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Simple Summary: A major challenge in successfully managing glioblastoma is that we do not
understand the types and dynamic behaviors of the cells that constitute these tumors. Combining
bioinformatics and functional studies, we describe the presence of multiple independent lineages
of cancer stem cells driving the heterogeneic nature of glioblastoma. Our results help us decode
and map the transcriptional and functional diversity of glioblastoma cells. By revealing potential
mechanisms underlying tumor resilience, the root of resistance to treatment, our study may inform
novel strategies to develop precision and effective therapies to treat brain cancer.

Abstract: Glioblastoma (GBM) exhibits populations of cells that drive tumorigenesis, treatment
resistance, and disease progression. Cells with such properties have been described to express specific
surface and intracellular markers or exhibit specific functional states, including being slow-cycling or
quiescent with the ability to generate proliferative progenies. In GBM, each of these cellular fractions
was shown to harbor cardinal features of cancer stem cells (CSCs). In this study, we focus on the
comparison of these cells and present evidence of great phenotypic and functional heterogeneity in
brain cancer cell populations with stemness properties, especially between slow-cycling cells (SCCs)
and cells phenotypically defined based on the expression of markers commonly used to enrich for
CSCs. Here, we present an integrative analysis of the heterogeneity present in GBM cancer stem cell
populations using a combination of approaches including flow cytometry, bulk RNA sequencing,
and single cell transcriptomics completed with functional assays. We demonstrated that SCCs exhibit
a diverse range of expression levels of canonical CSC markers. Importantly, the property of being
slow-cycling and the expression of these markers were not mutually inclusive. We interrogated a
single-cell RNA sequencing dataset and defined a group of cells as SCCs based on the highest score of
a specific metabolic signature. Multiple CSC groups were determined based on the highest expression
level of CD133, SOX2, PTPRZ1, ITGB8, or CD44. Each group, composed of 22 cells, showed limited
cellular overlap, with SCCs representing a unique population with none of the 22 cells being included
in the other groups. We also found transcriptomic distinctions between populations, which correlated
with clinicopathological features of GBM. Patients with strong SCC signature score were associated
with shorter survival and clustered within the mesenchymal molecular subtype. Cellular diversity
amongst these populations was also demonstrated functionally, as illustrated by the heterogenous
response to the chemotherapeutic agent temozolomide. In conclusion, our study supports the cancer
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stem cell mosaicism model, with slow-cycling cells representing critical elements harboring key
features of disseminating cells.

Keywords: glioblastoma; cancer stem cells; slow-cycling cells; tumor heterogeneity

1. Introduction

The cancer stem cell paradigm originated from studies of acute myeloid leukemia,
which contains a subpopulation of cells showing stem-like cell properties, i.e., long-term
self-renewal, the ability to generate a large number of phenotypically distinct progenies,
and tumor-initiating potential [1]. Tumor cells with these features, defined as cancer stem
cells, were subsequently identified in solid tumors, including GBM [2–7]. The relevance of
this paradigm is supported by the functional role of CSCs in tumor growth and recurrence
and the association between stem cell signature (i.e., stemness) and poor patient progno-
sis [8]. Diverse GBM cell populations defined phenotypically, based on the expression of
markers such as CD133, CD44, ITGB8, PTPRZ1, or SOX2 [8–16], or based on fundamen-
tal functional characteristics, including being slow-cycling [6,7,17], exhibit the hallmark
traits of CSCs described above. CD133 is a pentaspan transmembrane glycoprotein with a
preferential localization to plasma membrane protrusions and microvilli, suggesting a role
in membrane organization [18]. The actual function of CD133 in cancer remains elusive
though. CD44, a transmembrane glycoprotein and receptor to hyaluronic acid, regulates
epithelial-mesenchymal transition (EMT) and cell invasion, but its precise role in GBM is
not fully understood [19]. ITGB8 is a member of the integrin beta chain complex family
mediating cell–cell and cell–extracellular matrices. ITGB8 plays a role in self-renewal and
survival of neural progenitor cells [20] and is associated with glioma tumor grade [21].
Shown to be required for tumorigenicity, ITGB8 regulates tumor invasion, growth, and pro-
gression by promoting TGFβ receptor signaling and mitotic checkpoint progression [15,22].
PTPRZ1 is part of the R5 subfamily of receptor-type protein tyrosine phosphatases. Shi
and colleagues reported that TAM-secreted pleiotrophin activates PTPRZ1 signaling in
GBM promoting CSC maintenance and tumorigenic potential [13]. PTPRZ1 knockdown
attenuates the malignant properties of GBM cells and affects the expression of transcription
factors such as SOX2, which is also considered a CSC marker [23]. Additionally, GBM
invasive properties have been shown to be regulated by PTPRZ1 [9]. SOX2 is a transcription
factor that regulates the expression of key genes and pathways involved in CSC mainte-
nance and GBM malignancy by promoting stemness and invasiveness [12,24]. However,
the precise regulatory functions of all these proteins on the maintenance and behavior of
CSCs is not fully understood. Nevertheless, these markers are commonly overexpressed in
cells exhibiting CSC features and have been widely used to purify such cells.

Although the cellular fractions defined by these markers may represent overlapping
populations contributing to tumorigenesis, they can also define distinct lineages of cells
or cellular states with different functions regulating tumor progression and treatment
resistance. Are these lineages distinct from one another? Do they exhibit a unique profile
of treatment resistance? The goal of this study is to address the question of CSC population
heterogeneity with a specific focus on comparing slow-cycling cancer cells with cellular
populations phenotypically characterized based on the expression of defined canonical
CSC markers. Our results report phenotypic, genomic, and functional profiling of these cell
populations. We also demonstrate their respective clinical relevance, including comparing
drug sensitivity.
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2. Material and Methods
2.1. GBM Patient-Derived Cell Lines

Human GBM tumor specimens were cultured as previously described using the
gliomasphere assay [6,7,17,25]. Patients consented to deposit their tissue in the brain tumor
bank of the Florida Center for Brain Tumor Research of the University of Florida, from which
the authors obtained de-identified specimen under a protocol approved by the Institutional
Review Board committee. Cells were cultured in serum-free conditions in NeuroCult
NS-A Proliferation solution with 10% proliferation supplement (STEMCELL Technologies,
Vancouver, BC, Canada); Cat# 05750 and #05753) supplemented with 10 ng/mL basic
fibroblast growth factor and 20 ng/mL human epidermal growth factor.

2.2. Isolation of Slow-Cycling Cells

Slow-cycling cells (SCCs) were isolated as described by Hoang and colleagues [7].
Briefly, primary glioblastoma cells were labeled with CellTrace dye (Invitrogen), followed
by a chase period of 5–10 days. Proliferation assessment of the cells was based on CellTrace
fluorescence intensity decay rate over time measured by flow cytometry. SCCs were defined
as the top 5–10% brightest cells.

2.3. Antibodies

ITGB8 (R&D Systems, Minneapolis, MN, USA), MAB4775), PTPRZ1 (BD Biosciences,
Franklin Lakes, NJ, USA), 610179), SOX2 (R&D Systems, MAB2018), CD44 (Biolegend, San
Diego, CA, USA), 103007), and CD133 (Miltenyi Biotec, Bergisch Gladbach, Germany),
130-113-668).

2.4. TMZ Treatment

One day post-plating, cells were treated with 50 µM or 500 µM Temozolomide (TMZ,
Sigma-Aldrich, St. Louis, MO, USA), T2577), as previously described [7]. The doses
were based on the range of TMZ concentrations measured in the plasma of treated GBM
patients [26–28] and IC50, previously reported for the line investigated in the current
study [7].

2.5. TMZ Sensitivity Assays

After 3 days and 10 days of TMZ treatment, cocultured mCherry+/CD133high cells and
Wasabi+/SCCs were processed to single cells, and the ratios of Wasabi+/mCherry+ cells
were measured by flow cytometry. Fixable live/dead near-infrared fluorescent reactive
dye (Invitrogen, Waltham, MA, USA, L34975) was used to compare the percentages of
dead cells (live/dead dye+) between CD133high cells and SCCs in response to the different
concentrations of TMZ.

2.6. Lentivirus Transduction

hGBM-L0 cells were transduced with vector pLV[exp]-CMV > mCherry (product ID
LVS -VB191217-1841qsh-C, VectorBuilder) to constitutively express the fluorescent protein
mCherry by following the manufacturer instructions. mCherry-expressing transduced cells
were isolated by flow cytometry. hGBM-L0 cells virally transduced to express the Wasabi
fluorescent reporter tag were kindly provided by Dr. Chang’s laboratory at the University
of Florida.

2.7. Flow Cytometry

All flow cytometric studies were performed at the University of Florida Interdisci-
plinary Center for Biotechnology Flow Cytometry Core. The different cells populations
were sorted out using a BD FACSAria II cytometer. BD LSR II or BD FACSymphony A3
cytometers were used for measuring and comparing cell viability and percentage of CD133+

ITGB8+, CD44+, PTPRZ1+, SOX2+ cells, and SCCs.
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2.8. Bulk RNA Sequencing

RNAseq was performed as previously described [7]. SCCs isolated from nine different
GBM patient-derived lines (L0, L1, L2, R24-01, R24-03, R24-23, R24-26, R24-37, and R24-47)
were sequenced for paired end 150 runs. Offline data were analyzed on the University of
Florida High-Performance Cluster (HiPerGator). Briefly, low-quality reads and adaptors
of fastq data were trimmed by trim_galore (Babraham Bioinformatics), and then reads
exceeding Q30 were aligned to Gencode v23 human genome by RSEM [29] to extract
sample gene expression.

2.9. Single-Cell RNA Sequencing

Single-cell RNA sequencing data were derived from Darmanis and colleagues [30].
Malignant cells were selected (n = 1091) based on the published metadata. Genes were
considered positively expressed if the mean value of TMP > 0.2. Genes expressed in less
than 30 cells were excluded. The group size was determined based on the expression
distribution of the different CSC markers. The number of cells per group included in
the study was defined by a homogenous range of max/min ratio (MMR) of expression
lacking univariate outlier using box plot methods (Table S1). This identified the top 2%
cells representing the CSC populations with the highest expression of each marker (i.e.,
22 cells). Similarly, the top 2% cells for lipid metabolism and cell cycle score were used to
define SCCs and FCCs, respectively. Escape package [31] was used for pathway enrichment
analysis and the establishment of the lipid metabolism score. Cell cycle score was defined
using the Tirosh et al. signature [7,32,33]. G1S and G2M scores were defined, and a new
cell cycle score (CCS), based on the sum of G1S and G2M scores, was assigned to each
cell. To visualize the level of cellular homology between groups, we used upset plots
and Venn diagrams by Upset package [34] and Venny [35], respectively. Box plots for
lipid metabolism signature score, CSC marker expression level, and cell cycle score were
generated by ggplot2. A log10 or linear scale was applied based on the data distribution
to achieve optimal visualization. Limma package [36] was used to identify differentially
expressed genes (DEGs) between groups composed exclusively of private cells (n = 22 for
SCC, n = 20 for FCC, n = 19 for SOX2, n = 18 for CD133, PTPRZ1, and CD44, and n = 17
for ITGB8). p-values were adjusted using Bonferroni procedure, and the significance
cutoff was set at 0.005. Ggplot2 and ggrepel packages [37] were used to generate volcano
plots comparing gene expression levels between SCCs and each of the other groups. The
Uniform Manifold Approximation and Projection (UMAP) feature of Seurat 4.0 [38,39] was
used as a deconvolution method to visualize the similarity or divergence between groups.
Subsequently, a trajectory analysis was integrated with Monocle 3 package. SCCs were set
as a putative start point. A gradient color scale was applied to reflect pseudotime differences.
The 1000 most variable genes were identified using CancerSubtypes package [40]. A three-
dimension principal component analysis was applied using Base -R. Hierarchical clustering
was performed using pheatmap [41]. The DEGs between SCC and CD133 were derived
as described above. A drug target enrichment between SCC and CD133 was applied by
Drugbank signature (version December 2021) [42] through gene set enrichment analysis,
with a cutoff of false discovery rate (FDR) set at <0.05. A heatmap (heatmap.2 package) [37]
was used to visualize the predicted drug sensitivity of the groups. All codes can be obtained
upon request.

2.10. Digital Cytometry for SCC and FCC Deconvolution

Single-cell RNAseq data of the 22 SCCs and 22 FCCs were used to construct a signature
matrix by CIBERSORTx [43], which was applied for deconvolution of TCGA primary
GBM bulk RNAseq data by incorporating the whole transcriptome of single cell RNAseq
signature as reference. The following parameters were used in CIBERSORTx: Enable batch
correction by S-mode; Disable quantile normalization; Run in absolute mode; Permutations
for significance analysis: 100.
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2.11. Hierarchical Clustering of CSC

Five CSC markers’ gene expression were subset from TCGA primary GBM dataset
(TOIL). Z-scores were calculated for each CSC marker and then plotted as a heatmap with
Complexheatmap [44]. Patient meta information was stacked as top annotation with SCC
and FCC deconvolution scores.

2.12. Statistical Tests

A Wilcoxon rank sum test was applied for non-parametric pairwise comparison
between reference group and each of the other groups. One-way ANOVA combined with
the Bonferroni method were applied to compare cell death and cell ratio between different
TMZ concentrations. p-values were adjusted for multiplicity using the Bonferroni method.

3. Results
3.1. Slow-Cycling Cells Express a Wide Range of CSC Markers

In GBM, we identified a subpopulation of cells displaying reduced cell cycle frequency
and enriched in tumor-initiating and treatment-resistant cells exhibiting specific metabolism
and enhanced infiltrative capacity [6,7,45]. Demonstration of the stemness properties in
SCCs and their progenies begs the question of how this lineage compares to the population
of CSCs defined based on the expression of specific markers. Multiple experimental
approaches can be used to identify, isolate, and study cancer SCCs (reviewed by Basu and
colleagues) [46]. We used label-retaining assays utilizing CellTrace dyes to interrogate
these cells in GBM patient-derived lines [6,7,17]. In our previous study, we reported a
doubling time of 73.22 +/− 7.94 h for SCCs compared to 24.96 +/− 0.87 h for the rest
of the tumor cells [7]. Reduced cell division frequency of CellTrace retaining cells was
also confirmed by their greater 5-ethynyl-2′-deoxyuridine (EdU) retention rate [7]. In the
current study, we evaluated by flow cytometry the expression of markers commonly used
to enrich CSCs such as CD44, CD133, ITGB8, PTPRZ1, and SOX2. Our results indicate
that although SCCs express markers of CSCs, not 100% of them are positive, revealing
some phenotypic overlap and suggesting heterogeneity and distinction between these
groups of cells (Figure 1A,B). Interestingly, the expression level of these markers was
similar between SCCs and the overall unselected population, except for CD133 and ITGB8,
which were found to be enriched in SCCs (Figure 1B). Additionally, we isolated SCCs by
FACS from nine different primary GBM patient-derived cell lines and extracted RNA to be
interrogated for bulk RNA sequencing analysis. In the SCCs, we observed a wide range
of expression of the different CSC markers between the nine patients (Figure 1C). Diverse
degrees of CSC marker expression were also observed in FCCs and total unselected GBM
cells (Figure S1A,B). Together, these data reveal that the property of being slow-cycling and
the expression of canonical CSC markers do not seem to be mutually inclusive.

3.2. Single-Cell Transcriptomics Identify Multiple Populations of CSCs

To further compare these populations of cells and quantify their state and potential
dynamical structures, we interrogated a single-cell RNA sequencing dataset [30] and
defined SCCs based on the highest score (top 2%) of a recently reported metabolic signature
(Table S2) [7], thereby identifying 22 cells (Table S3). Similarly, CSC populations were
defined by the top 22 cells with the highest expression level of CD133, SOX2, PTPRZ1,
ITGB8, or CD44 (Table S3). Fast-cycling cells (FCCs) were also included in our study and
were delineated as the top 22 cells with the highest G1S/G2M cell cycle score, as previously
described (Table S3, Figure S2) [7,32,33]. We then compared the metabolic signature
score, each CSC marker expression level, and cell-cycle score between all populations as
defined with the criteria described above. SCCs demonstrated a significantly greater lipid
metabolism signature score than every other population (Figure 2A). Interestingly, CD44high

cells exhibited the closest lipid score from SCCs compared to the classical CSC populations,
with FCCs showing the furthest score from SCCs. Each CSC population (CD133high,
SOX2high, PTPRZ1high, ITGB8high, and CD44high) displayed significant overexpression
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of their respective marker compared to the other groups (Figure 2B–F). Finally, FCCs
demonstrated a higher cell cycle score than the other populations (Figure 2G). Similar to
the results from our bulk RNA sequencing studies presented in Figure 1C, each of the 22
SCCs express heterogeneous expression levels of the CSC markers (CD133, SOX2, PTPRZ1,
ITGB8, and CD44) ranging between several orders of magnitude (Figure 2H).

Figure 1. Expression level of CSCs markers in GBM SCCs. SCCs, identified as CellTrace retaining cells
(top 5–10%) [6,7], were labeled with the following antibodies: anti-CD133, -ITGB8, -CD44, -PTPRZ1,
and -SOX2. Protein expression was measured by flow cytometry. (A) Representative flow plots
indicating the gates immunoreactive for the different CSC markers. (B) Bar graph representing the
percentage of total unselected tumor cells and SCCs that are positive (dark grey) or negative (light
grey) for the different CSC markers. (C) SCCs were FAC sorted from nine GBM patients and bulk
RNA sequencing analysis was performed. The box plot indicates the level of CSC marker expression
in SCCs for each patient, represented as transcript per million (TPM). The results identified SCCs
in every patient and showed that SCCs exhibit a wide range of expression levels of CSC markers.
Whiskers represent the 95% confidence interval and the box characterizes the interquartile range
(IQR; 25th–50th–75th percentiles).
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Figure 2. Gene signature scores and gene expression levels derived from scRNAseq comparing SCC,
CSCs, and FCC groups. Deconvolution score of lipid metabolism signature (A), expression of CD133
(B), SOX2 (C), PTPRZ1 (D), ITGB8 (E), CD44 (F), and cell cycle score (G). All pairwise comparisons
comparing groups to the reference population (i.e., SCC-(A), CD133-(B), SOX2-(C), PTPRZ1-(D), ITGB8-
(E), CD44-(F), FCC-(G)) were statistically significant (n = 22, Wilcoxon test, all p-values adjusted for
multiple comparisons using Bonferroni method were <0.001). Error bars represent the 95% confidence
interval, and the box characterizes the IQR. (H) Expression of CSC marker in SCCs.
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3.3. Heterogeneity between CSC Populations

Each group was composed of 22 cells defining populations with limited (up to 7%
between CD44high and ITGB8high groups) to no overlap (Figures 3A and S3). Upset plot in-
dicated that SCCs represent a unique population with none of the 22 cells being included in
the other groups (CD133high, SOX2high, PTPRZ1high, ITGB8high, CD44high, and FCC), which
all share at least one cell with each other (Figures 3A and S3). Twenty cells were unique
to FCCs, nineteen cells were exclusive to SOX2high populations, whereas eighteen cells
were specific to CD133high, PTPRZ1high, and CD44high cells, and seventeen to ITGB8high

cells. Three cells were common between PTPRZ1high and CD44high groups. CD133high

and SOX2high populations shared two cells. Finally, the following paired populations had
one cell in common: CD133high/ITGB8high, SOX2high/ITGB8high, PTPRZ1high/ITGB8high,
ITGB8high/CD44high, CD133high/FCC, and ITGB8high/FCC. We used the dimensionality
reduction technique uniform manifold approximation and projection (UMAP) [38,47] for
topological comparison of the cellular fractions. We found that both SCCs and CD44high

cells showed tight clustering, with CD44high cells being the closest neighbors of SCCs, and
CD133high cells being the farthest ones (Figure 3B). Even though cells were not harvested
in a time series, they may be at different evolutionary positions along their lineages. We
therefore performed a trajectory analysis using Monocle3 [48] to model their positions
along a lineage continuum and their potential relationships with each other as a trajectory
of gene expression changes (Figure 3C–E). Interestingly, our pseudotemporal cell trajectory
analysis placed SCCs at one end of pseudotime (close to CD44high cells) and CD133high cells
at the opposite, divergent end (Figure 3C). These results further support great distinctions
between SCCs and CD133high cells. The differential lineage positioning and pseudotime
between each population were also represented as phylogenetic tree and box plot (Fig-
ure 3D,E). Gene expression was compared between SCCs and the other cell populations.
We identified sets of genes differentially regulated using the limma package [36] with a
cutoff of log fold change (LogFC) greater than 2 or lower than −2. (Table S4, Figure S4). A
three-dimension principal component analysis was performed with the unique cells from
each group using PCA scores calculated with the top 1000 variable genes across all popu-
lations. Three-dimensional imaging plotted to visualize the linear relationship between
groups indicated that CD133high, SOX2high, PTPRZ1high, ITGB8high, and FCCs were closely
distributed and distant from SCCs and CD44high cells, which showed greater spreading
and independent clustering (Figure 3F). The expression level of these top 1000 variable
genes was also represented as a heatmap, further illustrating the differential transcriptomic
regulation between all of these populations (Figure 3G). Furthermore, we identified cells
that we defined as CSCs based on the combined expression of two markers (Combo_CSC,
Figure 2A). This population was composed of a total of nine cells simultaneously expressing
high level of the following combination of CSC markers: PTPRZ1high/CD44high (n = 3),
CD133high/SOX2high (n = 2), CD133high/ITGB8high (n = 1), SOX2high/ITGB8high (n = 1),
PTPRZ1high/ITGB8high (n = 1), and ITGB8high /CD44high (n = 1). Similar to individual CSC
population, the Combo_CSC population exhibited significantly lower metabolic signature
score compared to SCCs (Figure S5A). Topological analysis using UMAP and evaluation of
the expression level of the top 1000 variable genes also demonstrate distinct transcription
profiles between SCC, Combo_CSC, and FCC populations (Figure S5B,C).
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Figure 3. Transcriptomic differences between populations. (A) Upset plot showing private or shared
cells among groups. Set size is 22 cells for each group. (B) UMAP projection of scRNA-seq data
showing subsets of distinct cellular clusters. (C) Trajectory analysis using Monocle3 coupled with
Seurat single-cell data analysis package used for UMAP projection. (D) Pseudotime represented
using phylogenetic tree showing the evolutionary position of each lineage. (E) Box plot representing
the pseudotime of each cell population. (F) Screenshot of a 3D-PCA using the top 1000 most variable
genes. (G) Heatmap displays groups’ hierarchical clustering using the top 1000 variable genes.

3.4. Correlation with Clinicopathological Characters and Patient Survival

We then assessed the relationship of CSC expression, SCC, and FCC characters with
disease presentation. Analyzing the TCGA patient dataset, we identified that high CD44
and SOX2 expression levels were positively correlated with shorter survival (Figure 4A).
In contrast, we found no difference in survival between patients characterized by high
and low expression of PTPRZ1, ITGB8, and CD133 (Figure 4A). CIBERSORT was used
to construct a signature matrix of SCC and FCC and for deconvolution of the TCGA
primary GBM bulk RNAseq data. TCGA GBM patients were then stratified into high
and low signature matrices to compare over survival. Interestingly, high SCC score was
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associated with poorer survival compared to a low SCC score, whereas FCC score did
not predict any specific clinical outcome (Figure 4B). We further analyzed the association
between the canonical CSC populations, SCCs, FCCs, and multiple clinicopathological
characters of GBM by stratifying patients from the TCGA dataset based on molecular
subclass combined with additional metadata including age, gender, vital status, and overall
survival (Figure 4C). We found that patients with high SCC score tend to segregate in the
mesenchymal molecular subtype, which showed greater SCC score associated with shorter
survival (Figure S6A,B). However, the expression level of the different CSC markers and
FCC score did not correlate with additional specific clinicopathological characters. Together,
these results further support intra- and inter-tumoral heterogeneity and suggest different
levels of significance and relevance of the CSC lineages in disease presentation.

Figure 4. Clinicopathological characters associated with CSC lineages. Overall survival times were
compared between TCGA GBM patients that were stratified by high and low expression level of
the different CSC makers (mean cutoff) (A) and SCC and FCC deconvolution scores (B). (C) Further
patient stratification was performed to discriminate between the different disease molecular subtypes
(proneural, neural, classical, and mesenchymal). Additional metadata are presented (i.e., age, gender,
vital status, and overall survival time).
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3.5. Functional Profiling of TMZ Sensitivity

Temozolomide (TMZ) represents the standard-of-care chemotherapy used to treat GBM.
The co-existence of phenotypically and functionally distinct subpopulations of cells exhibiting
stemness properties may translate to a remarkable heterogeneity of drug sensitivity. To address
the question of specific drug response between cell populations, we functionally compared the
effect of TMZ particularly between SCCs and CD133high cells. These two cell populations were
isolated from a primary GBM patient line (hGBM-L0) [6,7]. mCherry-tagged CD133 cells and
Wasabi-tagged SCCs were isolated by flow cytometry (Figures 5A and S7A) and co-cultured
and treated with specific doses of TMZ (Figures 5B–E and S7B,C). Both populations of cells
exhibit a different level of TMZ sensitivity, with CD133high cells demonstrating significantly
greater cell death compared to SCCs (Figures 5B and S7B), resulting in changes over time of
the ratio SCC/CD133 in response to treatment (Figures 5C–E and S7C). The control group
reflects the intrinsic proliferation rate of each population in the absence of TMZ and provides
a reference for the SCC/CD133 ratio. The presence of TMZ induced significant changes in
this ratio compared to controls, demonstrating different dose-dependent responses between
cell populations, with greater drug tolerance by SCCs compared to CD133high cells. These
studies support the model of a heterogeneous pool of cells with CSC properties in GBM (i.e.,
SCCs vs. CD133high cells), with a dynamic distribution that can be differentially regulated
by therapies.

Figure 5. Cont.
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Figure 5. Functional assessment of the difference in drug sensitivity. (A) Isolated from hGBM-L0,
SCCs and CD133high cells were co-cultured and treated with TMZ. (B) Three days after initiat-
ing TMZ treatment, cell death was evaluated by flow cytometry using live/dead dye incorpo-
ration assay. Mean +/− SEM. One-way ANOVA. p-values were adjusted for multiplicity using
the Bonferroni method. Results indicate distinct TMZ sensitivity between SCCs and CD133high

cells. Three days (C) and ten days (D) after TMZ treatment, the ratio SCC/CD133 was compared
between the experimental conditions. Results show a significant increase in the ratio, indicating
a greater resistance to TMZ of SCCs compared to CD133high cells. Mean +/− SEM. One-way
ANOVA. p-values were adjusted for multiplicity using the Bonferroni method. (E) Representative
micrographs of co-cultured SCCs and CD133+ cells treated with TMZ. Scale bars, 100 µm. (F) Hi-
erarchical clustering using DEGs between SCCs and CD133high cells. (G) Drug target enrichment
score between SCC and CD133high groups. Drug IDs in red are agents specific to SCC. Drug IDs
in yellow are specific to CD133high cells. Drug ID: DB06245: Lanoteplase; DB00031: Tenecteplase;
DB06157: Istaroxime; DB06550: Bivatuzumab; DB08515: (3AR,6R,6AS)-6-((S)-((S)-CYCLOHEX-2-
ENYL) (HYDROXY)METHYL)-6A-METHYL-4-OXO-HEXAHYDRO-2H-FURO[3,2-C]PYRROLE-6-
CARBALDEHYDE; DB04141: 2-Hexyloxy-6-Hydroxymethyl-Tetrahydro-Pyran-3,4,5-Triol; DB04799:
6-Hydroxy-5-undecyl-4,7-benzothiazoledione; DB07401: Azoxystrobin; DB07763: (5S)-3-ANILINO-5-
(2,4-DIFLUOROPHENYL)-5-METHYL-1,3-OXAZOLIDINE-2,4-DIONE; DB07778: (S)-famoxadone;
DB08330: METHYL (2Z)-3-METHOXY-2-{2-[(E)-2-PHENYLVINYL]PHENYL}ACRYLATE; DB08453:
2-Nonyl-4-quinolinol 1-oxide; and DB08690:Ubiquinone Q2.

3.6. Genomic Profile Predicting Heterogeneity of Drug-Sensitivity

We used genomic profiling to further characterize the difference between SCCs and
CD133high cells and identify potential drugs predicted to target specifically SCCs versus
CD133high cells. DEGs between SCC and CD133high groups (Figure 5F) were used for
drug target enrichment identification using the comprehensive online drugbank signature
database through gene set enrichment analysis (GSEA) [42]. Four drugs, including the
humanized monoclonal antibody against CD44 Bivatuzumab, plasminogen activators Lan-
oteplase and Tenecteplase, as well as Na+/K+ ATPase inhibitor Istaroxime, were predicted
to specifically target SCCs, whereas CD133high cells were predicted to be sensitive to nine
different other drugs (Figure 5G). These results further illustrate the intratumoral functional
differences between cell lineages and encourage us to functionally investigate the effect of
these drugs in future studies.

4. Discussion

Do populations of CSCs represent intermediate phenotypes along the spectrum of
a single lineage? Do these cells present partial or complete functional redundancy with
phenotypic distinction? Do CSCs exist as a homogeneous cellular population or do mul-
tiple CSCs co-exist in a given tumor? Do they reside at different stages or points of the
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same spectrum? Our study attempts to address these fundamental questions by further
characterizing the CSC model in GBM.

Our results reveal differences in cell cycle kinetics, phenotypic and genomic profiles,
and treatment sensitivity between multiple CSC populations and suggest distinct lineages
or lineages with only partial overlap with a differential contribution to disease presentation
and evolution. Specifically, our laboratory identified and characterized a subpopulation of
slow-cycling cells in GBM [6,7,17]. These cells represent a reservoir of tumor-initiating and
treatment-resistant cells exhibiting CSC properties with the ability to give rise to highly
proliferative progenies maintaining lineage specificity. Even though the progenies of SCCs
can exhibit similar proliferative profiles to other cancer cell populations in response to
specific cues and environments, their fate seems lineage-dependent and follows distinct
transcriptional trajectories [7,45]. For instance, we previously showed that freshly FAC-
sorted SCCs and FCCs, which were individually intracranially implanted, gave rise to
distinct progenies forming tumors with different fate characterized by specific phenotypic
and metabolic profiles [7]. The present study was designed to compare SCCs with estab-
lished populations of CSCs. A combination of flow cytometry and bulk and single-cell RNA
sequencing analyses revealed a substantial diversity of transcriptional profiles between
SCCs and cells expressing the following CSC markers CD133, CD44, ITGB8, PTPRZ1, and
SOX2. Together, these results suggest that SCCs represent a distinct cell lineage with only a
limited level of transcriptional redundancy.

Interestingly, we found that CD44high cells were transcriptionally closer to SCCs
compared to other CSC populations. This raised the question of whether selecting cells for
CD44 expression can be used to purify or enrich for SCCs. The results presented in Figure S8
showed a marginal increase in SCC percentages in CD44high cells (11.1%) compared to
CD44low (7.09%), and total populations (9.31%). Based on these results, and considering
that the utilization of the CellTrace retaining assay allows the collection of a pure population
of SCCs (100%), CD44 expression cannot be used as a unique surrogate to define SCCs. To
address the potential functional role of CD44 in SCCs, we compared the transcriptional
profile of SCCs with high and low expression of CD44 (Figure S8B,C). The absence of
differentially regulated genes between both populations suggests a lack of functional
differences (Figure S8C). We further stratified SCChigh TCGA GBM patients (Figure 4) and
compared the survival time between SCChigh/CD44high and SCChigh/CD44low groups. The
level of CD44 expression did not influence the survival time (Figure S8D). Altogether, these
data strongly suggest that CD44 does not regulate SCC phenotype and function and is not
sufficient for SCC selection.

To overcome the bias of selecting a single CSC marker to define a cell population and
balance their potential differing importance in driving stemness, we identified a specific set
of cells characterized by the concurrent high expression of a dual combination of markers.
This Combo_CSC population also showed a great transcriptional difference and no cellular
overlap with SCCs (Figures 3A and S5). Combining multiple markers to study CSCs may
allow identification of global pathways and properties of stemness; however, the advan-
tage of studying individual CSC populations increases depth and accuracy in identifying
specific targetable vulnerabilities. Of note, our study compared SCCs with only a few
CSC populations; however additional markers could be selected, such as L1CAM, KLF4,
integrin a6, ALDH, Nestin, Olig2, NANOG, ABCG2, or CD15 [8,10,16,49–53]. Importantly,
due to the lack of definite, universal, and exclusive markers or functions identifying CSCs,
discussion and controversy surrounding the conceptualization and contextualization of
the cancer stem cell model and its hierarchical organization and regulation continue. We
used a specific lipid metabolism signature, which we previously demonstrated to identify
slow-cycling cells and their progenies, to classify cells as SCCs from a single cell RNA
sequencing dataset [30]. We compared these cells with different CSCs populations defined
based on the high expression of canonical CSC markers (i.e., CD133, ITGB8, CD44, PTPRZ1,
and SOX2). Our results showed a lack of cellular overlap between SCCs and the other CSC
populations, further supporting lineage specificity (Figures 3A and S3).
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Importantly, we established the clinical relevance of the SCC lineage. In fact, SCC signa-
ture was associated with specific clinicopathological features and demonstrated prognosis
values, as indicated by poorer survival in GBM patients exhibiting strong SCC character
compared to patients with low level of SCC component (Figures 4 and S6).

Using a coculture dual-color system, in which CD133+ cells were tagged with the
fluorescent protein mCherry and SCCs with the fluorescent protein Wasabi, we were able
to compare in real time lineage dynamics in response to treatment. Our results indicated
that SCCs and their progenies are more tolerant to TMZ than the CD133high cell lineage
(Figures 5 and S7). Similarly, Reinartz and colleagues demonstrated specific subclone dy-
namism and functional consequences of intratumoral heterogeneity of drug resistance
in GBM [54]. This work also supports the perspective of GBM as a disease with the co-
existence of polyclonal collections of cellular hierarchies combining cancer stem cell and
classical stochastic models. Oren and colleagues used a high-complexity expressed bar-
code lentiviral library for simultaneous tracing of cell clonal origin and proliferative and
transcriptional profiling. Their results show the existence of treatment-resistant persisters
in lung cancers, with their fate being lineage dependent and characterized by metabolic
reprogramming of anti-oxidant and lipid pathways [55]. These data are in line with our
previous study, demonstrating that, under treatment pressure, slow-cycling cancer stem
cells give rise to lineage-specific cycling persisters that repopulate the tumors and are also
marked by up-regulated fatty acid metabolic pathways and anti-oxidant programs [7].
These pathways, especially autophagy and lipid droplets metabolism that we reported
being increased in SCCs [7], represent candidate regulators of diapause [56–58], which
is a potential mechanism by which SCCs may enter or exhibit a drug-tolerant persister
(DTP) state [59,60]. Diapause is a defined state of physiological dormancy characterized
by a dormant stage of suspended embryonic development triggered by stress. Two re-
cent studies suggest that tumor cells can engage diapause-like pathways, enabling cancer
treatment escape [59,60]. Rehman and colleagues reported that colorectal cancer cells are
equipotent in their ability to enter the DTP state by activating diapause-like transcriptional
programs to survive therapy. Conversely, our data suggest a different scenario in GBM,
which display great heterogeneity characterized by diverse populations of cells, especially
cancer stem cells with distinct treatment sensitivity, suggesting a varied capacity to stim-
ulate diapause-like mechanisms to enter the DTP state. Considering this heterogeneity,
therapeutic strategies aiming to eliminate cells with stemness properties will have to be
combinatorial and target every individual lineage.

Diversity in CSCs populations is now well recognized. However, the precise hierar-
chical organization and the plasticity of this organization between CSC populations and
non-CSCs are very complex and challenging to appreciate and understand fully. One weak-
ness of our study is the lack of depth in interrogating and modeling the dynamic aspect
of the functional and phenotypic properties of tumor cells. The potential hierarchical link
between SCCs and the classical CSCs could be further investigated using lineage tracing
assays, similar to the report by Lan and colleagues [61]. This study used DNA barcoding
and fate mapping to demonstrate a model with functionally distinct cells in GBM with a
conserved proliferative hierarchy in which slow-cycling stem-like cells give rise to rapidly
cycling progenitors, showing extensive self-renewing capability with the ability to generate
terminally differentiated cells.

GBM are spatially organized complex ecosystems with heterogeneity across the tumor
microenvironment, where specific CSC lineages may be selected based on their spatial
distribution within the tumor [8], defining niche-specific cell–cell interactions. Under-
standing the dynamic transcriptional and spatial fluctuations of each CSC lineage and the
interconnection and interconversion of these populations will be paramount for developing
precision and effective therapies. The use of sophisticated high-throughput approaches,
which may combine mathematical modeling, artificial intelligence, single-cell RNA se-
quencing, 3D model systems, multiplex imaging, and spatial transcriptomics, will help map
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and understand this dynamically adaptive complex system and uncover the mechanisms
underlying its resilience that is the root of its resistance to treatment.

5. Conclusions

Our study show that cells identified as cancer stem cells based on the expression of
specific markers or on particular functional criteria define distinct cell populations or states
with limited overlap. Our data support a mosaicism model of cancer stem cell populations
with slow-cycling cells representing critical tesserae. This multiplicity of cancer stem cell
lineages further contributes to the complexity, heterogeneity, and adaptability of tumors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14051126/s1, Figure S1 (related to Figure 1). Bulk RNA
sequencing analysis. CSC marker expressions are represented for FCCs isolated from nine GBM
patients (A) and for total unselected GBM cells from 153 patients (TCGA database) (B). Whiskers
represent the 95% confidence interval and the box characterizes the interquartile range (IQR; 25th–
50th–75th percentiles). Figure S2 (related to Figure 2). Cell cycle score. Scatter plot representing
the cell cycle scores of SCCs (red, n = 22) and FCCs (orange, n = 22). Figure S3 (related to Figure 3).
Pairwise Venn Diagrams. The numbers in the overlapped areas of each Venn Diagram represent the
number of cells in common between the two groups. The non-overlapping sections show the number
of cells private to each population. Figure S4 (related to Figure 3). Volcano plots comparing gene
expression between SCC and each of the other groups. Red dots represent significantly upregulated
genes in SCCs. Blue dots are significantly downregulated genes in SCCs. CSC markers (CD133, SOX2,
PTPRZ1, ITGB8, CD44) were annotated. Differentially expressed genes (DEGs) were filtered based on
LogFC over than 2 or less than −2 with an adjusted p-value set as 0.05. Figure S5 (related to Figure 3).
(A) Deconvolution score of lipid metabolism signature compared between SCC, Combo_CSC, and
FCC groups. (B) UMAP projection of scRNA-seq data comparing SCCs, Combo_CSCs, and FCCs.
(C) Hierarchical clustering of the top 1000 variable genes from SCCs, Combo_CSCs, and FCCs.
Figure S6 (related to Figure 4). (A) SCC scores between molecular subtypes. Wilcoxon test, all
p-values adjusted for multiple comparisons using Bonferroni method comparing proneural, neural,
and classical subgroups to the mesenchymal group. (B) Overall survival time (days) are compared
between SCChigh and SCClow within each molecular subtype. p values (adjusted using Bonferroni
method) of Wilcoxon test are indicated. Whiskers represent the 95% confidence interval and the box
characterizes the interquartile range (IQR; 25th–50th–75th percentiles). Figure S7 (related to Figure 4).
Gating strategy for sorting CD133+ cells and SCCs and functional TMZ sensitivity assay. (A) Primary
hGBM-L0 cells [6,7] were transduced to constitutively express the fluorescent reporter tag Wasabi
or mCherry. Wasabi expressing cells were labeled with CellTrace Violet and chased for one week
before isolating SCCs (top 10%). mCherry-tagged CD133 immunoreactive cells were also FAC sorted
and co-cultured with wasabi- tagged SCCs at an initial 40/60 ratio of SCC/CD133. The cells were
then cultured and treated with various doses of TMZ. (B) Gating strategy to measure cell death.
The percentage of dead cells was quantified by flow cytometry after incubating the cultures with
live/dead fixable reactive dye. The gating strategy is presented. (C) The ratio of SCC/CD133 cells
was evaluated by quantifying using flow cytometry the percentage of wasabi+ cells and mCherry+
cells in the different experimental groups. Representative flow dot plots are presented. Figure S8.
(A) Using flow cytometry, we compared the percentage of slow-cycling cells in the CD44high, CD44low,
and total cell populations. (B) Single cells in SCCs (n = 22) were divided into two groups; CD44high

(n = 10 cells) and CD44low (n = 12 cells) based on CD44 expression mean value. (C) Volcano plots
comparing gene expression between SCCs exhibiting high and low expression of CD44. No gene was
differentially regulated between both populations, suggesting that CD44 does not drive SCC character.
(D) GBM patients from the TCGA database with high level of SCC signature as defined in Figure 4B,
were split into two groups (CD44high, n = 29; and CD44low, n = 35). Survival time comparison showed
no difference between both groups. Table S1. List of max/min ratio (MMR) of expression of each
CSC marker, Table S2. List of 56 genes defining SCC-enriched lipid metabolism signature [7], Table
S3. Complete list of malignant cell ID identified from Darmanis and colleagues [30] with the level
of expression of CD133, ITGB8, CD44, PTPRZ1, and SOX2, as well as lipid metabolism signature
and cell cycle scores, Table S4. List of genes differentially regulated between SCCs and the other cell
populations extracted from scRNA Seq dataset [30].
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