are equally capable of explaining failure modes. For this reason,
information flows in both directions in the machine decision stack found in modern devices,
as depicted in Figure 3. For example, when the transistors inside the CPU of a modern
computer become too hot, they can transmit that “distress signal” upwards to either slow
down or interrupt the functional execution of a program. Furthermore, many interpreters
and compilers will signal coding problems upwards in the decision stack rather than blindly
writing bad machine code instructions. As a result, the arrows of information flow are
bi-directional in the decision stack, as with biological brains.
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Figure 3. The decision stack for a non-intelligent digital machine. Source code for a computer
program is written in a programming language (e.g., Python). The source code describes an algorithm
to operate on structured data to produce a decision. For all intents and purposes, the program is
deterministic. An interpreter or a compiler translates the source code into machine language, which
then instructs the hardware layer to turn on and off electronic components (transistors) to produce a
decision that is then translated to the human operators via an interface.

6. Explaining AI Failures: Towards an AI Decision-Stack

The challenge in providing such an explanation for AI lies in the distributed nature
of virtually all ML systems. A paradigmatic example can be found in artificial neural
networks where computational units, “neurons,” encode a decision in their activity pattern
as influenced by the weight of their respective synaptic inputs [108]. As with biological
neurons in brains, the size and complexity of the network conceal which members are the
“key players” in any given decision. Similar to neural systems, there are no “grandmother”
cells (In neuroscience, a “grandmother cell” is a theoretical construct of the single neuron
that encodes the memory of your own grandmother. Evidence suggests that grandmother
cells do not exist in complex biological brains.) [109].

Additional complexity in such networks comes from the reference architecture of
many AI’s where heterogeneous algorithms, unstructured data storage, and a separate
decision engine resides. This is schematically represented in Figure 4.
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Figure 4. The decision stack for an AI decision machine. Pictured above is a schematized reference
architecture upon which an AI decision stack (translucent pink) must operate. At the base are ho-
mogenous or heterogeneous populations of ML algorithms (AI-Ap Pool) that run on unstructured
data. The examples in the figure include back propagation artificial neural networks, self-organizing
networks, convolution algorithms, genetic algorithms, and K-clustering statistical methods. Datas-
tores are implemented at the middle level. Such datastores, physically distributed, are accessed at
the base of the reference architecture and the top as schematized by the arrows. At the top level is
a decision engine that acts as a read-out of the entire decision stack. The decision engine acts as a
read-out and an integral component of the decision stack that may implement some machine learning.

As with biological nervous systems, the basis for a decision may be embedded in
the instantiated ML networks at the base of Figure 4. It then propagates to shape the
response of the top level: an AI-decision stack. The bottom layer of the stack in Figure 4
does not represent CMOS hardware (e.g., transistors). Instead, it represents the software-
defined nodes (e.g., artificial neurons) of one or several ML algorithms. In this case, it
should be possible to probe the universe of these nodes for their activity during a critical
decision-making process, logging that data for future analysis in a manner analogous to
the neurobiology experiments described above.

Further, and crucial to explainable AI, once such an “engram” is revealed, it should be
possible, in a manner analogous to biological brains, to turn off the labeled nodes and to
test whether the AI’s “decision” is reversed, as propagated across the AI-decision stack.
Under our operational definition of explainable AI, the results of this test constitute the
explanation, once again taking from the field of neuroscience.
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7. The Neurally inspired Framework

In biological brains, an explanation for a single biological memory has been achieved by
labeling the members of a cell assembly that, by the act of firing action potentials together,
are functionally bound during memory formation (i.e., an engram). Then, by onpogenet-
ically inactivating those cells, and only those cells, it is possible to reversibly control the
recall of the specific memory [9]. We treat the mnemonic function as a specific instance of
decision-making since each decision requires a corresponding memory. We introduce the
notion of the decision stack, a biological “reference architecture.” The members of the cell
assembly are in the lowest layer of this reference architecture.

In the case of our AI framework, we describe an analogous decision stack reference
architecture where the individual nodes/neurons are also at the lowest layer. The in-
strumentation of these nodes (analogous to functional labeling and optogenetic control)
enables one to label the relevant members to test for explanation analogously. The test
consists of re-running the decision with those nodes inactivated and revealing the depen-
dence of the decision upon those specific nodes as they propagate their activity across the
AI-decision stack.

It is essential to point out that, as with biological brains, individual nodes may partici-
pate in many separate decisions and that an individually flagged node may not be crucial
to explaining a single decision.

8. Existing Explainable AI Methods and Our Framework

AI-based systems allow powerful predictions. However, owing to their Blackbox
nature, they are not readily explainable. Existing X-AI methods make a genuine effort to
break the Blackbox yet cannot fully explain all the contours of a prediction [75,110,111]. As
opposed to existing X-AI methods, our decision stack framework mimics biological brain
principles. The natural existence of functionally-bound neurons phylogenetically conserved
across all biological brains coupled with experimentally-induced optogenetic inactivation
of ‘memory’ cells—leading to reversable memory recall—provides an empirical basis and
existence proof for our decision stacks framework. While we have already pointed out
challenges, including validity and explanation issues in current X-AI methods as well as
laid the ground for comparison between existing X-AI methods and our framework in
Section 3, we briefly make a few more remarks here.

Applying alternative X-AI explanation methods to similar input data may lead to dif-
ferent results [112]. This makes comparing results from different X-AI methods a daunting
task. In other words, if we do not possess prior knowledge or background information
on the data producers, we are unsure which X-AI explanation is more accurate. Our
framework, taking inspiration from biological brain architectures, allows for a more plausi-
ble explanation. We foresee this explanation as objective (more precise and natural) and
consistent (same result for similar input data).

Existing X-AI methods also present limitations based on the data type being used [113].
Data, as we know, come in various forms: numerical, image, text, and tabular. Often such
data are unstructured. In a consequential environment where users and policymakers
want an explanation, a powerful X-AI method should be well-equipped to handle any
kind or combination of the data. However, the existing algorithms in X-AI methods seem
unprepared to handle all data types [113]. Since we base our proposed framework on
biology, which can process any data to make decisions, we foresee the algorithm in our
framework as advantageous.

Finally, all X-AI methods face multifaceted challenges, as extensively elaborated in
a recent article [75]. Some of these challenges pertain to the dynamics of data and deci-
sions (changing data and decisions cause different explanations) and context dependency
(since outcomes may differ for individuals, general explanations for algorithms may not
work). Other challenges relate to the wicked nature of the problems addressed (due to
the ambiguous and poorly structured nature of the problems, the problems could warrant
multiple answers as opposed to a single answer provided by current algorithms) and
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contested explanations (explanations could be biased, for instance). While we do not think
that our framework solves all these problems, we believe some of these problems (such as
contested explanations, dynamic data, and context dependency) will likely be mitigated by
the decision stacks framework that is inspired by actual biological mnemonic function in
its design to return an explanation.

9. Conclusions

As the adoption of AI and ML continues to rise and reaches new audiences, in-
creasingly complex Blackbox models (such as deep neural networks) pose explainability
challenges to engineers, researchers, and policymakers alike. The future of AI’s use in
consequential applications in health, justice, industry, defense, and security will increas-
ingly require explainability. After summarizing the existing X-AI methods and some of
their inherent issues in this paper, we theoretically propose using an AI-decision stack
framework to operationalize AI explainability analogous to modern neuroscience. The
operationalization would entail instrumenting the complete ML node set and recording
them all during AI decision-making. The active nodes in this process define the test set for
the explanation. A successful test requires demonstrating a causal relationship between the
activation of the labeled nodes and the decision.

While in this paper, we aimed to furnish a theoretical framework, future research will
allow for empirical testing of this framework on actual data. In principle, X-AI methods and
frameworks bridge ML systems and human systems; thus, the decision stack framework
testing and further refining will need collaborations between scholars in computer science,
mathematics, economics, neuroscience, behavioral psychology, public policy, and experts
in human-computer interaction.
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