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This article schematically reviews the clinical features, diagnostic approaches to, and toxicological implications of toxic encepha-
lopathy. The review will focus on the most significant occupational causes of toxic encephalopathy. Chronic toxic encephalopathy, 
cerebellar syndrome, parkinsonism, and vascular encephalopathy are commonly encountered clinical syndromes of toxic en-
cephalopathy. Few neurotoxins cause patients to present with pathognomonic neurological syndromes. The symptoms and signs 
of toxic encephalopathy may be mimicked by many psychiatric, metabolic, inflammatory, neoplastic, and degenerative diseases 
of the nervous system. Thus, the importance of good history-taking that considers exposure and a comprehensive neurological 
examination cannot be overemphasized in the diagnosis of toxic encephalopathy. Neuropsychological testing and neuroimaging 
typically play ancillary roles. The recognition of toxic encephalopathy is important because the correct diagnosis of occupational 
disease can prevent others (e.g., workers at the same worksite) from further harm by reducing their exposure to the toxin, and 
also often provides some indication of prognosis. Physicians must therefore be aware of the typical signs and symptoms of toxic 
encephalopathy, and close collaborations between neurologists and occupational physicians are needed to determine whether 
neurological disorders are related to occupational neurotoxin exposure.
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Introduction

Chemicals capable of  damaging the central nervous system 

(CNS) are ubiquitous in the environment, particularly in oc-

cupational settings. Industrial processes are major sources of 

some of  the most well-known neurotoxins. According to the 

United States Environmental Protection Agency, more than 

65,000 commercial chemicals are currently used in the US, 

and 2,000-3,000 new chemicals are added to this list each year 

[1]. We do not know how many neurotoxic chemicals are used 

in industry at present, but an unadventurous estimate might 

suggest more than 1,000 [2]. People may be exposed to these 

neurotoxins due to their occupations, or occasionally at home 

or through other inadvertent mechanisms. 

The CNS is protected from toxic exposure to some extent, 

but it remains vulnerable to the effects of  certain chemicals 

found in the environment. Nonpolar, lipid-soluble substances 

(e.g., organic solvents) gain the easiest access to the CNS, 

where neurons are particularly susceptible due to their high 

lipid contents and metabolic rates. Both gray matter and white 

matter can be easily damaged by lipophilic toxins [3].

The term “toxic encephalopathy” is used to indicate brain 

dysfunction caused by toxic exposure [4]. Toxic encephalopa-

thy includes a spectrum of symptomatology ranging from sub-

clinical deficits to overt clinical disorders. The clinical manifes-

tations of toxic encephalopathy are related to the affected brain 

regions and cell types [4]. This article schematically reviews the 

clinical features, diagnostic approaches to, and toxicological 

implications of  toxic encephalopathy. The review focuses on 

the most significant occupational causes of toxic encephalopa-
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thy, but does not address iatrogenic (pharmaceutical) causes or 

the neurotoxic effects of illicit recreational drugs or alcohol.

Basic Principles of Neurotoxicology

Several basic principles of neurotoxicology are particularly rel-

evant to the understanding of toxic encephalopathy [5,6]. 

First, there is a dose-response relationship in the majority 

of toxic encephalopathies. That is, the higher the level of expo-

sure, the more severe the symptoms. Similarly, the greater the 

duration of exposure, the higher the likelihood of irreversible 

symptoms. In general, neurological symptoms appear only af-

ter the cumulative exposure has reached a threshold. Individual 

susceptibility varies over a limited range, and idiosyncratic reac-

tions seldom occur.

Second, toxic encephalopathy typically manifests as a 

nonfocal or symmetrical neurological syndrome. The presence 

of significant asymmetry, such as weakness or sensory loss of 

only one limb or on only one side of the body should suggest 

an alternate cause. This principle is very useful when evaluat-

ing a patient with a presumed neurotoxic injury. However, 

electrolyte, glucose, and cortisol levels, liver function and renal 

function tests should be used to distinguish toxic encephalopa-

thy from metabolic encephalopathy, which also presents sym-

metrical signs.

Third, there is usually a strong temporal relationship 

between exposure and symptom onset. After acute exposure, 

the immediate symptoms are often a consequence of the physi-

ological effects of the chemical. Maximum symptoms generally 

occur with maximum exposure, and little delay in onset is seen. 

These symptoms typically subside when the chemical is elimi-

nated from the body. However, delayed or persistent neurologi-

cal deficits sometimes occur after toxic exposure. 

Fourth, the nervous system has a limited capability to re-

generate compared to other organs, such as the liver or hemato-

poietic system. Thus, more sequelae persist after the removal of 

a neurotoxic agent, compared to toxic diseases of other organs.

Fifth, multiple neurological syndromes may occur in re-

sponse to a single neurotoxin, depending on the level and dura-

tion of the exposure. For example, acute, high-level exposure to 

carbon disulfide produces psychosis, whereas chronic moderate 

exposure causes atherosclerosis-related health effects [7,8]. 

Sixth, clinical disorders of  the CNS have varying pre-

sentations, often involving a host of  nonspecific symptoms. 

Furthermore, few neurotoxins cause patients to present with 

a pathognomonic neurological syndrome. The symptoms and 

signs of neurotoxin exposure may be mimicked by various psy-

chiatric, metabolic, inflammatory, neoplastic and degenerative 

diseases of  the nervous system [9]. Therefore, it is crucial to 

take a good occupational history and perform a detailed neuro-

logical examination when diagnosing a toxic encephalopathy.

Seventh, asymptomatic toxic encephalopathy may be seen 

in occupational or environmental settings [10]. Neuropsycho-

logical studies have shown that workers in paint manufacturing 

or painting facilities often have subclinical neuropsychological 

deficits [4,11], and recent studies have revealed that asymptom-

atic toxic encephalopathies are a very common phenomenon 

[4]. Subclinical deficits usually recover after the exposure ceas-

es, whereas clinical disorders usually do not recover. 

Eighth, the timing of exposure relative to critical periods 

of  CNS development may explain some of  the variations in 

susceptibility. The many discrete neuronal populations and 

interacting systems of the nervous system develop at variable 

rates throughout the first three decades of life. Toxic exposures 

may exert profound effects when the organism is in a particu-

larly vulnerable stage, resulting in problems that would not 

occur in response to exposures at other stages of life. The most 

prominent example of this phenomenon is the susceptibility of 

infants to lead encephalopathy [12].

Finally, neurotoxins may reduce the functional reserves 

of  the brain, potentially making the cells more vulnerable to 

the effects of aging and leading to accelerated senescence. This 

may explain the observation that in some cases deterioration 

may continue for many years, even after exposure has ceased.

Clinical Syndromes of Toxic 
Encephalopathy

The major clinical syndromes of toxic encephalopathy include 

diffuse acute or chronic toxic encephalopathy, cerebellar syn-

drome, parkinsonism, and vascular encephalopathy [4,13]. 

Various neurotoxins, including heavy metals, organic solvents 

and other chemicals, have been found to be responsible for 

these relatively specific neurological syndromes [8,9].

Acute diffuse toxic encephalopathy
Acute diffuse toxic encephalopathy reflects a global cerebral 

dysfunction of rapid onset (typically days or weeks), and may 

be associated with alterations in the level of consciousness. The 

neurotoxins that produce acute encephalopathy interfere with 

basic cell functions in the brain [4]. Most of these agents gain 

entry because they are highly lipid soluble and can readily dif-

fuse across membranes. The causative agents include organic 

solvents, which can alter cellular membrane function, and some 

gases (e.g., gas anesthetics, carbon monoxide, hydrogen sulfide, 

and cyanide), which can diffusely affect brain function. Heavy 
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metals can also cause acute encephalopathies; this is more 

commonly associated with organic metals (e.g., methyl mer-

cury, tetraethyl lead and organic tin) than with inorganic metals 

(e.g., mercury, lead and tin) [4]. Virtually any organic solvent 

has the potential to produce acute diffuse toxic encephalopathy, 

the clinical manifestations of which depend on the neurotoxin 

and the intensity of  exposure, and can range from mild eu-

phoria with a normal examination, to stupor, seizure, coma, 

and even death. In general, the greater the exposure, the more 

severe the impairment of cerebral function and consciousness. 

The cerebral cortex is more sensitive to these toxins than is the 

brainstem: even when consciousness is lost, brainstem function 

typically remains intact. Diagnosis does not generally present 

a challenge for acute syndromes, because the exposure and 

clinical manifestations are likely to be closely linked in time. 

In patients with severe acute toxic encephalopathy, magnetic 

resonance imaging (MRI) of the brain may show focal areas, 

most commonly bilateral basal ganglia, or diffuse areas of 

edema [14-16]. The treatment of diffuse acute encephalopathy 

is primarily supportive, starting with removal of the exposure 

source. For most of  the neurotoxins that act diffusely on the 

brain, recovery from acute exposure is complete [4].

Chronic toxic encephalopathy (CTE)
CTE usually represents a chronic persistent diffuse injury to the 

brain resulting from cumulative or repeated exposures (often 

over a period of months or years), to solvents or (occasionally) 

heavy metals. The clinical manifestations of  CTE usually in-

volve varying degrees of cognitive impairment [4].

CTE is an established, internationally recognized condi-

tion that results from excessive occupational exposure to sol-

vents via inhalation or skin contact. In 1985, the World Health 

Organization (WHO) published diagnostic criteria for CTE 

caused by exposure to solvents [11,17]. The most recent Inter-

national Classification of Diseases document (no. 10) defines 

CTE [18], and the Diagnostic and Statistical Manual for Men-

tal Disorders, Fourth Edition [19] lists the condition as a form 

of substance-induced persistent dementia.

The severity of CTE is graded as I-III or 1, 2A, 2B, and 3 

[11,17]. Type I CTE and types 1 and 2A CTE include subjec-

tive symptoms relating to memory, concentration, and mood. 

At this stage, clinicians may miss the diagnosis by considering 

these symptoms as a psychiatric issue due to altered mood 

[4]. Type II CTE and type 2B CTE are characterized by ob-

jective evidence of  attention and memory deficits, decreased 

psychomotor function [11], and/or learning deficits [17] on 

neurobehavioral testing. The taking of  detailed occupational 

and medical histories, as well as standardized neurobehavioral 

testing, are the cornerstones of the standard diagnostic process. 

Workers with a history of repeated episodes indicative of acute 

solvent intoxication (e.g., light-headedness, dizziness, headache 

and nausea) over a period of many years; a history of insidious 

onset of attention, memory, and mood problems; and objective 

evidence of impairment on standardized neurobehavioral tests 

(i.e., deficits in attention, memory, learning and/or psychomo-

tor function) should be considered as meeting the diagnostic 

criteria for type II CTE or type 2B CTE. Type III CTE and 

type 3 CTE are often accompanied by neurological deficits and 

neuroradiological findings. This type of CTE often manifests 

clinical features, whereas types I and II show subclinical defi-

cits. The MRI findings in patients with CTE are nonspecific, al-

though there may be slight brain atrophy; MRI findings mainly 

support the differential diagnosis of  CTE by ruling out other 

brain diseases. Thus, non-solvent etiologies should be consid-

ered if  there are major findings on the brain MRI of a patient 

with suspected CTE [20]. Most cases of  CTE are of  type II 

or 2B [21]. The Finnish criteria for CTE usually includes the 

criterion of more than ten years of daily exposure at work [22]. 

Follow-up is also important in diagnosing patients with CTE. 

Subtle changes in mental functioning due to intoxication often 

go unrecognized unless the clinician specifically assesses these 

changes using sophisticated neuropsychological tests [8].

The high index of  suspicion gives clues to diagnosis of 

CTE. The diagnosis of CTE requires a careful clinical assess-

ment that 1) establishes that there is evidence for abnormality, 

mainly on neuropsychological testing; 2) determines that there 

is good evidence of a relationship to exposure to a potentially 

hazardous neurotoxin; and 3) excludes any other underlying 

causes. Specific therapies for CTE are limited. The patient 

should be separated from the neurotoxic exposure as soon as 

possible. Once the toxin has been removed, the reversibility of 

the brain damage will depend on the grade of CTE [4,23].

The important question of  whether CTE can progress 

to the development of  dementia has not yet been answered. 

Increasing evidence suggests that most forms of degenerative 

dementia have a multi-factorial cause involving genetic, biologi-

cal, and chemical factors [13]. Further studies are needed to 

clarify the issue.

Cerebellar syndromes
Gait ataxia, dysarthria, intention tremor, gaze-evoked nys-

tagmus, dysmetria and adiadochokinesia can all result from 

cerebellar dysfunction [13]. Neurotoxin-induced cerebellar syn-

drome, which is a clinical entity that can be differentiated from 

solvent-induced CTE or carbon-disulfide-induced vascular 

encephalopathy [13], is sometimes accompanied by other neu-
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rological findings. If  a patient presents with cerebellar dysfunc-

tion, a detailed history of his or her occupation and neurotoxin 

exposure should be obtained.

Methyl mercury intoxication (Minamata disease) 
Methyl mercury intoxication, known as Minamata disease, 

causes damage to the granule cell layer in the cerebellum, bilat-

eral diffuse cerebellar atrophy, and microscopically diffuse loss 

of the granule cell layer in the cerebellar cortex [24]. The major 

clinical features of  the disease include progressive cerebellar 

ataxia and disturbance of the sensory functions of the cerebral 

cortex. Cerebellar ataxia manifests as gait ataxia, dysarthria, in-

tention tremor, gaze nystagmus, dysmetria and dysdiadochoki-

nesia. In addition, injuries to the somatosensory, visual, audito-

ry or olfactory cortexes of the cerebrum can manifest as visual 

impairment, hearing impairment, olfactory problems, gusta-

tory disturbance and cerebral cortex-related somatosensory 

disturbances [24]. Concentric constrictions of the visual fields 

are characteristic findings due to damage to the calcarine cor-

tex [13]. In Minamata disease, atrophy of the visual calcarine 

cortex and the cerebellum has been demonstrated on computed 

tomography (CT) and MRI [25-27], and significantly decreased 

blood flow has been shown in the cerebellum on single-photon 

emission computed tomography (SPECT) [27]. Fetal Minama-

ta disease is a typical congenital toxic encephalopathy. Serious 

disturbances in mental and motor development are observed 

in all cases of  fetal Minamata disease. Affected individuals 

show significant bilateral impairments in chewing, swallowing, 

speech, gait, other coordination and involuntary movement 

such as dystonia. These symptoms have been associated with 

the brain damage that is typical of Minamata disease [28].

Methyl bromide intoxication
Methyl bromide is a highly toxic gas that is used widely as an 

insecticidal fumigant for dry foodstuffs. It can be toxic to both 

the CNS and the peripheral nervous system [29,30]. Most neu-

rological manifestations of methyl bromide intoxication occur 

as a result of inhalation. Chronic exposure can cause peripheral 

polyneuropathy, optic neuropathy and cerebellar dysfunction, 

sometimes with neuropsychiatric disturbances [29,30]. Typi-

cally, occupational history is vital to the diagnosis of bromide 

intoxication.

Organic tin intoxication
Organic tins, such as the dimethyl and trimethyl compounds, 

are widely used as polyvinyl-chloride stabilizers, catalysts and 

biocides [31]. Selective cerebellar dysfunction is most promi-

nent upon recovery from coma due to acute severe organic tin 

intoxication [31]. It is easy to diagnose acute organic tin intoxi-

cation in patients whose work history and circumstances of ex-

posure are known, and whose signs and symptoms are typical 

and consistent with those reported in the literature. 

A fluid attenuated inversion recovery (FLAIR) MRI taken 

15 days after an acute organic tin intoxication showed extensive 

symmetrical high-signal lesions throughout the white matter 

of the brain, indicating diffuse brain edema [15]. In a follow-

up study three years after an acute organic tin poisoning case, 

brain MRI showed cerebellar atrophy and 18F-fluorodeoxyglu-

cose positron emission tomography (PET)/CT revealed mildly 

decreased metabolic activity in the pons and in both cerebellar 

hemispheres [31].

Parkinsonism
Manganese intoxication (manganism)
Manganism is one of the most typical forms of parkinsonism. 

Chronic excessive exposure to manganese (Mn) can affect the 

globus pallidus, resulting in parkinsonian signs and symptoms, 

sometimes along with psychiatric features called locura man-

ganica or Mn madness. Historically, miners developed psycho-

sis due to exposure to Mn at levels of  up to several hundred 

milligrams per cubic meter [32]. 

The clinical course of  manganism can be divided into 

three stages: at the first stage, patients with manganism usually 

have prodromal neuropsychiatric symptoms such as asthenia, 

apathy, somnolence, irritability, emotional lability, or frank 

psychoses. At the second stage, bradykinetic-rigid parkinsonian 

syndrome with dystonia, which is reversible, presents as the 

main clinical feature [4]. Patients in the last stage are notable 

for aggravation of the signs and symptoms described as above. 

The clinical progression has been found to be irreversible and 

persistent after the cessation of  exposure in some cases [33]. 

Early diagnosis of manganism is therefore important.

The mechanism underlying this response to Mn exposure 

is not yet clear, but it has been suggested that an initial insult 

to the globus pallidus during Mn neurotoxicity can result in in-

creased activity in the subthalamic nucleus, which is normally 

under tonic inhibition by the globus pallidus in the basal gan-

glia circuitry [34]. Diagnosis of classical manganism requires a 

history of occupational Mn exposure, typical neurological find-

ings such as bradykinesia, rigidity and postural instability, and 

the exclusion of other neurological diseases related to the basal 

ganglia, such as Parkinson’s disease (PD), secondary parkin-

sonism due to traumatic, vascular, or iatrogenic damage, and 

atypical parkinsonism syndromes [35].

The differential diagnoses of  this disorder can be sum-

marized using clinical features and neuroimaging data (Table 
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1) [35-37].The pathological lesions caused by manganism are 

typically degenerative lesions of the globus pallidus, sometimes 

with less-frequent and less-severe injuries to the substantia nigra 

(SN). By contrast, in PD the SN is typically involved while the 

pallidostriatal complex is spared [38].

A Mn-induced, bilateral and symmetrical increase in sig-

nal intensity, confined mainly to the globus pallidus and mid-

brain, can be observed on T1-weighted MRI in Mn-exposed in-

dividuals, but no alterations are typically seen on T2-weighted 

MRI or CT scans [39]. Increased signals on T1-weighted MRI 

were observed in both asymptomatic Mn-exposed workers and 

in patients with experimental or occupational Mn poisoning 

[40-42]. However, these increased signal intensities generally re-

solved 6-12 months after the cessation of Mn exposure [42,43]. 

Thus, a high T1 signal on MRI may reflect the target organ 

dose of recent occupational Mn exposure, but may not neces-

sarily reflect manganism in the spectrum of Mn symptomatol-

ogy [44].

At lower exposure levels, less severe, subtle, and preclini-

cal neurobehavioral effects have been widely reported in vari-

ous occupational and environmental settings [45]. Concerns 

have been raised about whether chronic exposure to low levels 

of Mn can induce PD [43,46]. In fact, PD is not a single dis-

ease, but rather a heterogeneous group of  clinically similar 

conditions. It is possible that some individuals diagnosed with 

PD have neurotoxin-related PD that is likely to have been over-

looked because most cases are not attributable to neurotoxin 

exposure. However, future work will be required to clarify 

whether Mn exposure induces PD and/or affects the progress 

of this condition.

Others
Acute carbon monoxide poisoning can result in a delayed ex-

trapyramidal syndrome that begins two to three weeks after 

recovery from the initial exposure. The parkinsonian features 

can be progressive and are associated with symmetrical degen-

eration of the globus pallidus [47]. Abnormalities may be seen 

in brain CT and MRI [48-50]. Carbon monoxide poisoning 

can also result in cognitive impairment and akinetic mutism as-

sociated with subcortical white matter lesions, especially in the 

bifrontal area [48-50]. Parkinsonian features have occasionally 

been associated with methanol [51], carbon disulfide [52], para-

quat and rotenone [53,54], and cyanide poisoning [55].

Vascular encephalopathy
Carbon disulfide poisoning is a highly typical and frequently 

encountered vascular encephalopathy [8,56]. Patients with car-

bon disulfide poisoning exhibit various clinical characteristics, 

including multiple brain infarctions [57-59], peripheral neu-

ropathy [60], coronary heart disease [61], retinopathy including 

microaneurysm of the fundus [62], hypertension [56], glomeru-

losclerosis of the kidney [63], and parkinsonian symptoms [52]. 

These findings indicate that the basic mechanisms underlying 

carbon disulfide poisoning involve atherosclerotic changes in 

blood vessels [56,64]. The clinical manifestations of  vascular 

encephalopathy (e.g., hemiparesis and speech disturbance) 

Table 1. Comparison of the features of manganism and Parkinson’s disease

Feature Manganism Parkinson’s disease

Bradykinesia/rigidity Typical Typical

Symmetry Symmetrical Asymmetrical

Resting tremor Less frequent, mainly intentional tremor More frequent

Dystonia More frequent Less frequent

Gait disturbance More frequent Less frequent

Gait Cock walk Festinating gait

Propensity to fall backward Typical Not typical

Response to L-dopa Poor response Good response

Signal intensities in globus pallidus in T1-weighted MRI Bilaterally increased* Normal

DAT SPECT/fluorodopa PET Normal Markedly decreased

*A negative MRI signal can occur if manganese exposure ceased at least six months previously.
MRI: magnetic resonance imaging , DAT SPECT: dopamine transporter–single-photon-emission computed tomography, PET: positron emission 
tomography. (From reference 35)
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in cases of  chronic carbon disulfide poisoning are similar to 

those observed in patients with atherosclerotic cerebrovascular 

disorders [56,59]. Many patients presenting with acute cerebro-

vascular stroke-like symptoms, sometimes with hypertension 

or diabetes, have been misdiagnosed as having suffered cere-

brovascular attacks. Thus, the possibility of  carbon disulfide 

poisoning must not be overlooked when physicians make dif-

ferential diagnoses in patients with vascular encephalopathy.

Historical records of carbon disulfide poisoning in Japan 

suggest the presence of a dose-response relationship. Psychosis 

and peripheral neuropathy due to carbon disulfide poisoning 

among rayon industry workers were first reported in 1932 and 

1934, respectively [65]. In the 1930s, when the Japanese first 

began producing rayon, carbon disulfide poisoning was the 

most common occupational disease in Japan [66], and psycho-

sis resulting from very high exposure was a predominant health 

problem. Since 1949, rayon manufacturers have collaborated 

with university researchers in Japan to control carbon disulfide 

concentrations in the workplace and to monitor the incidence 

of carbon disulfide poisoning [66]. By the 1960s, atherosclero-

sis (which is associated with moderate exposure levels) became 

the main type of  carbon disulfide poisoning in Japan [66]. 

Since 1980s, similar clinical features (e.g., atherosclerosis) have 

been observed in Korean workers with carbon disulfide poison-

ing, probably due to the transfer of the rayon industries from 

Japan in the 1960s [67].

Neurodegenerative diseases
Amyotrophic lateral sclerosis (ALS)
ALS is a neurodegenerative disease with an annual worldwide 

incidence of 2-4 cases per 100,000 individuals [68]. A few cases 

have been reported in Korea [69]. The association between 

ALS and exposure to solvents or lead is unclear, and even the 

best-designed incidence studies have produced conflicting re-

sults [70,71].

Other neurodegenerative diseases
It is reported that exposure to solvents, aluminum, mercury, or 

pesticides is implicated in the development of Alzheimer’s dis-

ease, which is the most common neurodegenerative disease [2]. 

However, evidence for this causal relationship is limited and 

further studies are required. PD was dealt with in the mangan-

ism section above.

Diagnostic Approaches for Toxic 
Encephalopathy

A diagnosis of  toxic encephalopathy can be made after 

documentation of  the following: 1) a sufficiently intense or 

prolonged exposure to the neurotoxin; 2) a neurological syn-

drome appropriate for the putative neurotoxins; 3) evolution of 

symptoms and signs over a compatible temporal course; and 4) 

exclusion of other neurological disorders that may account for 

a similar syndrome [6].

The exposure history, physical examination, neurological 

examination, and additional laboratory and radiological studies 

are particularly important for diagnosing a toxic encephalopa-

thy. An overt toxic encephalopathy is not difficult to recognize 

if  a patient develops a well-described clinical syndrome after 

exposure to a well-known neurotoxin, or if  other workers at the 

same site develop similar clinical pictures. The more difficult 

(and more common) situation is when a symptomatic individu-

al presents with either an unclear history of exposure or an ap-

parently trivial exposure to a known or suspected neurotoxin. 

In this situation, careful evaluation of the case is essential [5].

Acquisition of a detailed exposure history 
The patient’s exposure history is central to an accurate clinical 

diagnosis. Many problems can be overlooked or misdiagnosed 

because the person has not been questioned about his or her 

job and its related hazards. The occupational history should 

include information about the person’s current occupation, job 

task, place of  employment, and dates of  attendance on that 

job [72]. Exposure data such as workplace airborne concentra-

tions are crucial. A detailed evaluation of the nature, duration, 

and intensity of the exposure is essential for every evaluation. 

A description of the availability and use of personal protective 

equipment will provide further information about the extent of 

possible exposure. It is also important to ask questions about 

hobbies, and inadvertent exposure from any source should be 

considered [72]. For the diagnosis of toxic encephalopathy, it is 

likely to be helpful if  information on similar problems observed 

in others at the worksite is available.

Neurological examination
After a careful history is obtained, clinical examination should 

be carried out to establish the type and degree of dysfunction. 

The physical examination should include a general examina-

tion followed by a detailed neurological examination. Non-

neurological signs may be a clue to toxic exposure; examples 

of systemic clues include blue gums in lead intoxication, Mees’ 

lines in arsenic poisoning, and acrodynia in mercury poison-

ing [3]. The neurological examination will generally comprise 

assessment of  mental function (mental status examination), 

cranial nerve function, muscle strength and tone, reflexes (mus-

cle stretch and cutaneous), sensation, station and gait [5]. A 
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complete and rigorous neurological examination is necessary 

to properly define the clinical neurological syndrome involved. 

Once defined, a differential diagnosis can be entertained, and 

occupational versus non-occupation or toxic versus non-toxic 

causes can be determined. 

Clinical laboratories
When a patient is seen close to the time of exposure it may be 

possible to measure the offending chemical such as lead and 

mercury or its metabolite in blood or urine. Biomarkers can 

demonstrate that there has been exposure to the relevant toxin 

and that the exposure was of  sufficiently severity to give rise 

to a clinical syndrome. It is obligatory in those cases in which 

there is an acute illness in relation to exposure. However, prob-

lems will undoubtedly occur in those cases where there is a 

delay between exposure and the development of clinical symp-

toms. Furthermore, for most neurotoxins biomarkers are not 

readily available [4,13]. 

There may be occasionally be paraclincal features in 

hematological and biochemical tests indicating red blood cell 

changes as in the case of lead poisoning, or liver function test 

abnormalities as in the case of some organic solvent poisoning. 

For most of neurotoxins, however, clinical laboratory tests are 

not helpful for diagnosis [4,13].

Neurobehavioral testing
Neurobehavioral (neuropsychological) testing, which is an 

accepted methodology for assessing the functional integrity 

of the CNS, has been used extensively to evaluate subclinical 

neurotoxic effects on cognition, memory, alertness, executive 

function, mood and psychomotor skills [73-75]. There is a wide 

spectrum of neuropsychological tests, and the selection must be 

tailored to each situation. Neurobehavioral testing is generally 

administered by an examiner, as in the Neurobehavioral Core 

Test Battery from the WHO [73]. Recently, however, many of 

the tests have been adapted for use on a personal computer. In 

toxic encephalopathy due to various neurotoxins (e.g., heavy 

metals or organic solvents), neuropsychological studies have 

been useful in evaluating subclinical findings [45,75,76]. In-

deed, since the 1990s, subclinical neuropsychological deficits 

detected by neurobehavioral testing have replaced overt clinical 

findings as the basis of occupational exposure limits for various 

neurotoxicants [44,77]. Neurobehavioral tests are also used as 

diagnostic criteria for CTE. 

Electroencephalography (EEG)
EEG, which records the electric activity of the brain, has been 

used to evaluate occupational neurotoxic exposures [78,79]. 

The changes that are most obvious on EEG, such as diffuse 

slowing, are often associated with toxic encephalopathy [4]. 

However, the observed abnormalities are not specific, meaning 

that EEG has only a limited value in detecting and charac-

terizing toxic encephalopathy [9]. With the advent of  recent 

technological advances in neuroimaging, EEG is now used 

less frequently as a neurodiagnostic method, and more often in 

evaluating epilepsy. 

Evoked potentials (EVPs)
Sensory EVPs are widely used in clinical neurology as an index 

of  the integrity of  the sensory CNS pathways. Compared to 

EEG, EVPs can provide more quantitative information and 

can be used to assess a sensory pathway from the receptor to 

the cortex. Among the EVPs, the visual evoked potential (VEP), 

auditory evoked potential (AEP), and somatosensory evoked 

potential (SEP) are most often used in evaluating neurotoxic 

disease and other neurological disorders [79]. However, many 

variables can confound interpretation, and the results are not 

specific to neurotoxic disease [4] and thus should be interpreted 

with caution [80]. Marked AEP abnormalities have been as-

sociated with toluene exposure [81,82], but these studies were 

performed in toluene abusers, who are exposed to much higher 

levels than those usually found in occupational settings.

Neuroimaging studies
Since the invention of  CT and MRI scanners, tremendous 

progress has been made in the medical imaging of the human 

body. Neuroimaging can be divided into two groups: morpho-

logical neuroimaging (anatomy-based imaging) such as CT and 

MRI, and functional neuroimaging (physiology-based imaging) 

such as magnetic resonance spectroscopy (MRS), functional 

MRI, diffusion tensor imaging (DTI), SPECT, and PET. At 

present, with the introduction of  new technologies and the 

solving of technical problems related to the local production of 

radioisotopes, neuroimaging is shifting from morphological to 

functional [83,84].

CT
Modern CT scanners are capable of performing multiple slices 

with rapid data acquisition and overlapping sections using con-

tinuously moving X-ray emitters (spiral CT). These methods 

enable the rapid production of  exquisite images with three-

dimensional reconstruction capabilities. In the brain, the use of 

X-ray contrast agents and angiography has improved intracra-

nial imaging, but CT remains almost exclusively an anatomical 

imaging tool [83-86]. In terms of neurotoxin-related damage, 

CT is valuable for ruling out other naturally occurring disorders 
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of the nervous system, and it can reveal nonspecific changes 

(e.g., cortical atrophy) in individuals chronically exposed to or-

ganic solvents in the workplace [87].

MRI
MRI provides images that enhance either the fatty component 

(so-called ‘T1-weighted’ images) or the water component (so-

called ‘T2-weighted’ images) of tissues. It has emerged as the 

pre-eminent imaging modality for visualizing neurological 

diseases in the central nervous system, because it can distin-

guish gray and white matter, zones of  demyelination, and 

brain edema [83,88]. The distinction between gray and white 

matter lesions is crucial because gray matter is more vulner-

able to anoxic or ischemic insults due to its higher metabolic 

demands for oxygen and glucose [89]. White matter changes, 

such as leukoencephalopathy, are usually better seen on MRI, 

whereas calcifications and hemorrhages are readily detectable 

by CT. However, the severity and extension of brain lesions on 

morphological neuroimaging do not necessarily match the se-

verity of clinical status [89]. T1-weighted MRI can detect para-

magnetic metals, such as Mn, making it uniquely useful in Mn 

neurotoxicology. On T1-weighted MRI, Mn exposure causes 

bilateral symmetrical increases in signal intensity that are con-

fined to the globus pallidus and midbrain [39-41,46]. 

MRS
Numerous whole-body MR scanners now operate at magnetic 

fields of 1.5 Tesla (T) or above, meaning that they can perform 

localized proton MRS without additional hardware [90]. The 

latest very-high-field strength (i.e., 3 T or more) MRI systems 

generate images that combine anatomical and physiological 

measurements. In vivo proton magnetic resonance spectroscopy 

([1H]-MRS) is an image-guided, noninvasive method for moni-

toring neurochemical metabolites in the brain [90]. Currently, 

[1H]-MRS is most commonly employed to obtain metabolic 

information that may aid in the diagnosis of many neurologi-

cal diseases, and also allows the evaluation of disease progres-

sion and treatment response [91]. Although MRS permits 

noninvasive in vivo measurement of brain metabolites, only a 

few MRS investigations have assessed the neurological effects 

of neurotoxins in environmental or occupational health. Aydin 

et al. [92] demonstrated decreased N-acetylaspartate (NAA) in 

the cerebellar white matter and centrum semiovale along with 

increased myoinositol (mI) in toluene abusers. Several recent 

reports have analyzed the impact of lead exposure on brain me-

tabolism in vivo in adults and children [93-96], while two other 

studies employed MRS to investigate the potential neurotoxic 

effects of  chronic Mn exposure on the brain [97,98]. In par-

ticular, Guilarte et al. [97] assessed the toxic effects of chronic 

Mn exposure on the levels of brain metabolites in non-human 

primates. This [1H]-MRS study found that the NAA/creatine 

(NAA/Cr) ratios in the parietal cortex and frontal white matter 

were decreased after Mn exposure, indicating ongoing neuro-

nal degeneration or dysfunction. NAA is known to serve as 

a neuronal marker [99], and a reduction in brain NAA levels 

can be interpreted as indicating neuronal dysfunction or loss 

[100]. However, Kim et al. [98] found no significant difference 

between welders and control subjects in this measure. Similarly, 

Chang et al. [101] recently showed that the NAA/Cr ratios in 

both the anterior cingulate cortex and parietal white matter did 

not differ significantly between welders and controls. However, 

they found that the mI levels in the anterior cingulate cortex, 

but not in the parietal white matter, were significantly lower in 

welders compared with control individuals. Furthermore, in 

the frontal lobe of the brain, the mI/Cr ratio was significantly 

correlated with verbal memory scores and blood Mn concen-

trations. This study therefore suggested that the depletion of 

mI in welders may reflect a possible glial cell effect (rather than 

a neuronal effect) associated with long-term exposure to Mn. 

More recently, Dydak et al. [102] used the MEGA-PRESS 

sequence to determine γ-aminobutyric acid (GABA) levels in 

the thalamus, and found that Mn-exposed subjects showed 

significant decreases in the NAA/Cr ratio of the frontal cortex, 

and significant increases in the GABA level of  the thalamus. 

Further MRS-based studies will be required to fully assess the 

various brain metabolites in Mn-exposed workers. 

Functional MRI
Functional MRI (fMRI) uses standard clinical MRI hardware 

to collect information regarding brain metabolism changes as-

sociated with neuronal activity. As neuronal activity and the 

resulting demand for oxygen increase, the supply of  oxygen-

ated hemoglobin correspondingly increases, along with the 

MR signal measured on T2* images. This generates blood-

oxygenation-level-dependent (BOLD) contrasts [103].

The use of  fMRI to study neurological diseases has be-

come much more common over the last decade, but employ-

ing fMRI to assess neurotoxicity in humans is a rather novel 

approach. There have not yet been any reports on functional 

MRI findings in metal neurotoxicity. Chang et al. [104] were 

the first to use fMRI and sequential finger-tapping to investi-

gate the behavioral significance of additionally recruited brain 

regions in welders who had experienced chronic Mn exposure. 

Their findings suggest that fMRI may help us uncover evidence 

of  compromised brain functioning in patients with subclini-

cal manganism. The observation that the cortical motor net-
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work was excessively recruited in the chronically Mn-exposed 

group is in line with the emerging concept that adaptive neural 

mechanisms are used to compensate for latent dysfunctions in 

the basal ganglia. Chang et al. [105] also combined fMRI with 

two-back memory tests to assess the neural correlates of Mn-

induced memory impairment in response to subclinical dys-

function in the working memory networks of welders exposed 

to Mn for extended periods of time. These fMRI findings indi-

cated that welders might need to recruit more neural resources 

to their working memory networks in order to compensate 

for subtle working memory deficits and alterations in working 

memory processes.

DTI 
DTI, which is a unique method for characterizing white matter 

micro-integrity [106], can reveal the orientation of white mat-

ter tracts in vivo and yields indices of microstructural integrity 

by quantifying the directionality of water diffusion [107,108]. 

A few previous studies have explored the toxic encephalopathy 

associated with exposure to environmental neurotoxins, such 

as mercury [109], Mn [110], methanol [111], and carbon mon-

oxide [112] using diffusion-weighted image (DWI) analysis. 

However, few studies have reported DTI-detected alterations of 

microscopic integrity within the white matter of subjects expe-

riencing environmental neurotoxic exposure [113]. Kim et al. 

[114] used DTI to investigate whether welders exposed to Mn 

exhibited differences in white matter integrity. White matter 

microstructural abnormalities (decreased fractional anisotropy 

[FA]), which correlated with deficits in motor and cognitive 

neurobehavioral performance, were observed in welders, as 

compared to controls.

SPECT
SPECT is a widely distributed functional imaging modality 

that is more easily accessible and less expensive than PET, but 

has a lower resolution [39]. SPECT allows the imaging of re-

gional blood flow, metabolism and neurotransmitter receptors 

with relatively good spatial resolution. SPECT of patients with 

Minamata disease showed significantly decreased blood flow 

in the cerebellum [27]. In a case of acute lithium intoxication, 

the CT and MRI were normal, but a SPECT scan indicated 

significant focal perfusion defects, predominantly involving 

the left temporo-parietal area and the right posterior parieto-

occipital area [115]. Huang et al. [116] reported that the stria-

tal 99mTc-TRODAT-1 uptake in dopamine transporter (DAT) 

SPECT was nearly normal in Mn-induced parkinsonism, but 

was markedly reduced in PD. Various ligands that bind to 

DAT, such as [123I]-β-CIT, [123I]-fluoropropyl-CIT and 99mTc-

TRODAT-1, have been used in SPECT studies to elucidate the 

function of the dopaminergic nigrostriatal pathway, and thus to 

differentiate manganism from PD [46,116,117].

PET
PET uses short-lived positron-emitting isotopes to mark bio-

logically active compounds. PET isotopes have such short half-

lives that they must be produced in on-site cyclotrons to be 

available in quantities viable for clinical use. PET relies on a 

visibly labeled ligand to provide image specificity [84,118,119]. 

Specific ligands have been developed to help elucidate the func-

tion of the dopaminergic nigrostriatal pathway. For example, 

the ligand [18F]-dopa provides information about the conver-

sion of L-dopa to dopamine [120]. In nonhuman primates and 

humans with manganism, the [18F]-dopa PET scan (which 

provides an index of the integrity of the dopaminergic nigros-

triatal pathway) is normal [39,121-123]; by contrast, reduced 

dopamine uptake occurs in the striatum and particularly the 

posterior putamen of  PD patients [39,124]. Thus, [18F]-dopa 

PET scans have been used to differentiate manganism from PD 

[46,116,117]. In addition, 18F-fluorodeoxyglucose (18F-FDG) 

PET may be used to show metabolic activity in the brain. 

In a follow-up study of  an acute organic tin poisoning case 

three years after diagnosis, 18F-FDG PET/CT revealed mildly 

decreased metabolic activity in the pons and in both cerebel-

lar hemispheres [31]. Similarly, decreased metabolism in the 

thalamus, basal ganglia, temporal lobe and inferior parietal 

lobe have been observed in hydrogen sulfide poisoning using 
18F-FDG PET [125].

Clinical Implications

Many toxic encephalopathies may go unrecognized. In the 

absence of  a detailed neurological examination and compre-

hensive work history, physicians may overlook the possibility 

of previous or current neurotoxin exposure. The recognition of 

toxic encephalopathy is important for clinicians for several rea-

sons: 1) diagnosis can protect others (e.g., workers at the same 

worksite) from further harm by reducing exposure to the toxin; 

2) diagnosis often provides some indication of prognosis; and 3) 

recognition of neurotoxic exposure can bring about improved 

hygiene measures that may protect other workers.

Physicians must be aware of the typical signs and symp-

toms of toxic encephalopathy, and they should also pay atten-

tion to less typical, rather vague symptoms and signs because 

the toxicological characteristics of  toxic encephalopathy may 

be less typical, particularly in cases of long-term, low-dose ex-

posure, perhaps combined with the effects of aging. Close col-
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laborations between neurologists and occupational physicians 

are needed to determine whether neurological disorders are 

neurotoxin-related.

Summary

CTE, cerebellar syndrome, parkinsonism and vascular en-

cephalopathy are commonly encountered clinical syndromes 

of  toxic encephalopathy. Few neurotoxins cause patients to 

present with pathognomonic neurologic syndromes. The symp-

toms and signs of toxic encephalopathy may be mimicked by 

many psychiatric, metabolic, inflammatory, neoplastic and 

degenerative diseases of the nervous system, so the importance 

of  good history-taking and a comprehensive neurological ex-

amination cannot be overemphasized in the diagnosis of toxic 

encephalopathy. Neuropsychological testing and neuroimaging 

typically play ancillary roles. 
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