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Background-—Thrombolytic therapy for acute thrombosis is limited by life-threatening side effects such as major bleeding and
neurotoxicity. New treatment options with enhanced fibrinolytic potential are therefore required. Here, we report the development
of a new thrombolytic molecule that exploits key features of thrombosis. We designed a recombinant microplasminogen modified
to be activated by the prothrombotic serine-protease thrombin (HtPlg), fused to an activation-specific anti–glycoprotein IIb/IIIa
single-chain antibody (SCE5), thereby hijacking the coagulation system to initiate thrombolysis.

Methods and Results-—The resulting fusion protein named SCE5-HtPlg shows in vitro targeting towards the highly abundant
activated form of the fibrinogen receptor glycoprotein IIb/IIIa expressed on activated human platelets. Following thrombin
formation, SCE5-HtPlg is activated to contain active microplasmin. We evaluate the effectiveness of our targeted thrombolytic
construct in two models of thromboembolic disease. Administration of SCE5-HtPlg (4 lg/g body weight) resulted in effective
thrombolysis 20 minutes after injection in a ferric chloride–induced model of mesenteric thrombosis (48�3% versus 92�5% for
saline control, P<0.01) and also reduced emboli formation in a model of pulmonary embolism (P<0.01 versus saline). Furthermore,
at these effective therapeutic doses, the SCE5-HtPlg did not prolong bleeding time compared with saline (P=0.99).

Conclusions-—Our novel fusion molecule is a potent and effective treatment for thrombosis that enables in vivo thrombolysis
without bleeding time prolongation. The activation of this construct by thrombin generated within the clot itself rather than by a
plasminogen activator, which needs to be delivered systemically, provides a novel targeted approach to improve thrombolysis.
( J Am Heart Assoc. 2017;6:e004535. DOI: 10.1161/JAHA.116.004535.)
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T hrombotic diseases such as acute myocardial infarction,
ischemic stroke, and pulmonary embolism remain lead-

ing causes of death and disability.1 Fibrinolytic therapy with
plasminogen activators has been proven to be beneficial and
is widely used in the acute setting of thrombosis.2–4 However,
in stroke, their benefit is restricted to a window of 4.5 hours
and the dose administered is limited by damage to the central
nervous system and lysis of homeostatic clots leading to fatal
bleeding complications.5,6

Thrombin is a key enzyme of the blood coagulation
cascade as it activates platelets, catalyzes the polymerization
of fibrinogen into fibrin, and converts factors V, VIII, XI, and
XIII into their activated form.7 Its abundant generation from
the prothrombinase complex, often referred to as the
“thrombin burst,” is localized on the surface of activated
platelets and is specific to thrombus sites.8 The central role of
this serine protease has driven the development of several
thrombin responsive clot-lysing drugs. Potent fibrinolytic
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agents were synthesized from thrombin-activatable prouroki-
nase fused to single-chain antibody targeting red blood cells
or platelets and provided sustained thromboprophylaxis
in vivo in mouse models.9,10 Our group recently developed
promising layer-by-layer nanocapsules that release urokinase
upon degradation by thrombin.11 Another approach consisted
of engineering a variant of human plasminogen to be cleaved
into plasmin by thrombin.12 This thrombin-cleavable plas-
minogen had promising outcomes in preclinical studies, which
led to clinical trials.13–15 Unfortunately, the effective doses in
the dose-escalation trials induced significant bleeding com-
plications.16

To reduce the bleeding complication associated with
fibrinolytic agents and to enhance their therapeutic efficiency,
new treatments have been developed with targeting moieties
directed toward thrombus components in order to selectively
concentrate the activity of the drug at the site of thrombus.17–
21 Activated platelets are a main component of human
thrombi, and integrin glycoprotein (GP)IIb/IIIa is the most
abundant membrane protein expressed upon activation
(�80 000 receptors per platelet).22 Hence, integrin GPIIb/
IIIa constitutes an attractive target for the development of
clot-specific thrombolytic drugs. Our group recently devel-
oped a new fibrinolytic agent by the fusion of single-chain
urokinase plasminogen activator to a small recombinant
antibody (scFvSCE5) that targets the activated form of the
platelet-integrin GPIIb/IIIa.23 In that study, the targeting
property allowed a substantial 6-fold reduction in the
therapeutic dosage that significantly reduced hemorrhagic
risk.

Herein, we have combined both promising features of the
previously developed thrombolytic agents (targeting and
thrombin activatable plasminogen) into one fusion molecule.
Furthermore, we utilized microplasmin, a truncated form of
plasmin that lacks the 5 Kringle domains of full-length
plasminogen. The absence of the Kringle domains has several
advantages: the inhibition rate of microplasmin by a2-
antiplasmin is reduced to 0.01% of the inhibition rate of
intact plasmin, which makes it suitable for use as an
intravenous therapeutic agent.24 In preclinical studies,
microplasmin reduced ischemic brain damage, showed non-
lysis-dependent neuroprotective effects improving behavioral
rating scores, and lower bleeding tendency at equally effective
doses of tissue plasminogen activator (tPA).25,26 Moreover,
the smaller size of the entire fusion construct favors a better
penetration within the core of blood clots. By using genetic
engineering and cloning techniques, we replaced the plas-
minogen activator recognition loop (CPGRVVGGC) of human
microplasminogen with the amino acid sequence of the
thrombin recognition loop from Factor XI (CTTKIKPRIVGGC)
and we fused this to an activation-specific anti–GPIIb/IIIa
single-chain antibody (SCE5). We describe the production and

in vitro and in vivo testing of this new clot-specific thrombin-
cleavable human microplasminogen (HtPlg-SCE5). Efficient
thrombolytic capacities are measured in two different mouse
models of thrombosis at a dose associated with no bleeding
time prolongation. This novel fibrinolytic agent represents a
promising alternative of plasminogen activators for thrombol-
ysis therapy.

Materials and Methods

Generation, Expression, and Purification of
Single-Chain Antibodies Fused With Human
Thrombin-Activatable Plasminogen
The DNA sequence coding for the human thrombin-activatable
microplasminogen (HtPlg) was obtained from GeneArt (Ther-
moFisher Scientific, Waltham, MA). The HtPlg construct was
then fused with two different single-chain antibodies, the
activation-specific GPIIb/IIIa–targeted (SCE5) and –nontar-
geted (Mut-scFv), as previously described.27,28 The fusion
constructs SCE5-HtPlg and Mut-scFv-HtPlg were transfected
in human embryonic kidney cells (freeStyleHEK 293-Fcells;
Life Technologies, Carlsbad, CA), suspension cells for pro-
duction of the proteins, which were isolated by fast liquid
protein chromatography with a nickel-based metal affinity
column Ni-NTA (Invitrogen, Carlsbad, CA). The detailed
procedures are available in the supplementary material.

Cleavage of the HtPlg Proteins Into Microplasmin
The cleavage of SCE5-HtPlg and Mut-scFv-HtPlg from throm-
bin incubation into microplasmin was studied in vitro with
Western blot analysis and by spectrophotometry using the
S2251 amidolytic assay. The detailed procedures are available
the supplementary material.

96-Well Plate Fibrinolysis Assay
All experiments involving blood samples collected from
human volunteers were approved by The Alfred Hospital
ethics committee (project 67/15). Written informed consent
was obtained from all donors prior to phlebotomy. Blood was
collected in sodium citrate 3.8% (w/v). Thrombi were formed
in halo shape at the bottom of 96-well plates with human
blood collected from healthy volunteers. The degradation of
the halo thrombi was measured with a plate reader (EnSpire
Multimode; PerkinElmer, Waltham, MA) at 510 nm from the
absorbance of the released blood in the solution as the
thrombi progressively lyses the center of the well. Different
concentration of plasmin, urokinase, SCE5-HtPlg, or Mut-scFv-
HtPlg (0.1 and 0.2 mg/mL) were tested (n=4). The detailed
procedures are available in the supplementary material.
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Flow Cytometry
The affinity of the fusion proteins to GPIIb/IIIa expressed on
human platelets was assessed by flow cytometry. Three
samples of human platelet-rich plasma (PRP) were prepared
from human blood: nonactivated platelets (PRP), ADP-
activated platelets (PRP+ADP), and ADP-activated and
GPIIb/IIIa–blocked platelets (PRP+ADP+abciximab). Interac-
tion of the Mut-scFv-HtPlg and SCE5-HtPlg constructs labeled
with fluorescein isothiocyanate (FITC) secondary antibody was
assessed on a FACSCanto II Flow cytometer (BD Biosciences,
Franklin Lakes, NJ). The detailed procedures are available in
the supplementary material.

Template Tail Bleeding, Hemoglobin, Albumin,
and Plasma Fibrinogen Measurements
All experiments involving animals were approved by the Alfred
Medical Research and Education Precinct Animal Ethics
Committee (E/1534/2015/B and E/1589/2015/B). Tail
bleeding times were determined using the template method29

after intravenous injection of several groups of drug: uroki-
nase at 100 and 500 U/g body weight (BW); SCE5-HtPlg at 2,
4, 8 lg/g BW; Mut-scFv-HtPlg at 2, 4, 8 lg/g BW; and saline
(n=3). Hemoglobin and albumin in brain and gut as well as
plasma fibrinogen levels were measured 24 hours after
administration of urokinase at 500 U/g BW, SCE5-HtPlg at
4 lg/g BW, and saline (n=3). The detailed procedures are
available in the supplementary material.

Endothelial Cells Permeability Assay
Permeability measurement of brain endothelial cells after
various treatments was adapted from a previously described
cell permeability assay in an in vitro model of the blood-brain
barrier.30 Detailed procedures are available in the supple-
mentary material.

Ferric Chloride–Induced Thrombosis in
Mesenteric Vessels
Targeting and thrombolytic capacities of the HtPlg fusion
proteins were tested in a mouse model of thrombosis induced
by ferric chloride superfusion in mesenteric vessels performed
as previously described.31 The detailed procedures are
available in the supplementary material.

Lung Embolism Model
Emboli were induced and fluorescently stained by intravenous
injection (5 lL/g BW) of a mixture of Innovin and near-
infrared dye–labeled fibrinogen. Ten minutes after the induc-
tion of the prothrombotic mixture, 4 drug groups were

intravenously injected: urokinase at 500 U/g BW, SCE5-HtPlg
at 4 lg/g BW, Mut-scFv-HtPlg at 4 lg/g BW, and saline
(n=3). The number of emboli were measured via fibrinogen
fluorescence within the lung harvested 50 minutes after
treatment. The detailed procedures are available in the
supplementary material.

Statistical Analysis
All results are expressed as mean�SEM. Statistical analysis
was performed with GraphPad Prism V6 (GraphPad Software,
San Diego, CA). Multiple groups (Flow cytometry, tail bleeding,
fibrinogen level in plasma, hemoglobin and albumin levels in
brain and intestine, permeability level, each time point
separately for thrombus degradation values in the ferric
chloride–induced thrombosis model, and fibrinogen fluores-
cence in the pulmonary embolism model) were compared with
1-way ANOVA and Tukey post-tests. Parameters from in vitro
fibrinolysis assay of SCE5-HtPlg and Mut-scFv-HtPlg groups
were compared with unpaired t tests. A difference of P<0.05
was considered significant.

Results

Production of Fusion Proteins SCE5-HtPlg and
Mut-scFv-HtPlg
The HtPlg was subcloned with the GPIIb/IIIa–targeted (SCE5)
or the nontargeted (Mut-scFv) single-chain antibody (scFv)
into the pSecTag vector system. The DNA amplification and
restriction digest of the obtained SCE5-HtPlg and Mut-scFv-
HtPlg fragments were analyzed by gel electrophoresis
(Figure S1A). After amplification with polymerase chain
reaction (PCR) and restriction digest, the subcloned DNA of
the SCE5-HtPlg and the Mut-scFv-HtPlg were visualized at
1.8 kbp, which is the expected size since the digested HtPlg
construct migrates at 0.8 kbp and the uncut pSecTag vector
containing the scFvs migrates at 1 kbp. The sequences of
both fusion constructs, represented in the pSecTag vector
map (Figure S1A), were confirmed via DNA sequencing. The
DNA of the SCE5-HtPlg and the Mut-scFv-HtPlg was then
transfected into HEK293 cells for production of the fusion
proteins, which were isolated at around 75 and 55 kDa as
shown on sodium dodecyl sulfate SDS-PAGE and Western blot
anti-His analysis (Figure S1B).

In Vitro Evaluation of the Conversion Into
Microplasmin and of Thrombolytic Capacities
Western blot analysis revealed that both constructs at
200 lg/mL were fully cleaved over 1 hour when incubated
at 37°C with 3 U/mL thrombin (Figure 1B). At t=0, only the
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full constructs are revealed by the anti-V5 antibody. From 20
to 40 minutes incubation, a certain amount of the constructs
are cleaved into microplasmin and a portion that contains the
single-chain antibodies and the V5 tag. From 40 minutes

incubation, the whole constructs are fully cleaved. To
investigate the effect of thrombin at inducing the cleavage
of the SCE5-HtPlg and Mut-scFv-HtPlg into microplasmin, the
fusion proteins were exposed to simulate thrombotic

Figure 1. A, Schematic representation of the anti–glycoprotein (GP)IIb/IIIa single-chain antibody (SCE5)–human thrombin-activatable
microplasminogen (HtPlg) and nontargeted control scFv HtPlg (Mut-scFv-HtPlg) constructs. The amino acid sequence of the plasminogen
activator site from human plasminogen was substituted for the thrombin cleavage site from factor XIII. The HtPlg construct was then fused with
two different single-chain antibodies, one targeting activated GPIIb/IIIa (SCE5) and the other Mut-scFv. B, Cleavage and generation of
microplasmin after thrombin incubation was demonstrated in vitro. The Mut-scFv-HtPlg or the SCE5-HtPlg (200 lg/mL) was incubated at 37°C
with thrombin (3 U/mL) and samples were withdrawn at 0, 10, 20, 30, 40, 50, and 60 minutes, mixed with dithiothreitol and analyzed on
Western blots using horseradish peroxidase coupled to an anti-V5 antibody. C, The activation of the SCE5-HtPlg (13 lg/mL) and of the Mut-
scFv-HtPlg (13 lg/mL) to microplasmin after incubation with different thrombin concentrations (0, 0.2, 1, and 2 U/mL) was demonstrated. The
SCE5-HtPlg was additionally tested with urokinase (2 U/mL), tPA (2 nmol/L), and thrombin-activatable fibrinolysis inhibitor (TAFIa) (16 lg/mL).
Microplasmin generation was monitored over 2 hours by spectrophotometry at 405 nm with the plasmin chromogenic substrate S2251
(350 lmol/L). Positive control was obtained with different plasmin concentrations (0, 0.004, 0.012, and 0.02 U/mL) and negative control was
obtained with only thrombin (0, 0.2, 1, and 2 U/mL).
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conditions with different thrombin concentrations (0, 0.2, 1,
and 2 U/mL), and the generation of microplasmin was
monitored over 2 hours by spectrophotometry using the
S2251 amidolytic assay (Figure 1C). The thrombin concen-
tration–dependent kinetics of the SCE5-HtPlg and the Mut-
scFv-HtPlg compared with the low signal obtained without
SCE5-HtPlg verify the thrombin-specific activation feature of
the drug. On the other hand, the addition of urokinase, tPA, or
thrombin-activatable fibrinolysis inhibitor (TAFIa), within the
similar activity range as the high thrombin dose tested, did
not trigger any generation of microplasmin when mixed with
the SCE5-HtPlg. The capacities of the SCE5-HtPlg and the
Mut-scFv-HtPlg to lyse whole blood thrombi were assessed
in vitro and compared with the fibrinolysis obtained with
human plasmin and urokinase. The addition of human plasmin
resulted in a direct initiation of fibrinolysis at a rate increasing
with the concentration of plasmin (Figure 2A). At 0.5 U/mL, a
full degradation (over 95%) was obtained after 24�3 minutes;
at 0.1 U/mL, the degradation was limited to 68�3% degra-
dation; and at 0.01 U/mL, almost no degradation was
observed. The addition of urokinase resulted in a different
degradation profile (Figure 2B). A short delay period was

observed before the initiation of the degradation. This
initiation time decreased with the concentration of urokinase:
21�2 with 100 U/mL, 13�1 minutes with 200 U/mL, and
9�1 minutes with 400 U/mL. However, all urokinase con-
centrations resulted in full degradation. The Mut-scFv-HtPlg
and the SCE5-HtPlg (Figure 2C and 2D) resulted in degrada-
tion profiles combining the plateau effect observed with
plasmin and the initiation time effect observed with urokinase.
With the addition of Mut-scFv-HtPlg or SCE5-HtPlg, maximal
degradation of 36�11% and 49�17%, respectively, at
0.1 mg/mL (P=0.51) and 87�4% and 92�3%, respectively,
at 0.2 mg/mL (P=0.58) were reached. Initiation times of
46�15 and 30�6 minutes, respectively, at 0.1 mg/mL
(P=0.17) and 17�1 and 14�1 minutes, respectively, at
0.2 mg/mL (P=0.87) were measured. The addition of higher
concentrations (0.3 and 0.4 mg/mL) of Mut-scFv-HtPlg and
SCE5-HtPlg did not shorten the initiation time (data not
shown).

We repeated this in vitro thrombolysis study with urokinase
and SCE5-HtPlg in the presence of exogenous plasminogen
activator inhibitor-1 (PAI-1) and TAFIa (Figure S2). The
thrombolysis initiation from urokinase was delayed by both

Figure 2. Fibrinolytic capacities of the anti–glycoprotein IIb/IIIa single-chain antibody–human thrombin-
activatable microplasminogen (SCE5-HtPlg) and nontargeted control scFv HtPlg (Mut-scFv-HtPlg) were
tested in vitro on thrombi formed in a halo shape at the bottom of 96-well plates. The degradation of the
thrombi was monitored over 1 hour at 37°C by spectrophotometry from the absorbance of the blood
progressively covering the center of the well. Fibrinolysis rates were determined using known activities of
plasmin (A), urokinase (B) or different concentrations of Mut-scFv-HtPlg (C), and SCE5-HtPlg (D). For each
assay, positive control of the assay contained blood topped up to the final volume with buffer while the
negative control contained a preprepared halo aggregate topped up with buffer to the final volume.
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PAI-1 and TAFIa (38�3 for urokinase 200 U/mL+PAI-1
6 nmol/L and 36�7 for urokinase 200 U/mL+TAFIa
20 nmol/L versus 25�2 for urokinase 200 U/mL only,
P<0.05), whereas it was stable with SCE5-HtPlg at 0.2 mg/
mL.

Assessment of Bleeding Consequences
To evaluate the potential hemorrhagic effect of our construct,
bleeding time was measured after the administration of either
fusion proteins or urokinase (Figure 3A). A high dose of
urokinase (500 U/g) considerably prolonged bleeding time
compared with saline (478�103 seconds versus 63�6 sec-
onds, P<0.0001; n=3). A high dose (12 lg/g) of Mut-scFv-
HtPlg and SCE5-HtPlg resulted in significantly longer bleeding
than the saline control (138�26 seconds and 134�32 sec-
onds, respectively, versus 63�6 seconds; P<0.01 in both
cases [n=3]). At 8 lg/g, the bleeding time did slightly
increase but was not significantly different from saline at

baseline (81�7 and 88�23 seconds, respectively, versus
63�6 seconds). At 4 lg/g, both Mut-scFv-HtPlg and SCE5-
HtPlg did not induce any bleeding prolongation (52�10 and
61�9 seconds, respectively, versus 63�6 seconds). We
therefore selected the 4 lg/g dose for further in vivo studies.
We then evaluated the systemic effect of SCE5-HtPlg at this
selected dose, 24 hours after administration, by measuring
fibrinogen level in plasma (Figure 3B). Fibrinogen plasma
concentration in mice treated with SCE5-HtPlg was similar to
control mice (1.34�0.12 mg/mL for the SCE5-HtPlg group
versus 1.27�0.22 mg/mL for the PBS group), whereas mice
treated with urokinase had slightly reduced fibrinogen levels
(0.85�0.3 mg/mL), although this reduction was not signifi-
cant. We further assessed the potential effect of SCE5-HtPlg
on vasculature leakage in PBS-perfused intestine and brain
(Figure 3C and 3D). We did not observe accumulation of
hemoglobin or albumin in brain samples from mice treated
with both SCE5-HtPlg and urokinase, indicating that these
proteases do not harm the uninjured blood-brain barrier. In

Figure 3. A, Template tail bleeding times were used to assess the hemostatic impact of the different constructs in mice treated with PBS,
nontargeted control scFv HtPlg (Mut-scFv-HtPlg; 4, 8, and 12 lg/g body weight [BW]), anti–glycoprotein IIb/IIIa single-chain antibody–human
thrombin-activatable microplasminogen (SCE5-HtPlg; 4, 8, and 12 lg/g BW), and urokinase (100 and 500 U/g BW). Bleeding time was recorded
between the section and the arrest of bleeding. B, Fibrinogen levels were measured in mice treated with urokinase (500 U/g BW), SCE5-HtPlg
(4 lg/g BW), and saline 24 hours after treatment. Hemoglobin and albumin levels remaining in the brain (C) and intestine (D) after perfusion
were measured to assess the extent of vasculature leakage caused by the treatments within 24 hours. Nonperfused animals treated with saline
were used as a positive control. All results were expressed as mean�SEM (n=3, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001,
nonsignificant [ns]).
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intestine samples, a trend of albumin increase was seen in
mice treated with urokinase (33.8�5.2 lg/mg total protein)
compared with mice treated with saline (22.5�1.0 lg/mg
total protein). Importantly, treatment with SCE5-HtPlg had no
effect on intestine vessel permeability.

Effect on Endothelial Cell Permeability
SCE5-HtPlg was added alone or in combination with thrombin
(to activate the construct) to confluent monolayers of brain
microvascular endothelial cells and permeability compared
with untreated control (used as baseline permeability)
(Figure 4A). While the nonactivated construct or thrombin
did not induce any permeability changes on their own
(Figure 4, 1.01�0.12-fold for SCE5-HtPlg only and

0.84�0.07-fold for thrombin only), addition of SCE5-HtPlg
together with thrombin induced a 2.82�0.09-fold increase in
permeability (P<0.0001). Microscopic examination of the cell
monolayers confirmed that endothelial cells remained mor-
phologically unaffected in the presence of the nonactivated
construct (without thrombin), whereas noticeable gaps and
morphological alterations were induced by the activated
protease (Figure 4B).

Targeting to the Activated GPIIb/IIIa Expressed
on Human Platelets and to Ferric Chloride–
Induced Thrombus
The GPIIb/IIIa targeting ability of the SCE5-HtPlg was
assessed in vitro on human platelets and in vivo on a ferric

Figure 4. Brain microvascular endothelial cells were cultured to confluence in permeable Transwell
inserts and incubated for 6 hours with anti–glycoprotein IIb/IIIa single-chain antibody–human thrombin-
activatable microplasminogen (SCE5-HtPlg; 100 nmol/L) only, thrombin only (2.5 U/mL), and SCE5-HtPlg
(100 nmol/L) with thrombin (2.5 U/mL). A, Permeability was measured by fluorescein isothiocyanate-BSA
passage through the monolayers over 1 hour and presented as mean�SEM values of permeability
normalized to untreated controls (n=3, ****P<0.0001, nonsignificant [ns]). B, Representative phase-
contrast images of brain endothelial cells 12 hours after various treatments. Prominent gaps and
morphology changes are observed in the combined treatment group, but not in cells treated with
(nonactivated) SCE5-HtPlg alone.
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chloride–induced thrombosis model in mouse mesentery
vessels. The interaction of the SCE5-HtPlg with resting PRP,
PRP+ADP, and PRP+ADP+abciximab was assessed by flow
cytometry and compared with the interaction of the nontar-
geted control construct Mut-scFv-HtPlg (Figure 5A). SCE5-
HtPlg exhibited a significantly higher mean fluorescence
intensity (MFI) with activated platelets (MFI of 1514�283), as
compared with nonactivated platelets (MFI of 302�126) or
activated then blocked platelets (MFI of 94�38) (P<0.001,
n=5). The Mut-scFv-HtPlg construct did not show any increase
in fluorescent signal uptake when incubated with the same 3
PRP groups (MFI of 62�12 with PRP, 60�18 with PRP+ADP,
and 50�8 with PRP+ADP+abciximab).

The SCE5-HtPlg was then labeled with an anti–His-AF488
antibody and injected intravenously into a mouse subjected
to a ferric chloride–induced thrombus on the mesentery
vessel. Figure 5B shows intravital fluorescent microscopy
observations of the thrombus observed in the tetramethyl-
rhodamine channel (shown in red) before (t=0) and after
(t=5, 10, 15, 20, 30, 40, 60 minutes) the injection of the
AF488-labeled SCE5-HtPlg construct observed in the FITC
channel (shown in green). An accumulation of SCE5-HtPlg
was observed over 15 minutes postinjection at the site of
the thrombus, which indicates efficient clot targeting
properties in vivo.

In Vivo Thrombolysis Study in 2 Thrombosis
Models

The thrombolytic capacities of this new drug were tested on a
ferric chloride thrombosis mouse model induced on an
exteriorized mesentery. Platelets and leukocytes were labeled
with rhodamine 6G, which enabled observation of the thrombus
by fluorescent intravital microscopy. Thrombolytic treatment
was injected intravenously when the thrombus caused more
than 50% occlusion. The size of the thrombus was monitored
over time after injection of the targeted fusion protein and the
effect was compared with the nontargeted control at the same
dose, with the SCE5 only at equimolar dose, and with saline.
Figure 6 shows a thrombus identified in the tetramethylrho-
damine fluorescent channel (in red color) before (t=0) and after
(t=5, 10, 15, 20, 30, 40, 60 minutes) the injection of SCE5-
HtPlg at 4 lg/g. The relative size of the clot reduced
progressively from 10 minutes after the injection and became
significantly different from saline control at 20 minutes
(48�3% versus 92�5%, P<0.01, n=3), then slowly reached
36�7% at 50 minutes after treatment (different from 90�6%
with saline P<0.001). Injection of Mut-scFv-HtPlg at the same
dose or SCE5 only at equimolar dose did not induce any
degradation; the thrombus reached stable occlusion after
injection, similar to saline treatment (Figure S3).

Figure 5. A, Flow cytometry analysis of the anti–glycoprotein (GP) IIb/IIIa single-chain antibody–human thrombin-activatable microplas-
minogen (SCE5-HtPlg) affinity toward GPIIb/IIIa receptors on activated platelet. SCE5-HtPlg and nontargeted control scFv HtPlg (Mut-scFv-
HtPlg) were labeled with an anti–V5-fluorescein isothiocyanate (FITC) antibody incubated with 3 groups of platelet-rich plasma (PRP):
nonactivated platelets (PRP), platelets activated with 20 lm ADP (PRP+ADP), and platelets activated and the GPIIb/IIIa blocked with abciximab
(PRP+ADP+abciximab). The mean intensity of fluorescence associated with the platelets is shown (mean�SEM, n=5, ***P<0.001). B, The high
clot specificity of the GPIIb/IIIa–targeted construct is shown by intravital microscopy on a mesentery vessel with a ferric chloride–induced
thrombus after intravenous injection of SCE5-HtPlg (4 lg/g body weight [BW]) prelabeled with an anti-6X His tag AF488 antibody. The thrombus
itself is labeled with rhodamine 6G (30 lL, 0.3% w/v). Snapshots were taken in DIC, FITC, and tetramethylrhodamine channels every
2.5 minutes from 0 to 20 minutes postinjection, then every 5 minutes for up to 1 hour postinjection. An overlay of the 3 channels is presented
at representative time points.
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The efficacy of the fusion protein to lyse thrombi in vivo
was then confirmed in a mouse model of pulmonary embolism
(Figure 7). Ten minutes after the induction of thrombosis in
the lung of mice via intravenous injection of Innovin mixed
with Cy7-labeled human fibrinogen, 4 different treatments
were tested: PBS, Mut-scFv-HtPlg, SCE5-HtPlg, and urokinase.
The injection of nontargeted thrombin-cleavable plasminogen
also decreased the amount of fibrin in the lung; however, it did
not show a significant reduction compared with PBS treat-
ment (fluorescent ratio of 1.99�0.32 versus 3.43�1.09,
P=0.18). The SCE5-HtPlg treatment resulted in a 4-fold

reduction of fibrinogen fluorescence in the lung (0.76�0.39
versus 3.43�1.09, P<0.01). This value was similarly efficient
as urokinase treatment (0.89�0.49 versus 3.43�1.09,
P<0.01).

Discussion
In this study, we developed a new fibrinolytic fusion protein
activated by thrombin into microplasmin and specific to
activated GPIIb/IIIa receptors expressed on activated plate-
lets. The targeted (SCE5-HtPlg) and nontargeted (Mut-scFv-

Figure 6. Thrombolysis is shown by intravital microscopy on mesenteric vessels with a ferric chloride–induced thrombus after intravenous
injection of anti–glycoprotein IIb/IIIa single-chain antibody (SCE5)–human thrombin-activatable microplasminogen (SCE5-HtPlg; 4 lg/g body
weight [BW]). The thrombus is labeled with rhodamine 6G (30 lL, 0.3% w/v). Snapshots were taken in differential interference contrast and
tetramethylrhodamine (TRITC) channels every 2.5 minutes from 0 to 20 minutes postinjection then every 5 minutes for up to 1 hour
postinjection. An overlay of the 2 channels at representative time points is presented. The size of the thrombus was measured at each time
point on the TRITC channel (yellow dotted lines) and the percentage of thrombus degradation obtained with nontargeted control scFv HtPlg
(Mut-scFv-HtPlg; 4 lg/g BW), SCE5-HtPlg (4 lg/g BW), SCE5 only (1.7 lg/g BW), or PBS treatment was plotted over the time postinjection
(mean�SEM, n=3, **P<0.01, ***P<0.001). Scale bar 200 lm.

DOI: 10.1161/JAHA.116.004535 Journal of the American Heart Association 9

Thrombin- and Platelet-Specific Fibrinolysis Bonnard et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



HtPlg) constructs exhibited similar sizes between 75 and
55 kDa on gel electrophoresis analysis. We attribute the
higher size to glycosylation, as often observed from protein
production in mammalian cells.32 Both proteins were effec-
tively cleaved in vitro following incubation with thrombin.
Results from anti-V5 Western blot analyses revealed progres-
sive degradation of the full constructs, releasing a smaller
fragment that corresponded to microplasmin.33 The ami-
dolytic assay confirmed that the microplasmin thereby
released was able to cleave a plasmin substrate, whereas
no plasmin activity was detected in the absence of thrombin-
induced cleavage. The thrombin-specific plasmin activity of
the SCE5-HtPlg and the Mut-scFv-HtPlg was therefore
demonstrated. Importantly, the SCE5-HtPlg was not activated
by tPA, urokinase, or TAFIa, further highlighting the specificity
of this construct to thrombin.

The in vitro thrombolytic study revealed that the fusion
proteins are effective to lyse thrombi obtained from coagu-
lation of human blood. There was no statistical significant
difference between SCE5-HtPlg and Mut-scFv-HtPlg in the
thrombolytic capacity when tested at the same dose. This
implies that the SCE5 portion itself does not contribute to the
lysis effect observed in static conditions. However, the
maximum degradation obtained with the HtPlgs is on average
limited to 90% at 0.2 mg/mL and at 40% with 0.1 mg/mL,
whereas the addition of urokinase led to full degradation at all
concentrations tested. We believe these different lysis profiles
reflect the different pathway affected by our fibrinolytic
molecule. Urokinase converts the endogenous substrate
(plasminogen) into plasmin, while HtPlg acts directly as
microplasmin activated by thrombin generated locally. Thus,
the concentration of urokinase may impact the rate of plasmin

Figure 7. In vivo fibrinolysis study in a mouse model of pulmonary embolism. Emboli were induced and
fluorescently stained by infusing a mixture of Innovin (recombinant tissue factor and synthetic
phospholipids) and Cy-7–labeled fibrinogen. Four groups of drugs were injected 10 minutes after: PBS,
nontargeted control scFv HtPlg (Mut-scFv-HtPlg; 4 lg/g body weight [BW]), anti–glycoprotein IIb/IIIa
single-chain antibody (SCE5)–human thrombin-activatable microplasminogen (SCE5-HtPlg; 4 lg/g BW),
and urokinase (500 U/g BW). Mice were sacrificed 50 minutes after drug administration, perfused with
PBS, and lungs were harvested and scanned using an Odyssey Infrared Imaging System (700 nm channel
shown in red, 800 nm channel shown in green). Fibrinogen fluorescence is measured and presented as a
mean value of normalized fluorescence units (mean�SEM, n=3, not significant [ns], **P<0.01).
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generation but not the final effective concentration, whereas
the concentration of the HtPlg will effectively be limited by the
amount of microplasmin. We attributed the plateau observed
with HtPlg and plasmin treatments to the presence of plasmin
inhibitors in the blood (a2-macroglobulin and a2-antiplas-
min).34,35 The fibrinolysis profile obtained in vitro would
therefore reflect better control over the plasmin generated
locally and over its neutralization.

Tail bleeding experiments have shown that the systemic
administration of SCE5-HtPlg and Mut-scFv-HtPlg induces
bleeding prolongation in a dose-dependent manner. Urokinase
at the therapeutic dose established in a previous study
(500 U/g BW23) resulted in a highly significant increase in
bleeding time, even higher than the prolongation obtained
with 12 lg/g BW doses of the HtPlg constructs. This
observation supports the theory that targeting the activated
GPIIbIIIa receptor only provides a better localization of
plasmin generation compared with systemic fibrinolysis and
consequently results in lower hemostatic plug disruption at
sites of vascular injury. In addition, the same hemostatic
safety advantage over plasminogen activator has been
reported with the use of direct fibrinolytic (mainly plasmin
and microplasmin).36,37 At the 4 lg/g BW dose, SCE5-HtPlg
did not consume plasma fibrinogen and was not associated
with any brain hemorrhage or gastrointestinal effect at
24 hours after administration in healthy animals. The fear of
hemorrhagic complications is the main obstacle for the use of
plasminogen activators in clinical settings.38 This risk is even
more prominent as a large portion of patients admitted for
thrombolytic therapy have received antiplatelet therapy.39 The
safety profile presented for the SCE5-HtPlg is therefore highly
favorable for clinical translation. However, it should be noted
that the present study is limited to the evaluation of bleeding
risk in healthy animals, whereas hemorrhagic complications
seem to predominantly occur in ischemic or thromboembolic
conditions.40,41

These findings are also comparable with the dose-
escalation clinical trial outcomes of the thrombin-cleavable
plasminogen mutant developed by Vernalis Biotech (V10153).
The VASTT (V10153 Acute Stroke Thrombolysis Trial) has
been halted because 3 of 9 patients in the 7.5-mg/kg group
developed significant hemorrhagic complications.16 The TIMI
31 (Thrombolysis in Myocardial Infarction Trial) had a better
outcome, with 34% of patients treated with 5, 7.5, and
10 mg/kg achieving complete flow in the infarct-related
artery.13 However, the margin between efficacy and bleeding
still appears tight since, at these same doses, 7% of the
patients sustained TIMI major bleeding events and 14%
sustained TIMI minor or minimal bleeds. In fact, our in vitro
fibrinolysis study in static conditions suggested the same limit
in terms of risk-benefit ratio as the efficient dose of 0.2 mg/
mL determined in vitro would correspond to a 12 lg/g BW

dose in vivo (approximating the blood volume as 6% of the
body weight), which has shown bleeding prolongation. Hence,
even though the thrombin activation feature may effectively
reduce the risk of hemorrhage over plasminogen activators, it
was necessary to enhance the clot specificity of the HtPlg by
recombinant fusion to a single-chain antibody and lower the
dose required.

We demonstrated by flow cytometry that the SCE5-HtPlg
construct has a strong affinity for human activated platelets,
specific to surface-bound activated GPIIb/IIIa receptors since
the fluorescence uptake was completely blocked when
platelets were preincubated with a GPIIb/IIIa blocker (abcix-
imab). The targeting behavior was also verified in vivo on a
ferric chloride–induced thrombosis model on mouse mesen-
teric vessel. The FITC signal detected at the site of the
thrombus observed after the injection of 4 lg/g BW of SCE5-
HtPlg labeled with an anti-His tag AF488 antibody suggests a
clot-specific accumulation of the construct. Upon activation,
the microplasmin portion, which contains the 5x histidine
repeat at the C-terminus is cleaved from the SCE5 portion.
Thus, this experiment indicates that most of the SCE5-HtPlg
was cleaved into microplasmin within 20 minutes postinjec-
tion, as the FITC signal decreased from the 20-minute time
point.

A strong in vivo fibrinolytic effect was observed on the
same ferric chloride thrombosis model in mice treated with
the SCE5-HtPlg at a dose of 4 lg/g BW, whereas no
degradation was observed with the nontargeted control,
which confirms the necessity of the targeting behavior to
obtain efficient thrombolysis at this low dose. Similarly, the
SCE5 itself, at equimolar dose, did not result in any
degradation. In the lung embolism model, we compared the
SCE5-HtPlg with a treatment of urokinase that is currently
used in the clinic for fibrinolytic therapy for lung embolism42

and a similar 4-fold reduction of thrombosis was measured
versus the saline control treatment. Interestingly, although no
significant difference was measured, the same dose of
nontargeted construct seemed to slightly reduce the amount
of emboli in this model. We attribute the variations in
fibrinolysis effect to a presumable different nature of thrombi
between the two models. Although the mechanisms under-
lying ferric chloride–induced thrombosis are not completely
elucidated, it is reported to result in the formation of platelet-
rich thrombi resistant to lysis.43,44 Therefore, in a ferric
chloride–induced model, the thrombi were resistant to lysis
from the Mut-scFv-HtPlg but with the SCE5-HtPlg injected at
the same dose, the platelet targeting property enabled good
accumulation of the drug at the site of the clot and thereby
potentiated the degradation. On the other hand, in the lung
embolism model, the thrombosis is induced by tissue factor,
which triggers the clotting cascade via the extrinsic pathway
and has been shown to form fibrin-rich clots.45 The
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thrombolysis activity of HtPlg and urokinase being based on
degradation of fibrin, these 3 treatments were accordingly
more potent in this model but the platelet-targeting properties
of the SCE5-HtPlg enhance the activity to a lower extent. Our
in vivo experiments indicate that SCE5-HtPlg is an effective
thrombolytic drug capable of lysing platelet-rich as well as
fibrin-rich thrombi, which corresponds to the thrombus
composition encountered in patients with non–ST-segment
elevation myocardial infarction and ST-segment elevation
myocardial infarction for which thrombolytic therapy is
currently recommended.46–48

Other issues reported with plasminogen activators are the
detrimental impact on the neurovascular unit and alteration of
the blood-brain barrier.30,49,50 Our in vitro permeability assay
revealed that the SCE5-HtPlg affects primary human brain
microvascular endothelial cells, but only when activated with
thrombin. This result suggests that no undesired side effect
would be observed on the endothelium away from thrombosis
sites. We also consider these results encouraging because at
a similar dose range (25–250 nmol/L), recombinant tPA
added with no substrate was found to induce substantial
permeability increases in previous studies.30

This new thrombolytic agent also presents the advantage
to, presumably, be unaffected by circulating TAFI and PAI-1,
which have been identified as major causal factors of
fibrinolysis failure.51–54 Indeed, both of these fibrinolysis
inhibitors inhibit or indirectly reduce the action of plasmino-
gen activators, which we bypassed with our approach. We
verified that the same concentration of PAI-1 and TAFIa
significantly delayed in vitro thrombolysis from urokinase but
not from SCE5-HtPlg.

One concern regarding the strategy of thrombin activation
was the quantity of thrombin available at the thrombosis site.
In this study, the efficient lysis with the SCE5-HtPlg indicates
that the thrombin generated in 2 different thrombosis models
in mice is sufficient to ensure adequate activation. However,
the settings of these animal experiments are very specific. In
both studies, we injected the drug as a single bolus within a
relatively short time after the induction of thrombosis.
Therefore, further investigations are required to evaluate the
efficacy of the SCE5-HtPlg as an acute thrombosis treatment
at several time points after thrombus induction. Although few
studies describe the thrombin activity within a thrombus after
onset, recent research shows an accumulation of thrombin
within the core of the clot, bound to fibrin fibers, protected
from thrombin inhibition and possibly contributing to the
prothrombotic nature of thrombi.55,56 Clinical trial outcomes
with the thrombin inhibitor abigatran in stroke treatment up to
12 hours after the onset also suggest that thrombin remains
an important player at later stages of acute thrombosis.57,58

Therefore, our new fibrinolytic drug could be effective several
hours after thrombosis formation.

Conclusions
This newly proposed thrombolytic drug provided in vivo
thrombolysis equivalent to a standard fibrinolytic drug com-
monly used in the clinic, exhibited a better safety profile in
regards to hemorrhagic complications, and has the potential
to overcome the main limitations of thrombolytic therapy.

Acknowledgments
We thank Joy Yao for technical assistance.

Sources of Funding
This work was funded by the National Health and Medical
Research Council (NHMRC). Bonnard has received funding
from the People Programme (Marie Curie Actions) of the
European Union’s Seventh Framework Programme (FP7/
2007-2013) under REA grant agreement No. 608765, Niego
is supported by a postdoctoral fellowship from the National
Heart Foundation of Australia (award No. 100906). Alt was
supported by the German Research Foundation (Al 1521/1-1),
Peter is a Principal Research Fellow of the NHMRC, and
Hagemeyer is a National Heart Foundation Career Develop-
ment Fellow. The work was also supported in part by the
Victorian Government’s Operational Infrastructure Support
Program and Victoria’s Science Agenda Strategic Project Fund.

Disclosures
Peter is an inventor on patents describing activated platelet–
targeting recombinant antibodies. All other authors have
declared that they have no conflicts of interest to disclose.

References
1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford

ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard
VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH,
Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB,
McGuire DK, Mohler ER III, Moy CS, Mussolino ME, Neumar RW, Nichol G,
Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN,
Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics—
2014 update: a report from the American Heart Association. Circulation.
2014;129:e28–e292.

2. Gao GY, Yang P, Liu M, Ding M, Liu GH, Tong YL, Yang CY, Meng FB.
Thrombolysis for acute intermediate-risk pulmonary embolism: a meta-
analysis. Thromb Res. 2015;136:932–937.

3. Millan M, Dorado L, Davalos A. Fibrinolytic therapy in acute stroke. Curr
Cardiol Rev. 2010;6:218–226.

4. White HD, Chew DP. Acute myocardial infarction. Lancet. 2008;372:570–584.

5. Marshall RS. Progress in intravenous thrombolytic therapy for acute stroke.
JAMA Neurol. 2015;72:928–934.

6. Kunadian V, Gibson CM. Thrombolytics and myocardial infarction. Cardiovasc
Ther. 2012;30:e81–e88.

7. Di Cera E. Thrombin. Mol Aspects Med. 2008;29:203–254.

8. Huntington JA. Molecular recognition mechanisms of thrombin. J Thromb
Haemost. 2005;3:1861–1872.

DOI: 10.1161/JAHA.116.004535 Journal of the American Heart Association 12

Thrombin- and Platelet-Specific Fibrinolysis Bonnard et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



9. Fuentes RE, Zaitsev S, Ahn HS, Hayes V, Kowalska MA, Lambert MP, Wang
Y, Siegel DL, Bougie DW, Aster RH, Myers DD, Stepanova V, Cines DB,
Muzykantov VR, Poncz M. A chimeric platelet-targeted urokinase prodrug
selectively blocks new thrombus formation. J Clin Invest. 2016;126:483–
494.

10. Zaitsev S, Spitzer D, Murciano JC, Ding BS, Tliba S, Kowalska MA, Marcos-
Contreras OA, Kuo A, Stepanova V, Atkinson JP, Poncz M, Cines DB,
Muzykantov VR. Sustained thromboprophylaxis mediated by an rbc-targeted
pro-urokinase zymogen activated at the site of clot formation. Blood.
2010;115:5241–5248.

11. Gunawan ST, Kempe K, Bonnard T, Cui J, Alt K, Law LS, Wang X, Westein E,
Such GK, Peter K, Hagemeyer CE, Caruso F. Multifunctional thrombin-
activatable polymer capsules for specific targeting to activated platelets. Adv
Mater. 2015;27:5153–5157.

12. Dawson KM, Cook A, Devine JM, Edwards RM, Hunter MG, Raper RH, Roberts
G. Plasminogen mutants activated by thrombin. Potential thrombus-selective
thrombolytic agents. J Biol Chem. 1994;269:15989–15992.

13. Gibson CM, Zorkun C, Molhoek P, Zmudka K, Greenberg M, Mueller H,
Wesdorp J, Louwerenburg H, Niederman A, Westenburg J, Bikkina M, Batty J,
de Winter J, Murphy SA, McCabe CH. Dose escalation trial of the efficacy,
safety, and pharmacokinetics of a novel fibrinolytic agent, BB-10153, in
patients with ST elevation MI: results of the TIMI 31 trial. J Thromb
Thrombolysis. 2006;22:13–21.

14. Curtis LD, Brown A, Comer MB, Senior JM, Warrington S, Dawson KM.
Pharmacokinetics and pharmacodynamics of BB-10153, a thrombin-activatable
plasminogen, in healthy volunteers. J Thromb Haemost. 2005;3:1180–1186.

15. Comer MB, Cackett KS, Gladwell S, Wood LM, Dawson KM. Thrombolytic
activity of BB-10153, a thrombin-activatable plasminogen. J Thromb Haemost.
2005;3:146–153.

16. Killer M, Ladurner G, Kunz AB, Kraus J. Current endovascular treatment of
acute stroke and future aspects. Drug Discovery Today. 2010;15:640–647.

17. Lippi G, Mattiuzzi C, Favaloro EJ. Novel and emerging therapies: thrombus-
targeted fibrinolysis. Semin Thromb Hemost. 2013;39:48–58.

18. Marsh JN, Hu G, Scott MJ, Zhang H, Goette MJ, Gaffney PJ, Caruthers SD,
Wickline SA, Abendschein D, Lanza GM. A fibrin-specific thrombolytic
nanomedicine approach to acute ischemic stroke. Nanomedicine (Lond).
2011;6:605–615.

19. Absar S, Kwon YM, Ahsan F. Bio-responsive delivery of tissue plasminogen
activator for localized thrombolysis. J Control Release. 2014;177:42–50.

20. Dong N, Da Cunha V, Citkowicz A, Wu F, Vincelette J, Larsen B, Wang YX, Ruan
C, Dole WP, Morser J, Wu Q, Pan J. P-selectin-targeting of the fibrin selective
thrombolytic Desmodus rotundus salivary plasminogen activator alpha1.
Thromb Haemost. 2004;92:956–965.

21. Hagemeyer CE, Tomic I, Weirich U, Graeber J, Nordt T, Runge MS, Bode C,
Peter K. Construction and characterization of a recombinant plasminogen
activator composed of an anti-fibrin single-chain antibody and low-molecular-
weight urokinase. J Thromb Haemost. 2004;2:797–803.

22. Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE.
Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to
human platelets. Blood. 1996;88:907–914.

23. Wang X, Palasubramaniam J, Gkanatsas Y, Hohmann JD, Westein E, Kanojia R,
Alt K, Huang D, Jia F, Ahrens I, Medcalf RL, Peter K, Hagemeyer CE. Towards
effective and safe thrombolysis and thromboprophylaxis: preclinical testing of
a novel antibody-targeted recombinant plasminogen activator directed against
activated platelets. Circ Res. 2014;114:1083–1093.

24. Wiman B, Collen D. On the kinetics of the reaction between human
antiplasmin and plasmin. Eur J Biochem. 1978;84:573–578.

25. Lapchak PA, Araujo DM, Pakola S, Song D, Wei J, Zivin JA. Microplasmin: a
novel thrombolytic that improves behavioral outcome after embolic strokes in
rabbits. Stroke. 2002;33:2279–2284.

26. Suzuki Y, Chen F, Ni Y, Marchal G, Collen D, Nagai N. Microplasmin reduces
ischemic brain damage and improves neurological function in a rat stroke
model monitored with MRI. Stroke. 2004;35:2402–2406.

27. Schwarz M, Rottgen P, Takada Y, Le Gall F, Knackmuss S, Bassler N,
Buttner C, Little M, Bode C, Peter K. Single-chain antibodies for the
conformation-specific blockade of activated platelet integrin alphaIIbbeta3
designed by subtractive selection from naive human phage libraries. FASEB
J. 2004;18:1704–1706.

28. Schwarz M, Meade G, Stoll P, Ylanne J, Bassler N, Chen YC, Hagemeyer CE,
Ahrens I, Moran N, Kenny D, Fitzgerald D, Bode C, Peter K. Conformation-
specific blockade of the integrin GPIIb/IIIa: a novel antiplatelet strategy that
selectively targets activated platelets. Circ Res. 2006;99:25–33.

29. Mountford JK, Petitjean C, Putra HW, McCafferty JA, Setiabakti NM, Lee H,
Tonnesen LL, McFadyen JD, Schoenwaelder SM, Eckly A, Gachet C, Ellis S,
Voss AK, Dickins RA, Hamilton JR, Jackson SP. The class II PI 3-kinase,

PI3KC2alpha, links platelet internal membrane structure to shear-dependent
adhesive function. Nat Commun. 2015;6:6535.

30. Niego B, Freeman R, Puschmann TB, Turnley AM, Medcalf RL. t-PA-specific
modulation of a human blood-brain barrier model involves plasmin-mediated
activation of the Rho kinase pathway in astrocytes. Blood. 2012;119:4752–
4761.

31. Bonnard T, Hagemeyer CE. Ferric chloride-induced thrombosis mouse model
on carotid artery and mesentery vessel. J Vis Exp. 2015;(100):e52838.

32. Liao X, Wang W, Chen S, Wu Q. Role of glycosylation in corin zymogen
activation. J Biol Chem. 2007;282:27728–27735.

33. Wu HL, Shi GY, Bender ML. Preparation and purification of microplasmin. Proc
Natl Acad Sci USA. 1987;84:8292–8295.

34. Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood
Rev. 2015;29:17–24.

35. Collen D. On the regulation and control of fibrinolysis. Edward Kowalski
Memorial Lecture. Thromb Haemost. 1980;43:77–89.

36. Marder VJ. Pre-clinical studies of plasmin: superior benefit-to-risk ratio of
plasmin compared to tissue plasminogen activator. Thromb Res. 2008;122
(suppl 3):S9–S15.

37. Marder VJ, Novokhatny V. Direct fibrinolytic agents: biochemical attributes,
preclinical foundation and clinical potential. J Thromb Haemost. 2010;8:433–
444.

38. Xian Y, Federspiel JJ, Grau-Sepulveda M, Hernandez AF, Schwamm LH, Bhatt
DL, Smith EE, Reeves MJ, Thomas L, Webb L, Bettger JP, Laskowitz DT,
Fonarow GC, Peterson ED. Risks and benefits associated with prestroke
antiplatelet therapy among patients with acute ischemic stroke treated with
intravenous tissue plasminogen activator. JAMA Neurol. 2016;73:50–59.

39. Luo S, Zhuang M, Zeng W, Tao J. Intravenous thrombolysis for acute ischemic
stroke in patients receiving antiplatelet therapy: a systematic review and
meta-analysis of 19 studies. J Am Heart Assoc. 2016;5:e003242. doi:10.
1161/JAHA.116.003242.

40. Cheng T, Petraglia AL, Li Z, Thiyagarajan M, Zhong Z, Wu Z, Liu D, Maggirwar
SB, Deane R, Fernandez JA, LaRue B, Griffin JH, Chopp M, Zlokovic BV.
Activated protein C inhibits tissue plasminogen activator-induced brain
hemorrhage. Nat Med. 2006;12:1278–1285.

41. Niego B, Medcalf RL. Plasmin-dependent modulation of the blood-brain barrier:
a major consideration during tPA-induced thrombolysis? J Cereb Blood Flow
Metab. 2014;34:1283–1296.

42. Hao Q, Dong BR, Yue J, Wu T, Liu GJ. Thrombolytic therapy for pulmonary
embolism. Cochrane Database Syst Rev. 2015;9:Cd004437.

43. Sachs UJ, Nieswandt B. In vivo thrombus formation in murine models. Circ Res.
2007;100:979–991.

44. Farrehi PM, Ozaki CK, Carmeliet P, Fay WP. Regulation of arterial thrombolysis
by plasminogen activator inhibitor-1 in mice. Circulation. 1998;97:1002–1008.

45. Callas DD, Bacher P, Fareed J. Studies on the thrombogenic effects of
recombinant tissue factor. In vivo versus ex vivo findings. Semin Thromb
Hemost. 1995;21:166–176.

46. Silvain J, Collet JP, Nagaswami C, Beygui F, Edmondson KE, Bellemain-Appaix
A, Cayla G, Pena A, Brugier D, Barthelemy O, Montalescot G, Weisel JW.
Composition of coronary thrombus in acute myocardial infarction. J Am Coll
Cardiol. 2011;57:1359–1367.

47. O’Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA,
Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM,
Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-
Holland JE, Tommaso CL, Tracy CM, Woo YJ, Zhao DX, Anderson JL, Jacobs AK,
Halperin JL, Albert NM, Brindis RG, Creager MA, DeMets D, Guyton RA,
Hochman JS, Kovacs RJ, Kushner FG, Ohman EM, Stevenson WG, Yancy CW.
2013 ACCF/AHA guideline for the management of ST-elevation myocardial
infarction: a report of the American College of Cardiology Foundation/
American Heart Association Task Force on Practice Guidelines. Circulation.
2013;127:e362–e425.

48. Uchida Y, Uchida Y, Sakurai T, Kanai M, Shirai S, Morita T. Characterization of
coronary fibrin thrombus in patients with acute coronary syndrome using dye-
staining angioscopy. Arterioscler Thromb Vasc Biol. 2011;31:1452–1460.

49. Samson AL, Medcalf RL. Tissue-type plasminogen activator: a multifaceted
modulator of neurotransmission and synaptic plasticity. Neuron. 2006;50:673–
678.

50. Vivien D, Gauberti M, Montagne A, Defer G, Touze E. Impact of tissue
plasminogen activator on the neurovascular unit: from clinical data to
experimental evidence. J Cereb Blood Flow Metab. 2011;31:2119–2134.

51. Wyseure T, Rubio M, Denorme F, Martinez de Lizarrondo S, Peeters M, Gils A,
De Meyer SF, Vivien D, Declerck PJ. Innovative thrombolytic strategy using a
heterodimer diabody against TAFI and PAI-1 in mouse models of thrombosis
and stroke. Blood. 2015;125:1325–1332.

DOI: 10.1161/JAHA.116.004535 Journal of the American Heart Association 13

Thrombin- and Platelet-Specific Fibrinolysis Bonnard et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H

info:doi/10.1161/JAHA.116.003242
info:doi/10.1161/JAHA.116.003242


52. Zhu Y, Carmeliet P, Fay WP. Plasminogen activator inhibitor-1 is a major
determinant of arterial thrombolysis resistance.Circulation. 1999;99:3050–3055.

53. Fernandez-Cadenas I, Alvarez-Sabin J, Ribo M, Rubiera M, Mendioroz M, Molina
CA, Rosell A, Montaner J. Influence of thrombin-activatable fibrinolysis
inhibitor and plasminogen activator inhibitor-1 gene polymorphisms on
tissue-type plasminogen activator-induced recanalization in ischemic stroke
patients. J Thromb Haemost. 2007;5:1862–1868.

54. HendrickxML, ZatloukalovaM, Hassanzadeh-Ghassabeh G,Muyldermans S, Gils
A, Declerck PJ. Identification of a novel, nanobody-induced, mechanism of TAFI
inactivation and its in vivo application. J Thromb Haemost. 2014;12:229–236.

55. Fredenburgh JC, Stafford AR, Leslie BA, Weitz JI. Bivalent binding to gammaA/
gamma’-fibrin engages both exosites of thrombin and protects it from

inhibition by the antithrombin-heparin complex. J Biol Chem. 2008;283:2470–
2477.

56. Stalker TJ, Welsh JD, Tomaiuolo M, Wu J, Colace TV, Diamond SL, Brass LF. A
systems approach to hemostasis: 3. Thrombus consolidation regulates
intrathrombus solute transport and local thrombin activity. Blood.
2014;124:1824–1831.

57. Barreto AD, Alexandrov AV. Adjunctive and alternative approaches to current
reperfusion therapy. Stroke. 2012;43:591–598.

58. LaMonte MP, Nash ML, Wang DZ, Woolfenden AR, Schultz J, Hursting MJ,
Brown PM. Argatroban anticoagulation in patients with acute ischemic stroke
(ARGIS-1): a randomized, placebo-controlled safety study. Stroke.
2004;35:1677–1682.

DOI: 10.1161/JAHA.116.004535 Journal of the American Heart Association 14

Thrombin- and Platelet-Specific Fibrinolysis Bonnard et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



	

1 

	

SUPPLEMENTAL MATERIAL 

 

Generation, expression and purification of single-chain antibodies fused with 

human thrombin activatable plasminogen 

The DNA sequence coding for the human thrombin activatable microplasminogen 

(HtPlg) was designed from the sequence of human microplasminogen1 in which the 

sequence CCT GGA AGG GTT GTA GGG GGG (nucleotides 49 to 69) has been 

replaced by this sequence ACC ACC AAA ATT AAA CCG CGT ATT GTT GGT GGT, 

and obtained from GeneArtTM (ThermoFisher Scientific, US). The HtPlg construct was 

then fused with two different single-chain antibodies, the activated GPIIb/IIIa-targeted 

(SCE5) and non-targeted (Mut-scFv) previously described2, subcloned into the 

pSecTag vector system. After amplification by polymerase chain reaction (PCR), DNA 

fragments were digested using restriction enzymes NotI and XhoI (NEB, US) then 

ligated together using T4 ligase (New England BioLabs, UK) at 16°C overnight. The 

resulting plasmid constructs were then transformed into BL21 Star E.coli cells 

(Invitrogen, US). The DNA amplified by PCR and restriction digests was analysed by 

electrophoresis on a 0.8% agarose gel. 

The fusion constructs SCE5-HtPlg and Mut-scFv-HtPlg were transfected with 

polyethylenimine (PEI, Polyscience Inc., Germany) for expression in human 

embryonic kidney cells (freeStyleHEK 293-Fcells, Life Technologies, US) suspension 

cells grown in a CO2 incubator at 37ºC, shaking at 110 rpm. DNA plasmid for 

transfection was diluted with PEI and added to culture suspensions following the ratio 

of 1µg DNA:3µg PEI:1mL culture. H293F cells were adjusted at 2x106 cells/mL with 

Freestyle 293 expression medium (Invitrogen, US) with a viability greater than 95 %. 

The culture was supplemented with 5g/L Lupin after 1 and 5 days. At day 3, 5 and 7 
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after transfection, the culture was supplemented with 2mM glutamine. The glucose 

level was maintained at a final concentration of 6g/L. The cells were harvested when 

viability was 50 %. The suspensions were centrifuged at 14,000g for 15 minutes and 

the supernatants were collected for protein purification. 

Both SCE5-HtPlg and Mut-scFv-HtPlg proteins carry a 6x His-tag at the C-terminal 

end of their amino acid sequence for purification and a V5-tag from their single-chain 

antibody part (SCE5 and Mut-scFv). Proteins were purified by fast liquid protein 

chromatography with a nickel-based metal affinity column Ni-NTA (Invitrogen, US). 

Protein concentration was determined with Direct Detect Infrared Spectrometer 

(Merck Millipore, US). Purity of the proteins was analysed by SDS-PAGE gel stained 

with Coomassie Brilliant Blue visualized with Odyssey imaging system (LI-COR 

Biosciences, US) in the 700 channel. Western blot analysis was performed to confirm 

the presence of the SCE5-HtPlg and Mut-scFv-HtPlg fusion proteins by revealing the 

6xHis-tag and the V5-tag. After SDS-gel electrophoresis, the proteins were 

transferred on PVDF membranes which were blocked with 5% skimmed milk at 4°C 

overnight then incubated 1 hour with Anti-6xHis-tag antibody HRP (horse radish 

peroxidase) or anti-V5-tag antibody HRP. Secondary hybridization was performed 

with SuperSignal West Pico chemiluminescent (ECL) substrate (Thermo Scientific 

Inc, US) for the HRP enzyme. ECL signal on membranes were visualized using a 

BioRad Gel-Doc system. 

 

Cleavage of the thrombin activatable microplasminogen proteins into 

microplasmin 

The cleavage of SCE5-HtPlg and Mut-scFv-HtPlg from thrombin incubation into 

microplasmin was studied in vitro with western blot analysis and spectrophotometry. 
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Both proteins were incubated at 200 µg/mL with 3U/mL of Thrombin (Siemens, 

Germany) in 150 mM Tris-HCl buffer (pH=8) at 37°C. At t=0, 10, 20, 30, 40, 50 and 

60 minutes incubation, 10 µL samples were aliquoted, mixed with 30 µL PBS and 10 

µL 5x sample buffer with DTT, heated at 95 °C then analysed with Western blot 

analysis with V5-tag revelation. 

Generation of microplasmin was monitored from incubation with thrombin by 

spectrophotometry with the S2251 amidolytic assay. ScE-HtPlg and Mut-scFv-HtPlg 

proteins were plated in a 96 well plate at 13 µg/mL in 150 mM Tris-Hcl buffer (pH=8) 

with different thrombin concentrations (0, 0.2, 1 and 2 Units/mL) and S2251 plasmin 

substrate (Chromogenix, US) at 0.3 mM. The microplasmin generation was 

measured from the increasing absorbance induced by the cleavage of the S2251 

substrate cleavage at 410 nm with a Plate reader (EnSpire Multimode, PerkinElmer, 

US). Measurements were started just after thrombin addition and taken every minute 

over 3 hours at 37°C, with shaking in between each time point. Positive control was 

assessed with human plasmin (Sigma-Aldrich, US) at different concentrations (0, 

0.004, 0.008, 0.012, 0.016, 0.02 U/mL) incubated with 0.3 mM S2251 substrate. 

Microplasmin generation was also monitored after the addition of 2 U/mL urokinase, 

2 nM recombinant human tissue plasminogen activator (tPA, Boehringer Ingelheim 

GmbH, Germany) and 16 µg/mL activated thrombin activatable fibrinolysis inhibitor 

(TAFIa, Sigma, US). Negative control was assessed with thrombin only at different 

concentrations (0, 0.2, 1 and 2 Units/mL), urokinase (2U/mL) only, tPA only (2 nM) 

and TAFIa only (16 µg/mL) incubated with 0.3 mM S2251 substrate.  
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96 well plate fibrinolysis assay 

Blood from 8 healthy volunteers was collected in sodium citrate 3.8 % (w/v). Thrombi 

were formed in halo shape at the bottom of 96 well plates with 25 µL of blood mixed 

with 3.75 µL Innovin (Dade® Innovin®, Tissue factor with phospholipids, Siemens) 

diluted 5 times from reconstitution prepared according to manufacturer’s instruction 

and 1.25 µL of 0.25 M Calcium chloride. The degradation of the halo thrombi was 

measured with a plate reader (EnSpire Multimode, PerkinElmer, US) from the 

absorbance of the blood covering progressively the center of the well. The fibrinolysis 

rate was assessed by one measurement at 510 nm every minute with shaking in 

between each time point over 1 hour at 37°C, starting just after the addition of 

thrombolytic drugs contained in 70 µL. Different concentration of Plasmin (0.01 U/mL, 

0.1 U/mL and 0.5 U/mL), urokinase (100, 200, 400 U/mL), SCE5-HtPlg (0.1 and 0.2 

mg/mL) or Mut-scFv-HtPlg (0.1 and 0.2 mg/mL) were tested (n=4). Additional 

experiments were performed with urokinase at 200 U/mL and SCE5-HtPlg at 0.2 

mg/mL preincubated 20 minutes at room temperature with 6 nM of human 

plasminogen activator inhibitor-1 (PAI-1, Molecular Innovation, US) and on thrombi 

obtained from blood supplemented with 20 nM of activated thrombin activatable 

fibrinolysis inhibitor (TAFIa, Sigma, US). Initiation times were measured on the 

degradation profiles for each run. Negative controls were obtained by addition of 70 

µL of PBS with no thrombolytic. Positive controls were obtained from well prepared 

with 25 µL of blood fluid topped up with 75 µL of PBS. The positive control wells 

provided absorbance values corresponding to full degradation (Atotal) and the 

negative control wells provided reading for no degradation (Azero). At each time point, 

the percentage of degradation were obtained from this formula: D(t)=100*(A(t) – 
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Azero(t))/(Atotal(t)-Azero(t)). Replicates were obtained with thrombi made from the blood 

of 4 different donors. Mean percentage of degradations ± SEM are plotted over time. 

 

Flow cytometry 

Blood from 5 healthy adult volunteers was collected in sodium citrate 3.8 % (w/v). 

Platelets-rich plasma (PRP) was obtained by centrifugation at 180g for 10 min and 

diluted 1 in 10 in PBS containing Ca2+ and Mg2+ ions. Activated PRP was obtained by 

stimulation of PRP with 20 μM of ADP (adenosine diphosphate). Activated then GP 

IIb/IIIa blocked platelets were obtained by incubation with abciximab at high 

concentration (50 μg/mL, ReoPro). Before assessing the interaction with the fusion 

proteins, tubes of PRP, PRP+ADP and PRP+ADP+Abciximab were prepared and 

incubated with PAC-1 FITC antibody (BD Biosciences) to assess GP IIb/IIIa 

expression on the platelet surface. We thus confirmed for each test that the GP 

IIb/IIIa complex is detected on platelets from the PRP+ADP group but not on platelets 

from the PRP or PRP+ADP+Abciximab groups. The tubes of interest were prepared 

with 50 μL of diluted PRP, PRP+ADP or PRP+ADP+Abciximab incubated for 20 

minutes with 1 μL of SCE5-HtPlg and Mut-scFv-HtPlg (20 µg/mL), together with 1 μL 

of anti-V5-FITC antibody (0.1 mg/mL, Invitrogen, US) to label the protein. Samples 

were fixed with 1x Cellfix (BD Bioscience, US) and analysed on a FACSCantoTM II 

Flow cytometer (BD Biosciences, US) with 10,000 events collected per samples. For 

each experiment, platelet populations were gated according to their typical 

granulometry measured on forward scattered light/size scattered light plots. The FITC 

Mean fluorescent intensity (MFI) measured within these identified platelet populations 

thus correspond to the interaction between FITC labelled SCE5-HtPlg or Mut-scFv-

HtPlg and platelets. Results were presented as mean values of MFI ± SEM (n=5). 
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Template tail bleeding 

All experiments involving animals were approved by the Alfred Medical Research and 

Education Precinct Animal Ethics Committee (E/1534/2015/B and E/1589/2015/B). 

Six weeks old male C57BL/6 mice were anesthetized with ketamine (50 mg/kg; 

Parnell Laboratories, Australia) and xylazine (10 mg/kg, Troy Laboratories, Australia) 

and placed on a 37 °C heater mat to prevent hypothermia. Mouse bleeding time was 

measured by tail template method. Several group of drug were injected 

intravenously; Urokinase at 100 and 500 Unit per gram body weight (/g BW), SCE5-

HtPlg at 2, 4, 8 µg/g BW, Mut-scFv-HtPlg at 2, 4, 8 µg/g BW and saline (n=3). 30 

seconds after the drug administration, a longitudinal incision, 2 mm deep, 4 mm long, 

was made, starting 10 mm from the beginning of the tail. Care was taken to ensure 

incision was made over the superficial tail vein running along the left axis of the tail. 

Bleeding time was recorded between the section and the arrest of bleeding. Results 

was expressed as mean values ± SEM (n=3). 

 

Hemoglobin, albumin and plasma fibrinogen measurements 

Six weeks old male C57BL/6 mice were injected IV with Urokinase at 500 U/g BW, 

SCE5-HtPlg at 4 µg/g BW and saline (n=3). 24h after drug administration, mice were 

anesthetized and 600 µL of blood was collected in 3.2% citrate and centrifuged 15 

min at 2,000g to isolate plasma. The concentration of fibrinogen in plasma was 

determined with a mouse fibrinogen antigen ELISA kit (Molecular Innovations, US). 

Mice were then gently perfused with 30 mL of saline then brain and intestine were 

harvested. Similar parts of each tissue were isolated, weighted and lysed in Triton X-

100 solution (1% v/v in PBS). An additional group of 3 mice treated with saline but 

not perfused were used as a positive control. Hemoglobin and albumin levels were 
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measured in brain and intestine lysates by spectrophotometry using a hemoglobin 

substrate (Quantichrom Hemoglobin, Bioassay Systems, US) and by a mouse 

Albumin ELISA test (Bethyl Laboratories, US) respectively, and were expressed per 

gram of protein in the lysate measured by bicinchoninic acid assay. 

 

Cell permeability assay 

This experiment was adapted from a previously described cell permeability assay 

which mimics in vitro blood-brain barrier function3. Primary human brain 

microvascular endothelial cells (hBEC; line ACBRI 376, Cell-System Corporation) 

were seeded in collagen-I-coated Transwell inserts (6.5mm, polyester membrane 

with 0.4um pores; Corning) at 20,000 cells per insert. Cells were grown to confluence 

over 3 days in MV2 endothelial cell medium (PromoCell) with 50ug/ml gentamicin. 

Following one wash in serum-free medium, cells were stimulated in the luminal 

compartment with SCE5-HtPlg alone (100nM), bovine thrombin alone (2.5 U/ml; 

plasminogen-free; Merck) or their combination. 6 h post stimulation, permeability 

changes were assessed by measurement of fluorescein isothiocyanate-conjugated 

bovine serum albumin passage from the luminal to the abliminal compartment, as 

previously described3, 4. Results were expressed as fold induction from untreated 

inserts. 

 

Ferric chloride induced thrombosis on mesenteric vessel 

Targeting and thrombolytic capacities of the thrombin activatable microplasminogen 

fusion proteins were tested on a mouse model of thrombosis induced by Ferric 

chloride superfusion on mesenteric vessel performed as described previously5. 
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Briefly, six weeks old male C57BL/6 mice were anesthetized with ketamine (50 

mg/kg) and xylazine (10 mg/kg) and placed on a 37 °C heater mat to prevent 

hypothermia. The mesentery was exteriorised through a midline abdominal incision. 

Rhodamine 6G (30 µL, 0.3% w/v, Sigma) was injected IV to label leukocytes and 

platelets. A filter paper (1mm x 2mm) saturated with 6% ferric chloride was placed on 

an isolated mesenteric vessel for 2 minutes to induce vessel wall injury and 

subsequent thrombus formation. Real time formation of the thrombosis was 

monitored by intravital microscopy on an Olympus IX81 inverted microscope in the 

TRITC fluorescent channel to visualise the thrombus stained with Rhodamine 6G and 

in the Differential Interference Contrast (DIC) channel to identify the vessel wall. 

When the thrombus reached over 50 % occlusion, 4 groups of drug were injected 

intravenously; SCE5-HtPlg at 4 µg/g BW, Mut-scFv-HtPlg at 4 µg/g BW, SCE5 at 1.7 

µg/g BW (equimolar dose) and saline (n=3). Snapshots were taken in DIC and TRITC 

channel every 2.5 minutes from 0 to 20 min post injection then every five minutes up 

to 1 hour post injection. To avoid any photo bleaching of the fluorescently stained 

thrombus, exposure to light was fully prevented in between each snapshot. 

Thrombus size was measured at each time point (Thrt) from TRITC channel images 

converted to binary images with ImageJ software (NIH, US). For each experiment, 

the biggest size measured for the thrombus was identify (Thrmax). The relative 

thrombus size was obtained from the formula 100*Thrt/Thrmax and the mean values ± 

SEM are plotted over the time post-injection (n=3). 

An additional experiment is obtained with SCE5-HtPlg (4 µg/g BW) pre labelled with 

anti-6x His tag AF488 antibody (Penta His Alexa-488, Qiagen). The accumulation of 

the SCE5-HtPlg at the site of the thrombus could then be visualized in the FITC 

fluorescent channel of the intravital microscope.  Snapshots were taken in DIC, FITC 
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and TRITC channel every 2.5 minutes from 0 to 20 min post injection then every five 

minutes up to 1 hour post injection. 

 

Lung embolism model 

Emboli were induced and fluorescently stained by IV injection (5 µL/g BW) of a 

mixture of Innovin (5% (v/v) from reconstitution prepared according to manufacturer’s 

instruction) and fibrinogen (10 µg/mL, Sigma) pre-labelled with Cy7-NHS dye 

(Lumiprobe) at 1:15 molar ratio. This model is similar to thromboplastin induced lung 

embolism, widely described in the haematology literature6, 7 and more recently 

combined with co-injection of fibrinogen labelled with a near-infrared fluorophore to 

enable quantification of fibrin deposition by fluorescent analysis of the whole lung8. 

10 minutes after the induction of the prothrombotic mixture, 4 groups of drug were 

injected intravenously; urokinase at 500 U/g BW, SCE5-HtPlg at 4 µg/g BW, Mut-

scFv-HtPlg at 4 µg/g BW and saline (n=3). Mice were killed 50 minutes after the 

treatment administration and perfused with saline. Lungs, heart, liver, kidney, spleen 

are harvested and scanned with the Odyssey imaging system in the 700 channel to 

visualise the organs and in the 800 channel to measure the fluorescence emitted 

from the near infrared stained emboli. For each animal, signal within the lung was 

rationalized to signal within the kidney. Results were presented as mean values of 

fluorescence signal ratio ± SEM (n=3). 

 

Statistical analysis 

All results are expressed as mean values ± SEM. Statistical analysis was performed 

with GraphPad Prism V6 (GraphPad Software, San Diego, CA, USA). Multiple groups 

(Flow cytometry, tail bleeding, fibrinogen level in plasma, hemoglobin and albumin 
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levels in brain and intestine and thrombus degradation in both in vivo models) were 

compared with one-way ANOVA and Tukey post-tests. Parameters from in vitro 

fibrinolysis assay of SCE5-HtPlg and Mut-scFv-HtPlg groups were compared with 

unpaired t tests. A difference of p<0.05 was considered significant. Figures 1, 2, 5b 

and S1 are representative observations with no statistical analysis. 
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Intravital microscopy observations on a vein with a ferric chloride induced thrombus 

after intravenous injection of SCE5-HtPlg (4 µg/g BW) (A), MutMA2-HtPlg (4 µg/g 

BW) (B), SCE5 (1.7 µg/g BW) (C) or PBS (D). The thrombus is labelled with 

Rhodamine B. Snapshots were taken in DIC and TRITC channel every 2.5 minutes 

from 0 to 20 min post injection then every five minutes up to 1 hour post injection. An 

overlay of the 2 channels at representative time points are presented. Scale bar 200 

µm. 




