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Salivary glands are vital structures responsible for successful tick feeding. The

saliva of ticks contains numerous active molecules that participate in several

physiological processes. A Kunitz-type factor Xa (FXa) inhibitor, similar to the

tissue factor pathway inhibitor (TFPI) precursor, was identified in the salivary

gland transcriptome of Amblyomma sculptum ticks. The recombinant mature

form of this Kunitz-type inhibitor, named Amblyomin-X, displayed

anticoagulant, antiangiogenic, and antitumor properties. Amblyomin-X is a

protein that inhibits FXa in the blood coagulation cascade and acts via non-

hemostatic mechanisms, such as proteasome inhibition. Amblyomin-X

selectively induces apoptosis in cancer cells and promotes tumor regression

through thesemechanisms. Notably, the cytotoxicity of Amblyomin-X seems to

be restricted to tumor cells and does not affect non-tumorigenic cells, tissues,

and organs, making this recombinant protein an attractive molecule for

anticancer therapy. The cytotoxic activity of Amblyomin-X on tumor cells

has led to vast exploration into this protein. Here, we summarize the

function, action mechanisms, structural features, pharmacokinetics, and

biodistribution of this tick Kunitz-type inhibitor recombinant protein as a

promising novel antitumor drug candidate.
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Introduction

Historically, natural products extracted from plants, herbs,

animals, and microorganisms have been a reliable source of

bioactive molecules for pharmaceutical discovery. Despite this

complexity, recent technological advances and the advent of

new methods for high-throughput screening have contributed

to the resurgence of pharmaceutical interest in natural products

or their direct derivatives for developing new drugs (Nogueira

et al., 2010; Brahmachari, 2011; Harvey et al., 2015). Plant

extracts have traditionally been used as a source of potential

compounds, but animal-derived drugs have also been crucial in

several diseases. There is increasing interest in bioactive

molecules from other sources, such as arthropods and

parasites (Calixto, 2019). Tick salivary glands are recognized

as a rich source of pharmaco-active molecules (Chmelař et al.,

2019; Aounallah et al., 2020).

Ticks are obligate hematophagous parasites that must

overcome their vertebrate host’s sophisticated immune defense

systems to feed, and salivary glands are vital structures

responsible for their biological success. Tick saliva contains

numerous physiologically active molecules that participate in

various physiological processes. Crude saliva is a mixture of

diverse biomolecules directly involved in blood coagulation,

platelet aggregation, vascular contraction, host immunity, and

inflammation (Ribeiro and Francischetti, 2003). Previous

intensive transcriptomic and proteomic research has identified

several protein families from tick salivary glands (Champagne,

2004; Faria et al., 2005; Junqueira-de-Azevedo et al., 2006;

Ribeiro et al., 2006; Alarcon-Chaidez et al., 2007; Chmelař

et al., 2019). Batista and colleagues (Batista et al., 2008)

constructed a cDNA library of the Amblyomma cajennense,

currently Amblyomma sculptum (Nava et al., 2014), salivary

gland to search for potential proteins involved in the

hemostatic process for drug development.

The gland mRNAs of adult female A. sculptum from Brazil

were reverse-transcribed to cDNAs and cloned into Escherichia

coli DH5α cells for large-scale DNA sequencing and expressed

sequence tag (EST) generation (Batista et al., 2008). These ESTs

were assembled into cluster sequences, searched against the

GenBank NCBI database, screened for the presence of

potentially full-length open reading frames (ORFs), signal

peptides, and conserved domains. The analysis revealed the

presence of transcripts related to proteins involved in the

hemostatic processes, especially proteases and inhibitors.

Batista et al. identified a Kunitz-type protease inhibitor,

similar to the tissue factor pathway inhibitor (TFPI)

precursor, a physiological factor Xa (FXa) inhibitor, among

the protein-related transcripts (Batista et al., 2008; Batista

et al., 2010; Mesquita Pasqualoto et al., 2014). The

recombinant mature form of this Kunitz-type protease was

named Amblyomin-X (Amblyomma Factor Xa inhibitor) and

displayed inhibitory activity towards factor X and antiangiogenic

and antitumor properties (Figure 1). Here, we summarize the

FIGURE 1
The salivary gland transcriptome of the Amblyomma sculptum tickwas characterized and analyzed by expressed sequence tags (EST). The study
revealed the presence of protein-related transcripts involved in the hemostatic process, especially proteases and inhibitors. A Kunitz-type inhibitor
similar to the tissue factor pathway inhibitor (TFPI) precursor was identified. This inhibitor, Amblyomin-X, was obtained as a recombinant protein and
presented anticoagulant, antiangiogenic, and antitumor properties. Furthermore, Amblyomin-X demonstrated selectivity for tumor cells. Figure
created in BioRender.com.
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function, molecular mechanisms of action, and structural

features of this tick Kunitz-type inhibitor recombinant protein

as a promising novel antitumor drug candidate.

Amblyomin-X structural features

Amblyomin-X, a protein derived from Amblyomma

sculptum’s sialotranscriptome analysis (Batista et al., 2008),

was named after its bacteria-produced recombinant form,

which displayed inhibitory activity towards FXa (Batista

et al., 2010; Branco et al., 2016). The identified mRNA

sequence (GenBank AY563168.1) encodes a secreted protein

(GenBank AAT68575.1) comprising a signal peptide followed

by a 58-residues BTPI/Kunitz serine protease inhibitor domain

(KD) and a C-terminal sequence with 50-residues, slightly

shorter than the KD. Amblyomin-X’s C-terminal contains a

unique amino acid sequence that shares no relevant homology

with any protein available in public databases. However, the

Amblyomin-X KD presents a conserved pattern of six cysteine

residues and is expected to assume a disulfide-rich α/β-folded

tridimensional organization, characteristic of BPTI/Kunitz

domains (Figure 2A).

Amblyomin-X has been reported to inhibit the extrinsic

tenase complex and FXa activity (Batista et al., 2010).

Therefore, it is reasonable to infer that its KD could be

functionally similar to that of TPFI-like inhibitors (Crawley

and Lane, 2008). TFPI-1, for instance, is an endogenous tissue

factor (TF) inhibitor containing three KDs in tandem, which

binds to both FXa (its second KD inhibits FXa) and the extrinsic

tenase complex (Crawley and Lane, 2008). In addition, like

Amblyomin-X, both TFPI-1 and its structural homolog TFPI-

2 present antitumor activities (Crawley and Lane, 2008),

although TPFI-2 appears to function as a plasmin inhibitor

and only weakly inhibits coagulation (Crawley and Lane, 2008).

Amblyomin-X’s structural model was compared to available

three-dimensional structures of the second (TFPI-1 KD2) and

first (TFPI-2 KD1) KDs of TFPI-1, and TFPI-2, respectively, to

evaluate its relatedness to TFPI-like inhibitors (Mesquita

Pasqualoto et al., 2014). As expected, concerning the Kunitz

domains, Amblyomin-X, TFPI-1 KD2, and TFPI-2 KD1 present

the same overall three-dimensional arrangement: two helixes, an

FIGURE 2
Structural features of Amblyomin-X’s Kunitz domain. (A) Rainbow colored Amblyomin-X structure model (blue to red). (B) Structure
superimposition of the Kunitz domains of Amblyomin-X (rainbow), TFPI-1 KD2 (white), and TFPI-2 KD1 (gray). Structures are shown in two
orientations: the same as A (left) and rotated (right) as displayed in (C) (C) Electrostatic potential of the molecular surfaces of the indicated Kunitz
domains. Some important residues for TFPI-1 KD2 interaction with FXa (Mesquita Pasqualoto et al., 2014) are indicated. Surfaces negatively
charged are shown in red, non-charged in white, and positively charged in blue. For Amblyomin-X homology modeling, boophilin (PDB ID: 2ODY)
was used as a template. For TFPI-1 KD2 and TFPI-2 KD1, PDB IDs are 1TFX and 1ZR0, respectively.
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antiparallel β-sheet composed of two β-strands, and three loops

(Figure 2B) (Mesquita Pasqualoto et al., 2014). Although overall

protein folding is conserved, it is worth mentioning that

Amblyomin-X’s structural visualization revealed a clear

difference at loop L1 compared to the other molecules (Figure 2).

The charge distributions at the proteins’ molecular surfaces

were inspected because electrostatic interactions are particularly

important for protein-protein recognition/interaction (Mesquita

Pasqualoto et al., 2014). This analysis revealed that Amblyomin-

X presents a distinctive surface charge distribution: while TFPI-1

KD2 and TFPI-2 KD1 share the pattern of negatively charged

patches at the upper side and positively charged patches at the

bottom. Amblyomin-X presents negative patches at the center

and positive patches at the top and bottom (Mesquita Pasqualoto

et al., 2014). Identifying some of the TFPI-1 KD2 residues that

participate in the FXa inhibitory interaction (Burgering et al.,

1997) amplifies the importance of the charge distribution

difference between this protein and Amblyomin-X (Figure 2C)

(Mesquita Pasqualoto et al., 2014). Several important differences

were observed at the bottom of the molecules, particularly in the

L1 loop and its vicinity (Figure 2). The predicted trypsin

interaction site in this region, a component of the Kunitz

domain family, is related to the active site of the inhibitor

when it acts via a substrate-like mechanism (NCBI Conserved

Domain Database CDD:238057).

In this context, it is worth mentioning that even minor

alterations in the L1 loop can modify the molecule’s

inhibitory ability/specificity, not only in this region. For

instance, these differences can, at least in part, help explain

why TFPI-2 presents as a distinct inhibitory target from

TFPI-1 (Crawley and Lane, 2008).

As reviewed by Corral-Rodríguez et al. (2009) and Blisnick

et al. (2017) respectively, z, several other proteins derived from

ticks also have been identified as serine protease/coagulation

inhibitors, and a number of them are characterized as Kunitz-

type inhibitors. Among them, the well studied tick anticoagulant

FIGURE 3
Comparison of Amblyomin-X’s KD with TAP and Ixolaris. Amblyomin-X’s KD homology model (colored gray in A and E, in the same orientation
as Figure 2A) was alignedwith NMR structures of TAP (PDB: 1TCP) (A), Ixolaris (PDB: 6NAN) (D), and Ixolaris K1 (F), and K2 (H), colored in rainbow (blue
to red). Electrostatic potential of the molecular surfaces of (B) TAP, (C) KD of Amblyomin-X, (E) Ixolaris, (G) Ixolaris K1, and (I) Ixolaris K2 are shown.
Structure visualizations were created in PyMOL v.2.5.1.
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peptide (TAP) identified on extracts of the Ornithodoros

moubata is a low molecular weight Kunitz-related FXa

inhibitor (Waxman et al., 1990); moreover, identified on an

Ixodes scapularis salivary gland cDNA library, the Ixolaris and

Penthalaris, proteins with 2 and 5 tandem Kunitz-like domains,

respectively, are able to bind to FXa or FX as a scaffold for

inhibition of the TF/FVIIa (Francischetti et al., 2002;

Francischetti et al., 2004).

The tridimensional structures of the recombinant forms from

TAP (Lim-Wilby et al., 1995) and Ixolaris (De Paula, et al., 2019)

are available and were superimposed to Amblyomin-X’s KD

homology model (Figure 3).

Although TAP presents structural elements related to

members of the Kunitz serine protease inhibitor family, its

structure determination highlighted significant differences in

the predicted binding site to FXa (loop L1 for Amblyomin-X,

Figure 2A), in comparison to BPTI, suggesting a unique mode of

binding to the enzyme (Lim-Wilby et al., 1995). Indeed, using

structural analysis of bovine FXa complexed with TAP (Wei

et al., 1998), and inhibition kinetics studies of wild type and

human FXa mutants (Rezaie, 2004), it was demonstrated that

TAP interacts with FXa mediated mainly by its N- and

C-terminus, utilizing the active site and the autolysis loop of

the enzyme. In comparison with TAP, Amblyomin-X’s KD also

presents major structural differences in the loops L1 and L2 and

the dissimilarities between these molecules are extended to their

surface charge distribution, including their N- and C-terminus

(compare Figures 3B,C, for Ixolaris and Amblyomin-X,

respectively). Therefore, though it lacks experimental

confirmation, it is unlikely that Amblyomin-X’s KD interacts

with FXa the same way TAP does.

Ixolaris is composed of two KDs arranged in tandem and is

the first inhibitor described to specifically target FXa heparin-

binding exosite (HBE) (Monteiro et al., 2005). The second KD of

Ixolaris, K2, is atypical, presenting just two disulphide bridges

and several anionic amino acids, which were assumed to

FIGURE 4
Mechanism of action of Amblyomin-X on tumor cells. The recombinant protein is internalized by endocytosis and transported by a dynein-
assisted mechanism. Amblyomin-X inhibits proteasome activity, which results in aggresome formation via the non-exclusive ubiquitin pathway, ER
stress, andmitochondrial dysfunction. Unlike other proteasome inhibitors, Amblyomin-X promotes dynein-assisted autophagy inhibition andmTOR
localization. Therefore, the aggresomes are not cleared. These factors are crucial for apoptosis machinery to trigger a cell response. Figure
created in BioRender.com.
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contribute for Ixolaris–FXa HBE interactions (Monteiro et al.,

2005). In agreement, Ixolaris’ structure was recently solved (De

Paula, et al., 2019) and the study revealed a noncanonical

mechanism of binding to FXa HBE, with a major contribution

from K2, shown to be conformationally dynamic, but it was also

shown that the interaction requires both K1 and K2 domains (De

Paula, et al., 2019).

The KD of Amblyomin-X is more similar to Ixolaris K2

(Figure 3D; 3F and 3H for individual comparison), also presents

several anionic amino acids (Figures 2C, 3B), but it is predicted to

have all of the three expected disulfide bridges and, therefore,

structural rigidity. Amblyomin-X’s KD presents just one residue

relevant to Ixolaris K2 interaction with FX/FXa structurally

conserved, Y94 (De Paula, et al., 2019), although located in a

patch of 4 identical residues. The comparison of Amblyomin-X’s

KD to Ixolaris K1 reveals, again, just a single residue, structurally

conserved, relevant to Ixolaris K1 interaction with FX/FXa, H57

(De Paula, et al., 2019), and major differences in the charge

distribution profile. As speculated for TAP, it is unlikely that

Amblyomin-X KD interacts with FXa the same way Ixolaris.

It is important to consider Amblyomin-X as a whole

molecule, presenting an additional C-terminal portion near

the size of its KD. Amblyomin-X’s C-terminal lacks homology

to proteins in public databases, and it is assumed that it is

potentially unstructured and possibly very flexible. Regarding

Amblyomin-X’s inhibitory features, the C-terminal can

potentially favor and/or modulate interactions in the whole

molecule, which can’t be assessed by analyzing just the

structured portion of the molecule. Additional experimental

approaches will be used in order to clarify the contribution of

the C-terminus to Amblyomin-X activities.

Hence, it is reasonable to assume that Amblyomin-X is a

peculiar molecule that carries a particular KD at the N-terminal

and a unique C-terminal. At the moment, the elements regarding

protease inhibition and antitumoral mechanisms of action are

still under investigation.

Amblyomin-X activity

Anticoagulant activity of amblyomin-X

Hematophagous animals contain several molecules with

inhibitory activity towards serine proteinases or coagulation

system complexes, in addition to vasodilators and platelet

aggregation inhibitors (Arcà and Ribeiro, 2018; Chudzinski-

Tavassi et al., 2018). These molecules help blood-sucking

animals overcome the host’s defense mechanism to keep

feeding on blood. Differences in blood-feeding behavior,

especially in ticks, are reflected in the composition of anti-

hemostatic toxins present in tick saliva. Soft ticks (family

Argasidae) are fast feeding (less than 1 h), whereas hard ticks

(family Ixodidae) feed for days or weeks, meaning they need

more toxins to control the host’s immune and hemostatic

systems (Šimo et al., 2017).

A. sculptum (former A. cajennense) is classified as a hard tick

and is one of the most studied because of its ability to transmit the

bacterium Rickettsia rickettsii, which causes the Brazilian spotted

fever (BSF), the most lethal rickettsiosis in Brazil (Szabó et al.,

2013). In addition, the saliva of this species yields many

components that affect animal hemostasis and the immune

system to ensure feeding for long periods (Chudzinski-Tavassi

et al., 2018). From a cDNA library of the salivary glands of A.

sculptum, several transcripts that interfere with the hemostatic

system were identified among the 1754 clones analyzed,

especially five types of serine protease inhibitors, reinforcing

their involvement in the blood-feeding process (Batista et al.,

2008, 2010; Jmel et al., 2021). Amblyomin-X has been identified

in the cDNA library of A. sculptum salivary glands (Batista et al.,

2010).

The recombinant Amblyomin-X was expressed in E. coli

BL21 (DE3) as a 13.5 kDa inhibitor composed of a single Kunitz-

type homologous domain in the N-terminal and a C-terminal

with no similarity to any protease inhibitor or other sequences

(Batista et al., 2010; Mesquita Pasqualoto et al., 2014). Like other

inhibitors from ticks, Amblyomin-X’s Kunitz-domain shares

structural similarity with TFPI, a physiological inhibitor of

activated coagulation FXa. TFPI inhibits the extrinsic tenase

complex formed by TF/active factor VII (FVIIa) through its

first Kunitz-domain and FXa through its second Kunitz-domain

(Chudzinski-Tavassi et al., 2016; Mann et al., 2019).

Amblyomin-X inhibited the hydrolytic activity of FXa, as

determined by a chromogenic assay using a synthetic substrate

for FXa. In addition, this inhibitor prolonged global blood

clotting times, including activated partial thromboplastin time

(APTT), prothrombin time (PT), and procoagulant activity

(PCA), in assays using human plasma (in vitro). In ex vivo

experiments, PT and APTT in Amblyomin-X-treated mice

were not altered at doses of 1 mg/Kg, although a higher

concentration of the inhibitor (2 mg/Kg) altered APTT

(Batista et al., 2010). Conversely, PT and APTT in

Amblyomin-X-treated rabbits were prolonged but reversibly

(Branco et al., 2016). Kinetic studies showed that Amblyomin-

X is a non-competitive FXa inhibitor, with a Ki of 3.9, and it is

also capable of inhibiting approximately 50% of the tenase and

prothrombinase complexes in in vitro assays, both at

concentrations of 3 µM. Furthermore, Amblyomin-X is a

substrate for plasmin and trypsin but not FXa and thrombin

(Branco et al., 2016).

Antitumor activity of amblyomin-X

Nowadays, it has been recognized that there is a mutual

association between cancer and blood coagulation disorder. TF,

the primary initiator of coagulation, is highly expressed in many
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types of malignancies (van den Berg et al., 2012). TF/FVIIa

complex acts into protease activated receptor 2 (PAR-2)

(Schaffner and Ruf, 2009), which in turn activates a number

of downstream signaling involved in the production of pro-

angiogenic factors, immune-modulatory cytokine and growth

factors that supports tumor cell migration andmetastasis (Unruh

and Horbinski, 2020). TF/FVIIa complex inhibitors, including

TFPI, possess opposing functions by reducing tumor

development and metastasis (Amirkhosravi et al., 2007; Bajou

et al., 2008; Fayard et al., 2009; Lavergne et al., 2013; Wang et al.,

2018). Studies have demonstrated that TFPIs exhibit

antiangiogenic and antimetastatic effects in vitro and in vivo

and described them as apoptosis inducers in tumor cells

(Amirkhosravi et al., 2007). TFPI-2 is downregulated in

aggressive cancers, such as breast cancer and glioma, and

recombinant therapy or overexpression of this protein reduces

tumor cell migration and invasion (Fayard et al., 2009; Lavergne

et al., 2013; Wang et al., 2018). The proposed mechanisms for

these effects against cancers are related to inhibiting

metalloproteinase activity, maintaining extracellular matrix

integrity, and impairing tumor invasion and angiogenesis in

vivo and in vitro (Izumi et al., 2000; Yanamandra et al., 2005;

Provençal et al., 2008; Ran et al., 2009).

Ixolaris and penthalaris from the tick Ixodes scapularis was

the first class of TFPI-like inhibitors from hematophagous

organisms. In contrast to TFPI, ixolaris and penthalaris do

not bind to the FXa active site (Francischetti et al., 2002;

Francischetti et al., 2004). These two inhibitors bind to FXa

and FX that serve as scaffolds for inhibition of the TF–FVIIa

complex (Francischetti et al., 2004; Monteiro et al., 2008). The

second class of inhibitors, Ascaris-type inhibitors, is represented

by the recombinant NAPc2 (Nematode Anticoagulant Peptide

c2) from the hookworm Ancylostoma caninum (Lee and Vlasuk,

2003; Koh and Kini, 2009). Although rNAPc2 and Ixolaris share

a similar anticoagulant mechanism in relation to scaffold

requirements for inhibition of TF/FVIIa complex, NAPc2 uses

a different exosite in FXa to inhibit TF-VIIa (Murakami et al.,

2007). In fact, NAPc2 blocks the active site of FVIIa, while

locking in FXa in a signaling active conformation on the

ternary TF-FVIIa-FXa complex (De Paula et al., 2019). It is

noteworthy that in contrast to FXa inhibitors, specific inhibitors

of the extrinsic tenase complex (active factor VII/tissue factor,

FVIIa–TF complex) are associated with anti-cancer and anti-

metastatic activities (Hembrough et al., 2003; Carneiro-Lobo

et al., 2009; Zhao et al., 2009). Ixolarix and NAPc2 have

demonstrated to be a potent anticancer agent (Carneiro-Lobo

et al., 2009; Zhao et al., 2009). Ixolaris was able to block tumor

growth of the human cell model through inhibition of direct

TF–FVIIa–PAR2 signaling as well as its anticoagulant activity

(Carneiro-Lobo et al., 2012). Amblyomin-X demonstrated to be

able to inhibit FX activation by FVIIa/TF tenase complex in a

concentration-dependent fashion (Morais et al., 2014). The

inhibitor could interact directly with the active site of the

enzyme or could sterically prevent access of the substrate to

the active site (Batista et al., 2008, 2010; Morais et al., 2014;

Branco et al., 2016). Experimental assays and in silico analysis

indicated that Amblyomin-X could be considered functionally

related to the TFPI-like inhibitors (Batista et al., 2008, 2010;

Morais et al., 2014; Branco et al., 2016).

Based on success studies of coagulation factor inhibitors from

hematophagous organisms in tumor cell lines (Tuszynski et al.,

1987; Hembrough et al., 2003) and due to Amblyomin-X’s

similarity with TFPI, a viability assay was performed with

several tumor cell lines to evaluate the antitumor activity of

this molecule. Amblyomin-X elicited cell death in several tumor

cell lines, especially in those derived from solid tumors (NPI -

PI0406057-1, Brazil, 14/09/2009), but could not induce death in

non-tumor cells (human dermal fibroblast: HDF, adult). Hence,

the selective antitumor activity of Amblyomin-X has been

explored in different cancer models.

In an in vitro assay using a human melanoma cell line (SK-

Mel-28) and primary fibroblasts, Amblyomin-X induced time-

and concentration-dependent death, cell cycle arrest, and

apoptosis only in tumor cells. Amblyomin-X did not affect

non-tumor cells, suggesting its selectivity for cancer cells.

Furthermore, in an in vivo assay, Amblyomin-X treatment

(1 mg/kg daily for 14 days) induced tumoral mass regression

and a considerable reduction in the percentage of internal

metastasis in murine melanomas generated with the

B16F10 cell line. Metastatic nodules in the lungs, kidneys, and

lymph nodes decreased by 60% in treated animals compared to

the metastatic lesions distributed in the internal organs of the

control group (Chudzinski-Tavassi et al., 2010). In addition, the

same tumoral mass regression results upon treatment with

Amblyomin-X were also observed in equine melanomas.

Horse melanomas are spontaneous, encapsulated, and usually

benign and are a suitable translational model. Amblyomin-X

(1 mg/kg of the tumor mass) was intratumorally injected every

three days for 28 days. The tumor volume evolution and clinical

animal conditions were monitored over five months. In all cases,

Amblyomin-X treatment reduced tumor volume by at least 75%

or even led to the complete disappearance of the tumor mass at

the end of the treatment period (Lichtenstein et al., 2020).

In addition to its cytotoxic activity, Amblyomin-X can

regulate cell adhesion and migration of human tumor cells

like TFPI and TFPI-2. However, unlike other Kunitz-type

inhibitors, such as TFPI and TFPI-2, Amblyomin-X showed

tumor cell specificity. Schmidt et al. demonstrated that

Amblyomin-X reduced the motility of melanoma cells Sk-

MEL-28 by simultaneously decreasing urokinase-type

plasminogen activator receptor (uPAR) and small GTPase

production and MMP-9 secretion, leading to disruption of the

actin cytoskeleton and reduced cell migration (Schmidt et al.,

2020). Another important function of Amblyomin-X in

controlling metastasis is its effect on normalizing the

hypercoagulable state. The hypercoagulable or prothrombotic
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state is a clinical disorder that increases the risk of excessive blood

clot formation due to an abnormality in the coagulation system

(Caine et al., 2002; Jiao et al., 2021). Cancer can confer a

hypercoagulable state and is associated with metastasis

progression and development (Caine et al., 2002; Jiao et al.,

2021). Ventura et al. compared the action of heparin, a potent

anticoagulant that inhibits intravascular arrest of cancer cells and

affects metastasis (Ventura et al., 2013), with Amblyomin-X in a

melanoma model to investigate the potential of the anticoagulant

Amblyomin-X as a therapeutic agent for cancer treatment. The

results demonstrated that Amblyomin-X, similar to the classic

anticoagulant heparin, can affect tumor progression, and this

effect was accompanied by changes in coagulation parameters

(ATPP and PT) that brought them back to normal levels

(Ventura et al., 2013). Amblyomin-X can decrease the

procoagulant released by murine melanoma cells. However,

unlike heparin, Amblyomin-X has a substantial pro-apoptotic

effect on tumor cells.

The selective cytotoxicity of Amblyomin-X has also been

described in other cancer models such as renal carcinoma

(Akagi et al., 2012; Maria et al., 2013; de Souza et al., 2016),

ependymoma (Pavon et al., 2019) and pancreatic

adenocarcinoma cell lines (Chudzinski-Tavassi et al., 2010;

Morais et al., 2016; Pacheco et al., 2016; Schmidt et al.,

2020). In the renal carcinomas model, Amblyomin-X

reduced the proliferation rate of renal carcinoma (RENCA)

cells, promoted cell cycle arrest, and induced apoptosis in a

dose-dependent manner. Amblyomin-X treatment causes an

imbalance between pro- and anti-apoptotic Bcl-2 family

proteins, dysfunction/mitochondrial damage, reactive oxygen

species (ROS) production, caspase cascade activation, and

proteasome inhibition (PI) and downregulates the expression

of crucial proteins (cyclin D1, Ki67, and P-glycoprotein (Pgp))

involved in the aggressiveness and resistance of renal carcinoma

(Akagi et al., 2012; Maria et al., 2013; de Souza et al., 2016).

Corroborating this finding, an in vivo assay in a mouse renal

orthotopic model demonstrated that Amblyomin-X treatment

significantly inhibited metastasis formation, and histological

analyses showed that Amblyomin-X cytotoxicity was restricted

to the tumor area, reinforcing the selective anti-tumor effect of

the in vivo treatment (de Souza et al., 2016); The same pattern

has been observed in primary cell and intracranial xenograft

models of pediatric anaplastic ependymomas (EPNs).

Amblyomin-X treatment induced a series of intracellular

events linked to cytotoxic effects, leading to tumor cell death

in EPN primary cells and was more significant than cisplatin. In

addition, the treatment did not decrease the viability of non-

tumoral cells (stem cells - hAFSCs), and their original

morphological characteristics were preserved. Likewise, the

in vivo results were consistent with those of previous studies.

The results demonstrated that after 21 days of daily treatment

with Amblyomin-X (1 mg/kg), the EPN xenograft model

displayed significant tumor mass regression compared to the

control (Pavon et al., 2019). In pancreatic adenocarcinoma, the

cytotoxic effects of Amblyomin-X have been observed in several

tumor cell lines, such as Mia-PaCa-2, Panc1, AsPC1, and

BxPC3 (Chudzinski-Tavassi et al., 2010; Morais et al., 2016;

Pacheco et al., 2016; Schmidt et al., 2020). However, a xenograft

still needs to be performed. These findings reinforce that

Amblyomin-X’s cytotoxicity seems restricted to tumor cells,

making this recombinant protein very attractive for anticancer

therapy.

Antiangiogenic activity of amblyomin-X

Due to its antitumor activity and structural similarity with

TFPI, the effects of Amblyomin-X on angiogenesis were also

explored. (Drewes et al., 2012). showed the inhibitory effect of

Amblyomin-X on vascular endothelial growth factor A (VEGF-

A)-induced angiogenesis. Topically applying Amblyomin-X

(10 ng/10 ml or 100 ng/10 ml) on mouse dorsal skin every

48 h simultaneously with VEGF-A treatment significantly

reduced VEGF-A-induced angiogenesis. In vitro experiments

have shown that Amblyomin-X treatment inhibits VEGF-A-

induced endothelial cell proliferation, delays the cell cycle, and

reduces cell adhesion and tube formation (Drewes et al., 2012).

Concerning the tube formation inhibition effect, this work

also showed that Amblyomin-X treatment reversed the VEGF-A-

induced increase in platelet endothelial cell adhesion molecule-1

(PECAM-1) expression in endothelial cells. PECAM-1

expression levels are important markers in endothelial cell-cell

junctions, indicating tube organization during new vessel

formation (Privratsky and Newman, 2014). The effect of

VEGF-A on PECAM-1 expression was dependent on gene

synthesis, as visualized by enhanced mRNA levels. On the

other hand, the inhibitory effect of Amblyomin-X was not

dependent on reduced PECAM-1 gene synthesis, because

mRNA levels were equivalent in VEGF-A-treated cells and

VEGF-A plus Amblyomin-X-treated cells.

Another study designed a set of in vivo and in vitro assays to

explore the molecular Amblyomin-X action mechanisms on

endothelial cell functions during angiogenesis. Using a dorsal

chamber model, this study showed that Amblyomin-X reduced

angiogenesis without any biological or chemical stimulation,

such as VEGF-A. Mice dorsal skin was topically treated with

Amblyomin-X (10 ng/10 ml, 100 ng/10 ml, or 1000 ng/10 ml).

The treatments were administered once a day, every two days, for

a total of three applications. The local angiogenic effects of

Amblyomin-X on dorsal subcutaneous tissue were measured

by intravital microscopy and PECAM-1 labeling. The data

obtained showed that topically applying Amblyomin-X

significantly reduced the number of vessels in the

subcutaneous tissue of mice compared to phosphate-buffered

saline (PBS) treatment, corroborating the results of a previous

study (Drewes et al., 2015).
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The authors also investigated the effects of proteins on

vascular permeability. Intradermally injecting Amblyomin-X

(10 ng/site, 100 ng/site, or 1000 ng/site) did not affect the

microvascular permeability measured by Evans blue

extravasation into the tissue. Furthermore, treating t-End

endothelial cells with Amblyomin-X (10 ng/ml, 100 ng/ml, or

1000 ng/ml) in vitro did not modulate vascular permeability

inducer levels, such as nitric oxide (NO) and prostaglandin E2

(PGE2). These results indicated that Amblyomin did not affect

vascular permeability or endothelial contractile mechanisms.

Moreover, the authors showed that Amblyomin-X (10 ng/ml

and 1000 ng/ml) treatments reduced cell migration and adhesion

in the Matrigel® matrix (10 and 1000 ng/ml) in vitro. Analysis of

tube formation showed that Amblyomin-X treatment (100 ng/

ml) reduced the organization of new vessels inMatrigel® in t-End
cells. Treatment with Amblyomin-X (100 ng/ml) reduced the

expression of adhesion molecules vascular cell adhesionmolecule

1 (VCAM-1) and β3 integrin, with no alterations in PECAM-1 or

β1 integrin expression levels.

Together, these findings highlight that Amblyomin-X has

antiangiogenic properties that directly reduce neo-vessel

formation and inhibit VEGF-A-induced angiogenesis.

Amblyomin-X reduces endothelial cell migration and tube

formation and modulates angiogenic adhesion molecules, such

as VCAM, integrins, and PECAM (induced by VEGF). The

molecular mechanisms underlying these effects and their roles

in antitumor activity need to be explored and clarified.

Biodistribution, pharmacokinetic, and
pre-clinical evaluations of
amblyomin-X

Amblyomin-X is a promising drug candidate for cancer

treatment because of its antitumor potential. Before human

clinical trials, new drug candidates must undergo preclinical

animal studies to predict drug behavior in patients and ensure

their safety profile (Zhang et al., 2011). Boufeur et al. evaluated

the biodistribution and pharmacokinetic properties of

Amblyomin-X upon administration in healthy female BALB/c

mice (Boufleur et al., 2019). The treatment was administered

intravenously because protein drugs can be hydrolyzed by

stomach enzymes if administered orally (Bruno et al., 2013).

Amblyomin-X was observed in the plasma 15 min after

injection and was detected for up to 60 min. However, it was

not detected in plasma samples collected 24 h after repeated daily

administration. The surface plasmon resonance assay showed

that Amblyomin-X could not bind to albumin, corroborating its

rapid clearance from plasma because albumin is the main protein

responsible for drug transportation in the blood (Smith et al.,

2010). In addition, Amblyomin-X was also identified in its

complete primary structure in the thymus, lungs, heart, liver,

kidneys, and spleen less than 1 h after injection, and it remained

detectable to a lesser extent in the liver, spleen, and kidneys after

24 h. These data suggest that Amblyomin-X is rapidly distributed

in tissues.

Since there were no signs of Amblyomin-X in the intestine,

protein excretion was only investigated in the urine, in which

peptides corresponding to Amblyomin-X fragments were

detected, suggesting that Amblyomin-X is excreted in the

urine. Together, these data showed that Amblyomin-X

exposure to total body organs was low and that the protein

was quickly eliminated from the body with a calculated AUC of

11,862 μg min ml−1. AUC values are expected to be higher in

humans because small animals possess higher metabolic rates

(Kuroda et al., 2008). Interestingly, the clearance profile is similar

to TFPI, a protein related to Amblyomin-X (Palmier et al., 1992).

Amblyomin-X was tagged with a fluorophore and injected

daily into healthy mice to evaluate in vivo protein accumulation.

Imaging showed that despite an initial accumulation in the

abdominal region, after 24 h, there was only a small quantity

of the labeled protein in the region, concentrated in the bladder,

indicating the complete elimination of the drug and no long-term

accumulation. Along with Boufeur et al.‘s findings, Souza et al.

found that animals with orthotopic kidney tumors presented a

persistent colocalization of Amblyomin-X within the tumor

stroma until three days after administration, demonstrating

that the drug has an affinity towards tumors and that the

presence of tumors can delay drug elimination from the body

(de Souza et al., 2016).

This affinity could be derived from the high expression of TF.

A number of cancer/stromal cells are known to highly express

tissue factor and microvesicles contain active-TF, having an

impact in cancer progression and increasing the risk of

venous thromboembolism (Owens and Mackman, 2011; van

den Berg et al., 2012; Unruh and Horbinski, 2020). Some

basic studies propose the use of positron emission

tomography (PET) and/or near-infrared photo-

immunotherapy (NIR-PIT) in cancer imaging and therapy

(Luo et al., 2017; Aung et al., 2018). The treatment of TF-

expressing BxPC-3 cells, in vitro or in vivo, using anti-TF

antibody conjugated with indocyanine green (ICG), followed

by near-infrared photoimmunotherapy (NIR-PIT) of tumor lead

to the death of cancer cells (Aung et al., 2018). This approach was

also applied using Ixolaris, a specific TF inhibitor from Ixodes

scapularis (Francischetti et al., 2002), in an orthotopic

glioblastoma (GBM) model in mice treated with a

technetium-99 (99mTc) radiolabeled-Ixolaris (Barboza et al.,

2015). The authors proposed 99mTc-ixolaris as a

radiopharmaceutical agent for TF-expressing cancers. It is

plausible that the Amblyomin-X accumulation in tumors in

vivo models is due to the affinity for TF, considering the

structural similarity of Amblyomin-X with TFPI, which

inhibits the extrinsic tenase complex formed by TF/active

factor VII (FVIIa) through its first Kunitz-domain

(Chudzinski-Tavassi et al., 2016; Mann et al., 2019).
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With its biodistribution and pharmacokinetics well

established, Durvanei and collaborators carried out a

preclinical study to evaluate Amblyomin-X toxicity in healthy

mice treated with different acute and subacute doses (Maria et al.,

2018), following the guidelines from the Brazilian Regulatory

Agency (ANVISA, 2013). Doses were defined based on our

previous study (de Souza et al., 2016). After intravenous

treatment, they evaluated general animal behavior, bodyweight

variation, water and food consumption, mortality, and

biochemical, hematological, and histopathological parameters.

Since concentrations higher than 256 mg/kg led to acute

toxicity with high mortality rates (>50%) after 24 h, the lethal

dose (LD50) was not determined. While there were no deaths in

the acute dose group treated with a dose range of 0.25 mg/kg to

256 mg/kg, doses higher than 64 mg/kg promoted alterations in

motor and sensorial signals that lasted until day six after

treatment. Animals in the subacute dose group treated with

1 mg/kg of Amblyomin-X also showed motor alterations that

disappeared after treatment (Maria et al., 2018). Compared to

bortezomib, a commercial proteasome inhibitor drug approved

by the Food and Drug Administration (FDA) for treating

multiple cancers (de Bettignies and Coux, 2010), Amblyomin-

X showed lower toxicity (Richardson et al., 2005; Rosiñol et al.,

2005), with most adverse effects being reversible (Maria et al.,

2018).

None of the groups showed any irreversible body mass loss.

Despite a slight decrease in platelets and leukocytes in the acute

dose group after 24 h of treatment, which was reversed after day

14, there were no alterations in blood cell morphology,

coagulation, or PT in either group. Alterations in platelet and

leukocyte counts observed at the acute dose were also observed

upon bortezomib treatment (Lonial et al., 2008; Satoh et al.,

2011). While Amblyomin-X treatment did not alter urea,

creatinine, aspartate aminotransferase (AST), and alanine

transaminase (ALT) levels, altered hepatic enzyme levels were

observed with bortezomib treatment (Rosiñol et al., 2005),

demonstrating the superior safety profile of Amblyomin-X.

Finally, histological analysis of the internal organs (kidneys,

liver and spleen) showed no alterations upon Amblyomin-X

treatment, except with the 256 mg/kg dose after 24 h of

treatment, which was reversed after 14 days. These results

enabled the determination of the maximum tolerable dose and

the dose with no observed adverse effects, 16 mg/kg and

0.57 mg/kg, respectively, showing that Amblyomin-X is a

promising drug with low toxicity and reversible side effects

(Maria et al., 2018).

Molecular mechanisms of
amblyomin-X in tumor cells

In 2010, Chudzinski-Tavassi et al. conducted one of the first

studies to explore the molecular mechanism by which

Amblyomin-X drives tumor cell death. In this study,

microarray analysis showed that 24 genes were modulated in

human melanoma (SK-MEL-28) and human pancreatic

adenocarcinoma (Mia-PaCa-2) cells after treatment with

Amblyomin-X. Among these genes, the most upregulated

was dynein cytoplasmic 1 light intermediate chain 2

(DYNC1LIC2), followed by proteasome beta-type subunit 2

(PSMB2) (Chudzinski-Tavassi et al., 2010). Amblyomin-X

inhibits the proteasome, preferentially impending

proteasomal trypsin-like activity (Chudzinski-Tavassi et al.,

2010; Maria et al., 2013; Pacheco et al., 2016, 2014).

Amblyomin-X-mediated PI and the increased

polyubiquitinated protein pool were observed only in tumor

cells, reinforcing the hypothesis that it might present tumor-

cell-specificity in vitro and likely in vivo.

Proteasomes are multimeric proteolytic complexes

responsible for degrading ubiquitinated proteins (Tanaka,

2009; Qu et al., 2021). Correct proteasome-mediated

proteolysis is essential for activating or inhibiting cell

signaling pathways involved in several cellular processes,

including the cell cycle and apoptosis (Manasanch and

Orlowski, 2017). The modulation of proteasome activity with

specific inhibitors has emerged as a powerful strategy for cancer

treatment (Manasanch and Orlowski, 2017). For instance, two

proteasome inhibitors, bortezomib and carfilzomib (Crawford

et al., 2011; Ruschak et al., 2011), have been approved by the FDA

of the United States of America (United States) for treating

refractory multiple myeloma, while several others are being

clinically trailed (de Bettignies and Coux, 2010).

Normally PI leads to the accumulation of protein aggregates

in dynamic vesicles and aggresomes (Murphy, 2009), which

activates the autophagy response to eliminate high molecular

protein content. Dynein, a molecular motor that transports

cellular components, is crucial in eliminating cytotoxic

aggresomes after PI (Murphy, 2009). As mentioned above,

Amblyomin-X positively modulates gene and protein

expression of distinct dynein subunits (Chudzinski-Tavassi

et al., 2010; Pacheco et al., 2014). In contrast to other known

proteasome inhibitors, which require dynein only for aggresome

and autophagic component transport (Kubiczkova et al., 2014),

Amblyomin-X depends on a specialized uptake mechanism

assisted by dynein for its inhibitory proteasome activity

(Pacheco et al., 2016). Pacheco et al. demonstrated that

cholesterol, phosphoinositide-3 kinase, and dynein are

essential for Amblyomin-X internalization and transportation

in tumor cells (Pacheco et al., 2016). Amblyomin-X action in

tumor cells was abolished in cells pretreated with ciliobrevin, a

small-molecule inhibitor of dynein ATPase activity and the

Hedgehog pathway. In addition, the authors reported that

Amblyomin-X not only interacted with dynein but also

induced Rab11A overexpression and its colocalization with

the light-intermediate chain 2 (LIC2) of dynein. Rab11A

belongs to the Rab family of the small GTPase superfamily
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and is involved in recycling endosome trafficking via interaction

with the LIC2 of dynein (Horgan and McCaffrey, 2009).

Amblyomin-X was found in the perinuclear region where the

endocytic recycling compartment was present, suggesting that

recycling endosomes could be an Amblyomin-X intracellular

destination in tumor cells (Pacheco et al., 2016). Moreover, when

Pacheco et al. investigated dynein’s role in the proteasome-

aggresome-autophagy pathway mediated by Amblyomin-X,

they observed that the recombinant protein could induce

aggresome formation via the non-exclusive ubiquitin pathway,

and surprisingly, autophagy did not clear the aggresomes. In

contrast to the available proteasome inhibitors, the presence of

Amblyomin-X inhibited the autophagic response through

mammalian target of rapamycin (mTOR) activation assisted

by dynein transportation (Pacheco et al., 2016, 2014) (Figure 4).

Since PI results in the accumulation and aggregation of

misfolded proteins, which can disturb homeostasis and lead to

endoplasmic reticulum (ER) stress-related cell death (Ding et al.,

2007; Deniaud et al., 2008; Hammadi et al., 2013; Cao and

Kaufman, 2014), the effect of Amblyomin-X on ER stress was

also evaluated. In RENCA cells, Amblyomin-X increased ER

stress marker (GRP78 and GADD153) expression levels and

altered [Ca2+] influx. Amblyomin-X can also induce

mitochondrial dysfunction, marked by changes in its

membrane potential and release of cytochrome c, provoking

caspase-3 activation, ROS production, an imbalance between

pro- and anti-apoptotic Bcl-2 family proteins, and tumor cell

death via apoptosis (Maria et al., 2013). The same mechanisms of

action for Amblyomin have been reported in human melanoma

(SK-MEL-28) and pancreatic adenocarcinoma (Mia- PaCa-2)

tumor cells. Amblyomin-X promoted pro-apoptotic effects

associated with PI and ER stress, even in bortezomib-resistant

(Mia-PaCa-2) tumor cells. Amblyomin-X inhibited proteasome

function, ER stress, mobilization of (Ca2+), mitochondrial

dysfunction, poly adenosine diphosphate-ribose polymerase

(PARP) cleavage, and caspase-3 activation in tumor cells.

Interestingly, few or no changes were observed in the normal

human and mouse fibroblasts. Amblyomin-X did not induce PI,

ER stress, or ROS production in fibroblasts, highlighting the

selectivity of this molecule for tumor cells (Maria et al., 2013;

Morais et al., 2016). Non-tumoral cell line (human dermal

fibroblast: HDF, adult) cannot internalize Amblyomin-X,

which requires a specialized uptake mechanism that seems to

be restricted to tumor cells (Pacheco et al., 2016). The

mechanisms governing tumor cell selectivity and

internalization of Amblyomin-X are not completely

understood and are still under investigation. One proposed

hypothesis is that Amblyomin-X could present an affinity for

exposed phosphatidylserine (PS) on the outer plasma membrane.

PS is a negatively charged aminophospholipid that in healthy

cells is normally found in the inner leaflet of plasma membrane

(Yeung et al., 2008; Kay and Grinstein, 2011). In general, PS is

exposed on the outer leaflet as a signal for phagocytosis in

apoptotic cells (Fadok et al., 2000; Hoffmann et al., 2001) and

also acts in processes such as myoblast fusion (van den Eijnde

et al., 2001; Tsuchiya et al., 2018), immune regulation of non-

apoptotic cells (Elliott et al., 2005; Fischer et al., 2006; Shlomovitz

et al., 2019) and blood coagulation (Wang et al., 2022). In

contrast, PS is often expressed at high levels on the outer

leaflet of plasma membranes of viable cancer cells (Riedl

et al., 2011; Chang et al., 2020). Preliminary findings by

differential scanning calorimetry indicated that Amblyomin-X

presents a preference for phosphatidylserine rather than

phosphatidylcholine (date unpublished). Ongoing

investigations will likely provide valuable information

regarding the aspects involved in the tumor cell selectivity.

Microenvironment andmodulation of
the immune response

Amblyomin-X is a protein that selectively leads to cell death

by inducing ER stress, caspase activation, mitochondrial

dysfunction, and PI in tumor cells (Chudzinski-Tavassi et al.,

2010; Akagi et al., 2012; de Souza et al., 2016; Morais et al., 2016).

A recent study showed that this molecule could significantly

reduce melanoma progression in horses (Lichtenstein et al.,

2020). Mutations in driver genes cause malignant

transformations. Horse melanomas are spontaneous and

usually benign tumors, and a 4.6 kb duplication in intron 6 of

STX17 (syntaxin-17) causes the tumor phenotype, which

constitutes a cis-acting regulatory mutation (Rosengren

Pielberg et al., 2008). Mutated genes in human melanomas are

BRAF and NRAS, as well as the newly discovered PPP6C, RAC1,

SNX31, TACC1, STK19, and ARID2 (Hodis et al., 2012).

Although horse melanomas have a different natural history

and many anatomical differences to human melanomas, they

are a suitable translational model (van der Weyden et al., 2016).

In vivo treatment of encapsulated horse melanomas via

intratumoral Amblyomin-X injections significantly reduced

tumor size (Lichtenstein et al., 2020). Histological analysis

revealed regression areas represented by the absence of

atypical melanocytes in tumors treated with Amblyomin-X

(Lichtenstein et al., 2020). Since melanomas are immunogenic

tumors, the data analysis mapping and count resulted in

13,138 transcripts of valid gene symbols for horses and

13,943 for humans. For horse transcripts, 546 differentially

expressed genes (DEGs) were identified for 6 h × 0 h and

259 DEGs for 12 h × 0 h, as modulated by Amblyomin-X and

their respective cellular pathways (Lichtenstein et al., 2020).

Enrichment analysis identified 196 and 67 pathways for 6 h ×

0 h and 12 h × 0 h, respectively.

MetaCore analyses showed that the “immune system” was

the class with the most enriched pathways, followed by the

“innate immune system,” “inflammation,” “cancer,” and

“adhesion/ECM/cytoskeleton” (Lichtenstein et al., 2020).

Frontiers in Molecular Biosciences frontiersin.org11

Lobba et al. 10.3389/fmolb.2022.936107

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.936107


Similar responses were found for 6 h × 0 h and 12 h × 0 h,

including the “immune system”. Therefore, pathway classes were

divided into three main groups: first response (ER stress and

immune system), confounding factors, and secondary responses

(Lichtenstein et al., 2020). For the immune system, some very

important responses related to the innate immune system have

been identified, such as the Toll-like receptor (TLR) signaling

pathway, retinoic acid-inducible gene I (RIG-I)-like receptors

(RLR), and oncostatin-M pathways. Besides this, apoptosis and

cell death were inferred due to the enriched “ER stress” and

“Apo-2L (TNFSF10)-induced apoptosis in melanoma” pathways

(Lichtenstein et al., 2020).

According to Lichtenstein et al. (Lichtenstein et al., 2020),

in silico crosstalk simulation between pathways identified five

different possible crosstalks: “adhesion-ECM-cytoskeleton

versus remodeling versus stress,” “immune cell death versus

apoptosis versus ER-chaperone-Golgi,” “cancer versus

complement versus inflammation,” “innate immune system

versus apoptosis versus autophagy,” and “angiogenesis-

vascular versus hypoxia versus stress”. Amblyomin-X also

modulates important crosstalk between the innate immune

system and apoptosis versus autophagy (Lichtenstein et al.,

2020). It is possible to identify strong interactions between

genes related to different biological functions, as genes

participate simultaneously in various roles (Lichtenstein et al.,

2020). In summary, the transcriptomic analysis showed that

Amblyomin-X modulates several pathways, such as

cytoskeleton remodeling, ER and mitochondrial dysfunction,

tumor cell death, and the immune microenvironment

(Lichtenstein et al., 2020).

Cellular interaction partners of Amblyomin-X were identified

by interactome analysis, which showed that it potentially interacts

with key transcriptomic elements (Lichtenstein et al., 2020). The

equine melanoma cellular interactomics profile for Amblyomin-X

was obtained by co-precipitation and showed multiple potentially

interacting proteins in the eluent fraction that bound to

immobilized Amblyomin-X. The partner proteins found are

related to biological effects previously reported in Amblyomin-

X studies, such as apoptosis, mitochondrial stress, cell cycle

regulation, and proliferation (Chudzinski-Tavassi et al., 2010;

Akagi et al., 2012; de Souza et al., 2016; Morais et al., 2016).

This experimental approach using interactomics also identified

immunogenic proteins, such as Toll-like receptor 2 (TLR2) and

T-cell surface antigen CD2 (CD2), as possible Amblyomin-X

interaction partners (Lichtenstein et al., 2020). Immunogenic

cell death (ICD) constitutes a crucial pathway for activating the

immune system against tumor progression, which determines the

long-term success of anticancer therapies (Kroemer et al., 2013).

Overall, these results suggest that Amblyomin-X can

simultaneously orchestrate different pathways in a melanoma

tumor model (Lichtenstein et al., 2020) by modulating the

tumor immune microenvironment in different ways, leading to

apoptosis and possibly ICD activation (Lichtenstein et al., 2020).

Conclusion

Amblyomin-X is a recombinant protein derived from a cDNA

library prepared from the salivary gland of the tick Amblyomma

sculptum, which displays anticoagulant, antiangiogenic, and

antitumor properties. Amblyomin-X presents a Kunitz-type

domain that shares ~40% similarity with the Kunitz domains of

endogenous TFPI and Ixolaris, a well-known FXa inhibitor from

Ixodes scapularis. Amblyomin-X’s cytotoxic activity in tumor cells

and its ability to reduce tumor growth and metastasis in in vivo

models has led to the vast exploration of its functions, action

mechanisms, structures, pharmacokinetics, and biodistribution.

Amblyomin-X drives tumor cell death via PI and appears to

play a role in the tumor microenvironment by activating the

immune system against tumor progression. A remarkable feature

of this recombinant protein is that it seems to be restricted to tumor

cells and does not affect non-tumorigenic cells, tissues, and organs,

making it an attractive molecule for anticancer therapy, where the

challenge is not only to suppress tumor growth but also to decrease

treatment side effects. Therefore, considering the current efforts to

develop effective anticancer therapies, Amblyomin-X could be a

promising new antitumor drug candidate.
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