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Pharmacological manipulation of the type 5 metabotropic glutamate (mGlu5) receptor alters
various addiction related behaviors such as drug self-administration and the extinction and
reinstatement of drug-seeking behavior. However, the effects of pharmacological modu-
lation of mGlu5 receptors on brain reward function have not been widely investigated.
We examined the effects of acute administration of positive and negative allosteric mod-
ulators (PAMs and NAMs, respectively) on brain reward function by assessing thresholds
for intracranial self-stimulation (ICSS). In addition, when acute effects were observed, we
examined changes in ICSS thresholds following repeated administration. Male Sprague-
Dawley rats were implanted with bipolar electrodes into the medial forebrain bundle and
trained to respond for ICSS, followed by assessment of effects of mGlu5 ligands on
ICSS thresholds using a discrete trials current–intensity threshold determination proce-
dure. Acute administration of the selective mGlu5 NAMs MTEP (0, 0.3, 1, or 3 mg/kg) and
fenobam (0, 3, 10, or 30 mg/kg) dose-dependently increased ICSS thresholds (∼70% at
the highest dose tested), suggesting a deficit in brain reward function. Acute administra-
tion of the mGlu5 PAMs CDPPB (0, 10, 30, and 60 mg/kg) or ADX47273 (0, 10, 30, and
60 mg/kg) was without effect at any dose tested. When administered once daily for five
consecutive days, the development of tolerance to the ability of threshold-elevating doses
of MTEP and fenobam to increase ICSS thresholds was observed.We conclude that mGlu5
PAMs and NAMs differentially affect brain reward function, and that tolerance to the ability
of mGlu5 NAMs to reduce brain reward function develops with repeated administration.
These brain reward deficits should be taken into consideration when interpreting acute
effects of mGlu5 NAMs on drug self-administration, and repeated administration of these
ligands may be an effective method to reduce these deficits.
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INTRODUCTION
The type 5 metabotropic glutamate (mGlu5) receptor has been
implicated in numerous CNS functions including synaptic plastic-
ity, learning and memory,cognition,nociception,affect regulation,
and motivated behaviors (Niswender and Conn, 2010). mGlu5
receptors are also involved in numerous CNS diseases such as
depression, anxiety, schizophrenia, epilepsy, chronic pain, Frag-
ile X syndrome, and drug addiction (Spooren et al., 2001; Bird
and Lawrence, 2009a,b; Krystal et al., 2010; Niswender and Conn,
2010). With regards to drug addiction, genetic deletion of the
mGlu5 receptor in mice results in indifference to the reinforcing
and locomotor stimulant effects of cocaine (Chiamulera et al.,
2001) and reduced ethanol consumption (Bird et al., 2008). In
addition, a substantial literature exists with a general consensus
that negative allosteric modulation of mGlu5 receptors reduces
self-administration of most drugs of abuse including cocaine,
heroin, methamphetamine, nicotine, and ethanol, as well as the

reinstatement of drug-seeking behavior (reviewed in Kenny and
Markou, 2004; Bird and Lawrence, 2009b; Olive, 2009; Cleva and
Olive, in press).

The mechanism by which pharmacological antagonism of
mGlu5 receptors reduces drug intake is not well understood.
Several recent studies have demonstrated that a potential site
of action of mGlu5 antagonists in reducing drug intake is the
nucleus accumbens (Cozzoli et al., 2009; Gass and Olive, 2009b;
Besheer et al., 2010), a primary component of the brain’s reward
circuitry. A well-established method for assessing brain reward
circuitry function is the intracranial self-stimulation (ICSS) para-
digm, where animals are trained to perform an operant response
in order to obtain electrical stimulation of the medial fore-
brain bundle (Kornetsky and Esposito, 1979; Kornetsky and
Bain, 1992; Markou and Koob, 1992). Antagonism of mGlu5
receptors with the negative allosteric modulator (NAM) 2-methyl-
6-(phenylethynyl) pyridine (MPEP) was first demonstrated to
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reduce thresholds for ICSS by Harrison et al. (2002). These find-
ings were subsequently replicated by Kenny et al. (2003, 2005) who
advanced the hypothesis that inhibition of mGlu5 receptor func-
tion may reduce cocaine self-administration by reducing brain
reward function. Although MPEP has typically been the proto-
typical ligand of choice in many studies for inhibiting mGlu5
receptor function, some studies have revealed that this ligand
has off-target effects on NMDA receptors, monoamine oxidase,
and the norepinephrine transporter (O’Leary et al., 2000; Heid-
breder et al., 2003; Lea and Faden, 2006). More recently, mGlu5
receptor NAMs that exhibit increased selectivity for mGlu5 recep-
tors with fewer off-target effects have been developed, including
3-((2-methyl-4-thiazolyl)ethynyl)pyridine (MTEP; Cosford et al.,
2003) and 1-(3-chlorophenyl)-3-(3-methyl-5-oxo-4H-imidazol-
2-yl)urea (fenobam; Porter et al., 2005; Montana et al., 2009).

Conversely, systemically active positive allosteric modula-
tors (PAMs) of mGlu5 such as 3-cyano-N-(1,3-diphenyl-1H-
pyrazol-5-yl)benzamide (CDPPB; Lindsley et al., 2004; Kinney
et al., 2005) and (S)-(4-fluoro-phenyl)-(3-[3-(4-fluoro-phenyl)-
[1,2,4]-oxadiazol-5-yl]piperidin-1-yl)methanone (ADX47273; Liu
et al., 2008) have been developed as novel cognition enhancing
agents and potential novel treatments for schizophrenia (Niswen-
der and Conn, 2010). Studies by our laboratory and others have
shown that CDPPB facilitates the extinction of cocaine-seeking
behavior following intravenous self-administration (Cleva et al.,
2011; Nic Dhonnchadha and Kantak, 2011) as well as the extinc-
tion of a cocaine-induced conditioned place preference (Gass and
Olive, 2009a). However, no studies to date have examined the
effects of mGlu5 PAMs on brain reward function.

The goals of the present study were to (1) determine if the more
recently developed mGlu5 NAMs MTEP and fenobam, at doses
that have been shown to reduce self-administration of drugs of
abuse, produce decrements in brain reward function as indicated
by increases in ICSS thresholds, (2) determine if mGlu5 PAMs alter
brain reward function, and (3) determine if any observed effects of
mGlu5 PAMs or NAMs on brain reward function would change
after repeated administration, which would be more relevant to
clinical use of such ligands.

MATERIALS AND METHODS
ANIMALS
Male Sprague-Dawley rats (250–275 g upon arrival) that were
obtained from Harlan Laboratories (Indianapolis, IN, USA) were
used for this study. Food and water were freely available at all
times except during behavioral testing. The animal housing room
was maintained on a reversed 12 h light–dark cycle (lights off at
0800 h), with controlled temperature and humidity within NIH
guidelines. All experimentation was conducted during the dark
phase of the light–dark cycle. All experimental procedures con-
formed to the 2003 Guide for the Care and Use of Mammals in
Neuroscience and Behavioral Research, and were approved by an
Institutional Animal Care and Use Committee.

SURGICAL PROCEDURES
Animals were anesthetized with isoflurane (2% v/v) vaporized in
oxygen at a flow rate of 2 l/min and placed in a stereotaxic frame
(Stoelting Co., Wood Dale, IL, USA). The skin overlying the skull

was shaved and scrubbed with betadine and 0.1% v/v H2O2, and an
incision was made to expose the skull surface. A bipolar electrode
(#MS303/2, Plastics One, Roanoke,VA, USA) was then unilaterally
implanted into the lateral hypothalamus (AP: −0.5, ML: ±1.7, DV:
−8.3 mm from skull surface and bregma according to the atlas of
Paxinos and Watson, 2007). The length of the electrode (10 mm)
was insulated except at the ventral tip. Electrodes were secured to
the skull with stainless steel screws and dental cement. The wound
was then treated with 2% bacitracin/polymyxin B/neomycin and
5% xylocaine, and sutured closed with 3-0 Vicryl sutures. Ani-
mals received meloxicam (10 mg/kg s.c.) once daily for 5 days to
minimize post-surgical pain and discomfort, and were allowed to
recover for at least 5 days prior to ICSS training.

ICSS TESTING APPARATUS
Intracranial self-stimulation procedures were conducted in
computer-interfaced behavioral testing chambers (ENV-007,
30.5 cm × 30 cm × 17 cm, Med Associates. St. Albans, VT, USA)
housed in melamine sound-attenuating cubicles as described
above. Each chamber contained a metal wheel manipulandum
(5 cm wide), centered on one of the side walls, that required
∼0.2 N force to result in a quarter turn rotation. Electrical brain
stimulation was delivered by constant current stimulators (Med
Associates) controlled by MED-PC IV software. Animals were
connected to the stimulators with bipolar leads (Plastics One)
attached to gold-contact electrical commutators (model SL2C,
Plastics One) mounted on counterbalanced lever arms located
atop the chamber.

ICSS PROCEDURES
A discrete trials current–intensity threshold procedure was
employed (Kornetsky and Esposito, 1979; Kornetsky and Bain,
1992; Markou and Koob, 1992) to determine ICSS thresholds.
Animals were first trained to turn the wheel manipulandum one-
quarter of a turn in order to receive a delivery of a 200-ms train of
cathodal square-wave pulses (frequency 100 Hz, intensity 120 μA)
on a fixed-ratio 1 (FR1) schedule of reinforcement. Training was
conducted in 30 min daily sessions. Following successful acqui-
sition of responding for stimulation (>100 reinforcements per
5 min), training on the discrete trials current–intensity thresh-
old procedure commenced. Each trial began with a response-
independent delivery of an electrical stimulus (see above for
parameters), followed by a 7.5-s period during which the ani-
mal was given the opportunity to make a response to receive an
identical stimulus. A response during this 7.5 s period was labeled
as a positive response and was followed by a 2-s timeout period,
whereas a lack of a response during this period was labeled as
a negative response. Additional responses during the 2-s timeout
period resulted in an additional 12.5 s delay of the onset of the next
trial. The inter-trial interval (ITI) that followed either a positive
response or the end of the 7.5-s period (in the case of a negative
response) was 10 s in duration. Responses that occurred during
the ITI had no consequences.

Animals were subsequently tested on the current–intensity
threshold procedure in which stimulation intensities were varied
according to the psychophysical method of limits. A test session
consisted of five alternating series of descending and ascending
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current intensities, starting with a descending series. Blocks of
five trials were conducted at a given stimulation intensity start-
ing at 120 μA, and the current–intensity was changed by 5 μA
steps between blocks of trials. Each test session typically lasted
30–40 min. To determine the current–intensity threshold for each
animal, the stimulus intensity between the successful completion
of a set of trials (positive responses during three or more of the
five trials) and the stimulus intensity for which the animal failed to
respond positively on two or more of the five trials were recorded.
The mean of the thresholds for the five series was defined as the
threshold for the session. The time between the beginning of the
response-independent stimulation and a positive response was
recorded as the response latency for each trial. No response laten-
cies were determined from negative response trials. The response
latency for each session was defined as the mean response latency
for all trials with positive responses.

DRUGS AND TREATMENT
MTEP hydrochloride was obtained from Ascent Scientific (Prince-
ton, NJ, USA) and was dissolved in a vehicle consisting of distilled
water. Fenobam, CDPPB, and ADX47273 were custom synthe-
sized by Chemir Analytical Services (Maryland Heights, MO,
USA) according to previously published methods (Lindsley et al.,
2004; Kinney et al., 2005; Porter et al., 2005; Liu et al., 2008)
and were suspended in a vehicle consisting of 0.3% v/v Tween
80 (Sigma-Aldrich, St. Louis, MO, USA). Drug treatment pro-
cedures commenced following stabilization of baseline current–
intensity thresholds (approximately five to seven discrete trial
sessions, <10% variability in absolute ICSS threshold values).
mGlu5 ligands were administered via the s.c. route in a volume of
1 ml/kg 20 min prior to discrete trial current–intensity threshold
determinations.

For acute dose response studies, a minimum of two drug-
free days of regular ICSS threshold determination testing were
conducted between dose, and each dose and vehicle were given
in a randomized counterbalanced manner. Doses of each com-
pound administered were as follows: MTEP (0.3, 1, or 3 mg/kg),
fenobam (3, 10, or 30 mg/kg), CDPPB (10, 30, and 60 mg/kg), and
ADX47273 (10, 30, and 60 mg/kg). Separate groups of animals
were utilized for each compound administered.

For repeated administration studies, doses of MTEP and
fenobam that were found to elevate ICSS thresholds (3 and
30 mg/kg, respectively) were administered once daily for five con-
secutive days, each given 20 min prior to threshold determination
procedures. Separate groups of animals were utilized for each
compound administered.

HISTOLOGY
Animals were deeply anesthetized with sodium pentobarbi-
tal, 150 mg/kg i.p. and perfused transcardially with 100 ml of
phosphate-buffered saline (PBS, pH = 7.4) followed by 200 ml
4% w/v paraformaldehyde in PBS (pH = 7.4). Brains were then
removed, post-fixed at 4˚C for 24 h, and placed in a 30% w/v
sucrose in PBS cryoprotectant solution at 4˚C for 48 h. Brains were
then cut into 40 μm sections on a cryostat (Model CM1900, Leica
Microsystems, Bannockburn, IL, USA), mounted onto gelatin-
coated microscope slides, and stained using cresyl violet. The tip of

the electrode was then verified to localized to the lateral hypothal-
amus under light microscopy. Data from animals with incorrect
placement of the electrode were excluded from analysis.

DATA ANALYSIS
Data were analyzed using SigmaPlot software (Version 12.0, Systat
Software, San Jose, CA, USA). ICSS thresholds from individual
animals were calculated from three consecutive pre-treatment
sessions that showed <10% variability in current–intensity thresh-
olds, and these values were averaged to obtain a baseline threshold
value. ICSS thresholds obtained from the remaining sessions were
transformed to a percentage of this baseline value for each indi-
vidual animal. Effects of acute administration of vehicle or mGlu5
PAMs and NAMs and response latencies were analyzed by one-
way between-subjects ANOVA, with drug dose as the main factor,
followed by Holm–Sidak post hoc pairwise comparisons against
values from vehicle treated animals. Effects of repeated adminis-
tration of the 3-mg/kg dose of MTEP and the 30-mg/kg dose of
fenobam on ICSS thresholds were analyzed by one-way repeated-
measures ANOVA, with treatment day as the main factor, followed
by Holm–Sidak post hoc pairwise comparisons against threshold
values from the first day of treatment. P < 0.05 was considered sta-
tistically significant for all tests performed. All data are presented
as mean ± SEM.

RESULTS
ACUTE DOSE RESPONSE FOR MGLU5 NAMs AND PAMs
Prior to commencement of treatment, baseline ICSS thresholds
were 90.11 + 6.90 μA (mean ± SEM). The effects of vehicle and
MTEP (0.3, 1, or 3 mg/kg) and fenobam (3, 10, and 30 mg/kg)
on ICSS thresholds are shown in Figures 1A,B. A significant
effect of MTEP dose was observed [F (3,31) = 10.82, P < 0.001], and
post hoc analyses revealed that the 3-mg/kg dose of MTEP produce
a significant (∼70%) increase in ICSS thresholds as compared to
those following vehicle treatment (P < 0.05). Similarly, a signifi-
cant effect of fenobam dose was observed [F (3,28) = 3.18,P < 0.05],
and post hoc analyses revealed that the 30-mg/kg dose of fenobam
produced a significant (∼68%) increase in ICSS thresholds as com-
pared to those following vehicle treatment (P < 0.05). MTEP and
fenobam did not produce significant effects on response latencies
during the discrete trials (P > 0.05 vs. vehicle).

The effects of vehicle and the 10-, 30-, and 60-mg/kg doses
of CDPPB and ADX47273 on ICSS thresholds are shown in
Figures 2A,B. None of the doses tested for either mGlu5 PAM pro-
duced a significant effect on ICSS thresholds or response latencies
(all Ps > 0.05 vs. vehicle). Due to the lack of effects observed with
these compounds, further investigation with repeated administra-
tion was not conducted.

EFFECTS OF REPEATED ADMINISTRATION OF MTEP AND FENOBAM
The effects of repeated (once daily for five consecutive days)
administration of the threshold-elevating doses of MTEP
(3 mg/kg) and fenobam (30 mg/kg) on ICSS thresholds are shown
in Figures 3A,B. Effects of repeated administration of vehicle are
shown in Figure 3C. In MTEP treated animals, a significant effect
of session was observed [F (4,43) = 3.97, P < 0.01], and post hoc
analyses revealed that ICSS thresholds during sessions 4 and 5 were
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FIGURE 1 | Dose-dependent increases in ICSS thresholds following

acute administration of the mGlu5 NAMs MTEP [(A): n = 13] or

fenobam [(B): n = 11]. *P < 0.05 vs. vehicle.

significantly lower than those observed during session 1. Similarly,
a significant effect of session dose was observed in fenobam treated
rats [F (4,28) = 7.76, P < 0.001], and post hoc analyses revealed that
ICSS thresholds during sessions 2, 3, 4, and 5 were significantly
lower than those during session 1. Repeated administration of
vehicle (10% v/v) produced no effects on ICSS thresholds across
sessions, and response latencies for all three treatment groups were
unaffected (all Ps > 0.05).

ELECTRODE PLACEMENT
Examination of histological sections under bright microscopy
demonstrated that three rats had incorrect placement of the ICSS
electrode into the lateral hypothalamus. Data obtained from these
animals were discarded. An additional seven rats were removed
from the ICSS study due to loss of the cranial implant during the
experiment. Tissue from all other animals demonstrated correct
placement of the electrode.

DISCUSSION
Our findings indicate that positive and negative allosteric modu-
lation of mGlu5 receptors differentially modulates brain reward

FIGURE 2 | Absence of effects of acute administration of various doses

of the mGlu5 PAM CDPPB [(A): n = 15] or ADX47273 [(B): n = 15] on

ICSS thresholds.

function as assessed by ICSS threshold determination procedures.
Specifically, acute administration of the mGlu5 PAMs CDPPB and
ADX47273 are without effect on ICSS thresholds, suggesting an
absence of alteration in brain reward function. However, it should
be noted that we tested doses up to 60 mg/kg of these mGlu5
PAMs, while other studies have shown that a median effective doses
of 100 mg/kg ADX47273 was required to attenuate dopamine-
mediated behaviors such as apomorphine-induced climbing and
phencyclidine-,apomorphine-,and amphetamine-induced hyper-
locomotion (Liu et al., 2008). Thus, the possibility exists that doses
of ADX47273 and CDPPB higher than 60 mg/kg may alter brain
reward function, and further studies are needed to confirm this
possibility.

In contrast to the lack of observed effects of acute administra-
tion of mGlu5 PAMs, acute administration of the mGlu5 NAMs
MTEP and fenobam dose-dependently increased ICSS thresholds,
which is reflective of decreased brain reward function (Kornet-
sky and Esposito, 1979; Kornetsky and Bain, 1992; Markou and
Koob, 1992). These latter observations are in agreement with
previous studies showing that acute administration of the less
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FIGURE 3 | Effects of repeated administration of MTEP [(A): 3 mg/kg,

n = 12], fenobam [(B): 30 mg/kg, n = 9], or vehicle [(C): n = 4] for five

consecutive threshold determination sessions conduced once daily.

*P < 0.05 vs. Session 1.

selective mGlu5 NAM MPEP (3 and 9 mg/kg) also elevates ICSS
thresholds (Harrison et al., 2002; Kenny et al., 2003, 2005). How-
ever, a more recent study found that these doses of MPEP did
not alter brain stimulation reward (Gormley and Rompre, 2011).
These discrepant results are likely due to differences in the ICSS
procedures employed. In the present study and others (Harrison
et al., 2002; Kenny et al., 2003, 2005), a current–intensity threshold

determination procedure was used, which varies the intensity of
the stimulation current delivered to the electrode while keeping
the stimulation frequency constant. On the other hand, Gormley
and Rompre (2011) utilized a rate–frequency analysis procedure
which varies the frequency of the stimulation current delivered
to the electrode while keeping the current–intensity constant. It
is therefore of interest to conduct future studies to determine
if MTEP or fenobam produce any effects on brain stimulation
reward using this rate–frequency approach.

The fact that acute administration of MTEP and fenobam
increased ICSS threshold suggests that the reported ability of these
drugs to attenuate drug self-administration (Cowen et al., 2005,
2007; Adams et al., 2008; Osborne and Olive, 2008; Palmatier et al.,
2008; Gass et al., 2009; Hao et al., 2010; Sidhpura et al., 2010) may
result from decreases in baseline activity of the brain’s reward
circuitry. In addition, elevations in ICSS threshold are generally
associated with aversive or anhedonic states (Markou and Koob,
1992). Thus, mGlu5 NAM-induced suppression of drug intake
may reflect a negative affective state of the animal as opposed
to a reduction in the reinforcing and motivational effects of the
self-administered drug. These factors need to be taken into consid-
eration when interpreting the underlying mechanisms by which
mGlu5 NAMs reduce drug intake.

We also found when the doses of MTEP and fenobam that
elevated ICSS thresholds following acute administration (3 and
30 mg/kg, respectively) were administered repeatedly over the
course of 5 days, a gradual attenuation of the ICSS threshold-
elevating effects was observed. This development of tolerance may
possibly be reflective of reduced expression of mGlu5 in forebrain
regions that result from repeated mGlu5 NAM administration, as
has previously been reported (Cowen et al., 2005). Regardless of
the mechanism, since elevations in ICSS thresholds produced by
MTEP and fenobam were significantly reduced after several days
of treatment, it is of interest to discern whether repeated adminis-
tration of either of these ligands results in tolerance to their ability
to suppress drug intake. If tolerance to the potential therapeu-
tic effects of MTEP or fenobam are absent, as has recently been
reported with regards to the lack of ability of repeated fenobam
administration to produce tolerance to its analgesic effects (Mon-
tana et al., 2011), it would therefore follow that repeated adminis-
tration of mGlu5 NAMs may be a novel experimental approach to
suppressing drug intake that circumvents the potential confounds
of reduced brain reward function. Repeated drug administration
also has greater face validity for pharmacotherapeutic approaches
to reducing drug intake in human drug addicts than single dosing
paradigms.

The ability of acute fenobam administration to increase ICSS
thresholds, and the subsequent development of tolerance to these
effects, has important clinical implications for medical conditions
other than drug addiction. Fenobam was introduced more than
30 years ago as a potential novel non-benzodiazepine anxiolytic
compound (Itil et al., 1978; Friedmann et al., 1980; Pecknold et al.,
1980, 1982; Goldberg et al., 1983). However, these clinical tri-
als were discontinued following reports of adverse dose-related
side effects such as dizziness, paresthesias, sedation, and dere-
alization. More recently, it has been demonstrated that lower
doses of fenobam (50–150 mg/day) actually produces cognitive
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improvement in adult patients with Fragile X syndrome, with no
CNS-related adverse side effects (Berry-Kravis et al., 2009). Addi-
tional reports of clinical efficacy and few side effects have been
reported for other mGlu5 NAMs such as ADX10059 for the treat-
ment of gastro-esophageal reflux disease (Keywood et al., 2009;
Zerbib et al., 2011). With the possible exception of early studies
with high doses of fenobam, clinical reports on fenobam admin-
istration to humans have not yet reported adverse side effects that
would be consistent with decreased brain reward function, such as

anhedonia, dysphoria, or other negative affective states. Nonethe-
less, based on our current findings, future clinical studies should
monitor for possible occurrence of these effects, and if such effects
resolve with repeated dosing.
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