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Risk prediction models for dementia constructed
by supervised principal component analysis using
miRNA expression data
Daichi Shigemizu 1,2,3,4, Shintaro Akiyama1, Yuya Asanomi1, Keith A. Boroevich 3, Alok Sharma 3,4,5,6,

Tatsuhiko Tsunoda 2,3,4, Kana Matsukuma7, Makiko Ichikawa7, Hiroko Sudo7, Satoko Takizawa7,

Takashi Sakurai8,9, Kouichi Ozaki1,3, Takahiro Ochiya10,11 & Shumpei Niida1

Alzheimer’s disease (AD) is the most common subtype of dementia, followed by Vascular

Dementia (VaD), and Dementia with Lewy Bodies (DLB). Recently, microRNAs (miRNAs)

have received a lot of attention as the novel biomarkers for dementia. Here, using serum

miRNA expression of 1,601 Japanese individuals, we investigated potential miRNA bio-

markers and constructed risk prediction models, based on a supervised principal component

analysis (PCA) logistic regression method, according to the subtype of dementia. The final

risk prediction model achieved a high accuracy of 0.873 on a validation cohort in AD,

when using 78 miRNAs: Accuracy= 0.836 with 86 miRNAs in VaD; Accuracy= 0.825 with

110 miRNAs in DLB. To our knowledge, this is the first report applying miRNA-based risk

prediction models to a dementia prospective cohort. Our study demonstrates our models

to be effective in prospective disease risk prediction, and with further improvement may

contribute to practical clinical use in dementia.
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W ith an increasingly aging global human population, the
number of people with dementia is rapidly increasing,
and is estimated to reach 75 million by 2030 and

135 million by 2050, worldwide1. Since dementia is a clinical
syndrome that leads to difficulties in daily activities involving
memory, language and behavior, this rapid increase raises a
substantial burden for medical care and public health systems2.
On the other hand, there is no current cure for this disease, and
the available treatments are only able to postpone the progres-
sion3. Therefore, identification of new biomarkers for earlier
diagnosis and therapeutic intervention of the disease is promptly
required4.

The diagnosis of dementia is generally based on the patients’
cognitive function5. Alzheimer’s disease (AD) is the most com-
mon subtype of dementia, followed by vascular dementia (VaD),
and dementia with Lewy bodies (DLB)1. While recent studies
have showed that three proteins in the cerebrospinal fluid (CSF):
amyloid-beta 1–42 (Aβ142), total tau (T-tau) and phosphorylated
tau 181 (P-tau181), could be effective in characterizing AD6,7, it is
still challenging to use these CSF molecules as biomarkers in
general physical examination for early diagnosis and therapeutic
intervention due to the highly invasive collection process. In
addition, new imaging-based techniques, including positron
emission tomography scans for detection of amyloid-beta
deposition or tau tracers, and the volumetric magnetic reso-
nance imaging with determination of hippocampal or medial
temporal lobe atrophy, are not suitable for initial screening due to
the high cost performance8–10. It has also been reported that
microRNAs play a key role in the control of glial cell development
in the central nervous system11. Therefore, the present study is
evaluated on the hypothesis that neurite and synapse destruction,
associated with pathologic of dementia and other neurodegen-
erative diseases, can be detected in vitro by quantitative analysis
of brain-enriched cell-free microRNA in the human blood5.

MicroRNAs (miRNAs) are approximately 22-nucleotide small
non-coding RNAs, which have been shown to regulate gene
expression by binding to complementary regions of messenger
transcripts. The alteration of some miRNAs expression has
recently been found in neurons of patients with AD and other
neurodegenerative diseases12–14, and hence miRNAs are expected
to be useful as easily accessible and non-invasive biomarkers15.

Here, we performed a comprehensive miRNA expression
analysis using 1601 serum samples, composed of dementia
patients and individuals with cognitive normal function (referred
to as normal controls (NC)), in order to investigate new bio-
markers for earlier diagnosis and therapeutic intervention and to
construct risk prediction models using the biomarkers. We
applied 10-fold cross-validation to a discovery cohort of 1092
individuals, separated from a validation cohort of 1089 indivi-
duals. We performed a two-step procedure similar to those used
for risk prediction in several previous disease studies16–19. We
first selected effective miRNA biomarker candidates in the logistic
regression risk prediction models. Using the pre-selected miRNAs

and the principal component scores (PC scores), we then con-
structed risk prediction models based on a supervised principal
component analysis (PCA) logistic regression method. Finally, we
determined the optimal miRNA and PC score set though cross-
validation. This final risk prediction model, constructed based on
the entire discovery cohort, was evaluated with an independent
validation cohort by the area under the receiver operating char-
acteristic curve (AUC). We further evaluated the predictive ability
of our model using a prospective cohort. Our findings indicate
that the prediction models using serum miRNA expression data
may be useful as biomarkers for dementia and contribute to the
development of future therapeutic measurement for this common
but serious disorder.

Results
Japanese samples. We divided 1601 Japanese individuals (1021
AD cases, 91 VaD cases, 169 DLB cases, 32 mild cognitive
impairment (MCI), and 288 NC) into a discovery cohort of 786
individuals (511 AD cases, 46 VaD cases, 85 DLB cases and 144
NC) and a validation cohort of 783 individuals (510 AD cases, 45
VaD cases, 84 DLB cases, and 144 NC) (see Materials and
methods). The separation was performed to result in a similar
distribution in the age between the discovery and validation
cohorts for each disease (Table 1).

Construction of risk prediction models. Our risk prediction
models were constructed based on a supervised PCA logistic
regression method. All approaches that we considered were car-
ried out on datasets of the p pre-selected miRNAs (p ≤ 2562). The
selection of miRNAs was carried out based on the z-value in the
logistic regression. Nine-tenths of entire training set was used for
the calculation of the z-values and to fit the model for each cross-
validation step. The adjusted model was evaluated using the
remaining one-tenth of the training set. This process was repeated
10 times (10-fold cross-validation). The cutoff value T of the z-
values was then raised from 0.1 to 5.0 at an interval 0.1. The
number of top PC scores used, m, was set from 1 to 10 (Fig. 1).
On the basis of the average AUC, we investigated all combina-
tions of the T and m, and in AD, the combination of (T, m)=
(4.5, 10) achieved the highest AUC of 0.877 in the discovery
cohort. In VaD, a (T, m)= (4.0, 10) achieved an AUC= 0.923,
and in DLB, a (T, m)= (3.4, 9) achieved an AUC= 0.885 (Fig. 2).
Final risk prediction models were constructed based on the
optimal T and m detected in each disease using the entire training
set (discovery cohort). The adjusted models were then evaluated
on the validation cohort, which was completely independent from
the discovery cohort. As a result, 78 miRNAs out of 2562 were
employed for the final model construction in AD, which achieved
an AUC of 0.874 in the validation cohort (Fig. 3a). Of the 78, two
miRNAs (MIMAT0004947 and MIMAT0022726) were AD-
specific miRNAs reported in previous studies20. The remaining
previously reported miRNAs did not show significantly better

Table 1 Average age, sex and APOE information in the discovery and validation cohorts

Discovery cohort Validation cohort

Phenotype #Sample Age Sex (Male) APOEa #Sample Age Sex (Male) APOEa

AD 511 79.2 0.29 0.53 510 79.2 0.31 0.47
VaD 46 79.0 0.63 0.33 45 79.1 0.56 0.18
DLB 85 79.5 0.45 0.34 84 79.5 0.36 0.30
NC 144 71.7 0.49 0.22 144 71.8 0.56 0.15

APOE apolipoprotein E, AD Alzheimer’s disease, VaD vascular dementia, DLB dementia with Lewy bodies, NC normal control
aAPOE shows the average of the number of APOE ε4 allele genotype
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outcome in logistic regression in the selection of miRNAs (Sup-
plementary Data 1). A maximum average sensitivity and speci-
ficity of the ROC curve was achieved at a sensitivity of 0.933 and
specificity of 0.660 in AD. The accuracy showed 0.873 when the
prognostic index was 0.281 (Table 2). In a similar way, 86 miR-
NAs and 110 miRNAs were employed for our final model con-
struction in VaD (Fig. 3b) and DLB (Fig. 3c), which achieved
AUCs of 0.867 and 0.870 in the validation cohort, respectively. A
maximum average sensitivity and specificity of the ROC curve
was achieved at a sensitivity of 0.733 and specificity of 0.868 in
VaD and at a sensitivity of 0.762 and specificity of 0.861 in DLB.
The accuracies in VaD and DLB were 0.836 and 0.825 when the
prognostic index was −0.761 and 0.0392, respectively (Table 2).

We also constructed risk prediction models based on the
logistic regression method using only clinical information (age,
sex and apolipoprotein E (APOE)) for the entire training data set.
The adjusted models were then evaluated on the validation
cohort. The AUCs achieved were 0.857 in AD, 0.813 in VaD and
0.827 in DLB. Our finding’s miRNAs contributed to an increase
of AUCs for the risk prediction models. We further compared our
two-step method with a one-step penalized regression method,
LASSO (least absolute shrinkage and selection operator). We
constructed risk prediction models based on the LASSO method
using all miRNAs in the entire training data set. The adjusted
models were then evaluated on the validation cohort. The AUCs
achieved were 0.898 in AD, 0.821 in VaD and 0.892 in DLB. For
AD and DLB, the one-step penalized regression method showed
similar AUCs to our two-step method, but the penalized method
showed a lower AUC in VaD than our method (LASSO= 0.821,
our method= 0.867).

Effective miRNAs and the functional gene annotations. The
number of miRNAs used for final risk prediction models were
78, 86 and 110 in AD, VaD and DLB, respectively (Supplemen-
tary Data 2). We next examined the common and disease-specific
miRNAs among these three diseases. A large number of miRNAs

were shared between VaD and DLB (32 miRNAs) and among
all three (31 miRNAs) (Fig. 4a). AD possessed the most disease-
specific miRNAs compared to the other diseases (AD; 29/78=
0.371, DLB; 34/110= 0.309, VaD; 18/86= 0.209) (Fig. 4a).

Overall, miRNAs regulate the expression of thousands of
protein-coding gene targets (mRNAs) at both post-transcriptional
and translational levels21–23. To determine the biological
significance of our findings (miRNAs), we examined microRNA
Target Prediction and Functional Study Database (miRDB24),
which can predict miRNA functional target genes. The 78
miRNAs in AD were predicted to target 1755 genes. In the similar
way, the 86 miRNAs in VaD and 110 miRNAs in DLB were
predicted to target 2017 and 2521 genes, respectively. Compared
with miRNAs, a large number of mRNAs were shared among
three diseases (miRNAs: 31/162= 0.191, mRNAs: 960/3370=
0.285) (Fig. 4a, b).

Functional modules using co-expression network analysis.
Since we detected several candidate gene targets in the three
diseases, we next attempted to elucidate functional modules from
the candidates. We focused on the occurrence of hub genes,
which have relationships with many genes, through large-scale
gene co-expression network analysis. The gene co-expression
information was gathered from the COXPRESdb database25 (see
Materials and methods). Gene co-expression network visualiza-
tion was performed using Cytoscape software26. Three hub genes,
which co-expressed with >25 genes, were detected in the func-
tional modules (EXOC5, DDX3X and YTHDF3, Fig. 5). EXOC5
was associated with AD and VaD, and the remaining two genes
were common among the three diseases. These three genes were
also verified to express in brain tissue through the Genotype-
Tissue Expression (GTEx) project27,28.

Validation in a prospective cohort. We measured miRNA
expression for 32 MCI subjects, which were obtained from the
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prospective data, of which 10 subjects converted to AD after at
least 6 months. We evaluated if our risk prediction model in AD
could predict the converted subjects after 6 months. Prognosis
indices (PIs) assigned to each subject were calculated by applying
78 miRNA expression values to our prediction model. A PI score

greater than 0.281 predicted the subject would convert to AD
(Table 2). As a result, all of the 10 converted subjects were cor-
rectly predicted by our model (sensitivity= 1.0). Furthermore,
all 4 subjects predicted not to covert to AD did not actually
convert to AD (negative predictive value= 1.0). The remaining
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18 subjects were predicted to convert to AD, but had not yet
converted (specificity= 0.18) (Table 3). For further validation
of this discordance, we may have to follow-up with the subjects
in the future and use the additional comprehensive information,
including genetic data and/or whole transcriptome data, for fur-
ther improvement for practical clinical use in dementia.

Discussion
New biomarkers for early diagnosis and intervention have been
examined in many diseases29–31. The role of serum miRNAs has
recently been reviewed with emphasis on their impact on the
etiopathogenesis of sporadic AD32 and cancers21–23,33,34. For
example, dysregulated serum miRNAs, such as the down-
regulation of miR-137, miR-181c, miR-9, and miR-29a/b in the
blood of AD patients, have been identified35–38. It has also been
reported that expressional differences between AD and other
dementia types were observed for some miRNAs39. However,
due to the small sample sizes in these previous reports, com-
prehensive miRNA expression analysis had not been performed
in AD or the other subtypes of dementia. Therefore, in this study
we investigated biomarkers with respect to each subtype of
dementia, using serum miRNAs and a larger sample size.

We first detected optimal parameters for risk prediction
models using cross-validation of a discovery cohort. The final
models were then constructed with the optimal parameters using
the complete discovery cohort. The adjusted models were finally
evaluated on an independent validation cohort using AUC as
the discriminative accuracy of these risk prediction models. In
general, these risk prediction models on cross-validation of the
discovery cohort achieved higher AUCs than the adjust models

on the validation cohort18,40. The difference of the AUCs is due
to overfitting of the model construction criterion. However, our
risk models showed only small differences between discovery
and validation cohorts in the AUCs (AD= 0.877 and 0.874,
VaD= 0.923 and 0.867, and DLB= 0.885 and 0.870). These
results imply the miRNAs used in our models were efficient
to classify disease samples and non-disease samples, although
additional replication studies are necessary in future work. We
also constructed the risk prediction models using a larger max-
imum value of PC scores (m= 50). In AD and DLB, the AUCs
of the final models were slightly increased in a validation
cohort in the combination of (T, m)= (3.6, 41) in AD and that
of (T, m)= (3.2, 12) in DLB, compared with those in m= 10
(AD=+ 0.007, DLB=+0.002, Supplementary Table 1), but that
in VaD was considerably decreased in the combination of
(T, m)= (3.8, 13) (VaD=−0.015, Supplementary Table 1). For
all, a larger number of miRNAs were required for the final model
construction: m= 50 (AD, VaD, DLB)= (171, 134, 143) miR-
NAs, m= 10 (AD, VaD, DLB)= (78, 86, 110) miRNAs (Sup-
plementary Table 1). When considering prediction models with
a low number of biomarkers, our approaches would be efficient
for optimal risk prediction models. We further compared our
final models using pre-selected miRNAs to those using all miR-
NAs. Our models using pre-selected miRNAs had superior AUCs
to those using all miRNAs in all three diseases for both m= 10
and m= 50 (Supplementary Table 2). Investigations using larger
sample sizes will lead to further improvement in the performance
of risk prediction models.

The annotation of gene targets for miRNAs is critical for
functional characterization of our findings. We used miRDB24 for
these functional gene annotation from miRNAs. A large number
of genes associated with the dementia was detected. We further
elucidated three functionally important modules (i.e. hub genes,
EXOC5, DDX3X and YTHDF3) through large-scale gene co-
expression network analysis. These three genes were verified to
express in brain tissue through the GTEx project27,28. Jun et al.41

have reported that a single-nucleotide polymorphism (SNP)
in the EXOC5 showed evidence for association with AD. DDX3X,
the DEAD (Asp-Glu-Ala-Asp) box helicase 3, X-linked, belongs
to ATP-dependent RNA helicase, the activation of which is
associated with cancer in many tissues, including brain42–44.
Previous studies have reported that DDX3X expression level is
positively correlated with poor survival outcome in human
glioma45. Also, several studies have reported that YTHDF
protein could be associated with accumulation of m6A-modified
transcripts46, and this m6A mRNA modification is critical for
glioblastoma stem cell self-renewal and tumorigenesis47. Fur-
thermore, recent transcriptomic meta-analyses revealed that AD
and glioblastoma patients had similar expression patterns in a
number of genes48. These observations support the existence
of molecular substrates that could partially account for direct
co-morbidity relationships49–51. These results suggest that the
three hub genes detected could not only play a key role in
pathogenesis of dementia, but also contribute to discovery of
novel drug targets.

The diagnosis of dementia is not always consistent with brain
pathological changes52,53. Also, elderly dementia patients often
have concomitant cerebrovascular disease pathologies as well as
other concomitant neurodegenerative disease pathologies54. We
proposed a methodology that finds the best risk prediction
model for each disease rather than a general model that could be
applied to any data set. Our proposed models might be able to
differentiate these complex neurological disorders. However,
further refinement of this methodology will be required before its
practical use in healthcare. One way may be to consider genetic
variations, such as SNPs and insertions and deletions (indels)
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model. a The number of miRNAs used for final risk prediction models were
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Table 2 Accuracy estimation in three diseases using the
validation cohort

Disease PI cutoff Accuracy Sensitivity Specificity

AD 0.281 0.873 0.933 0.660
VaD −0.761 0.836 0.733 0.868
DLB 0.0392 0.825 0.762 0.861

PI prognostic index, AD Alzheimer’s disease, VaD vascular dementia, DLB dementia with Lewy
bodies
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and gene expressions. The development of next-generation
sequencing technology has facilitated comprehensive analysis of
these genetic and expression data. There is no doubt that these
additional data would contribute to further improvement of our
risk prediction models.

Materials and methods
Ethics statements. This study was approved by the ethics committee of the
National Center for Geriatrics and Gerontology (NCGG). The design and per-
formance of current study involving human subjects were clearly described in a
research protocol. All participants were voluntary and completed informed consent
in writing before registering to NCGG Biobank.

Clinical samples. All 1601 serum subjects and the associated clinical data were
distributed from the NCGG Biobank, which collects human biomaterials and
data for geriatrics research. Of them, 1021 subjects were patients with AD:
91 patients with VaD, 169 patients with DLB, 32 patients with MCI and
288 subjects were normal controls with normal cognitive function (NC). NCs
who had subjective cognitive complaints, but normal cognition on the neu-
ropsychological assessment, were categorized as normal controls. The AD and
MCI subjects were diagnosed with a probable or possible AD based on the criteria
of the National Institute on Aging Alzheimer’s Association workgroups55,56.
We used the probable ADs as AD subjects in this study. The VaD and DLB
subjects were diagnosed based on the criteria of report of the NINDS-AIREN
International Workshop57 and fourth report of the DLB Consortium58, respec-
tively. The diagnosis of all subjects was conducted based on medical history,
physical examination and diagnostic tests, neurological examination, neu-
ropsychological tests and brain imaging with magnetic resonance imaging or
computerized tomography by experts including neurologists, psychiatrists, geria-
tricians or a neurosurgeon, all experts in dementia who are familiar with its
diagnostic criteria. Comprehensive neuropsychological tests included Mini-Mental
State Examination (MMSE), Alzheimer’s Disease Assessment Scale Cognitive
Component Japanese version, Logical Memory I and II from the Wechsler Memory
Scale–Revised, frontal assessment battery, Raven’s colored progressive matrices and
Geriatric Depression Scale59. If necessary, dopamine transporter imaging and
metaiodobenzylguanidine myocardial scintigraphy were performed for the diag-
nosis of DLB. Pathological tests and biomarkers in cerebrospinal fluid tests were
not used for the diagnosis of dementia. For all of the subjects, the status of the
APOE ε4 allele genotype (the major genetic risk factor with AD) and the MMSE
score were obtained. All subjects were >60 years in age. All NC subjects had a
MMSE score of >23.
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Fig. 5 Gene co-expression network analysis. Node size corresponds to the number of connected edges. The gene name is displayed for nodes with >25
edges. Node color corresponds to which diseases the gene is associated: AD (orange), VaD (blue), DLB (green), AD and VaD (pink), AD and DLB (yellow),
VaD and DLB (purple), and all three (red). AD Alzheimer’s disease, VaD vascular dementia, DLB dementia with Lewy bodies

Table 3 Validation using the prospective cohort

Prospective cohort

Conversion MCI to AD MCI to MCI Total

Prediction MCI to AD 10 18 28
MCI to MCI 0 4 4
Total 10 22 32

MCI mild cognitive impairment, AD Alzheimer’s disease
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miRNA expression. Serum samples were isolated from whole blood following the
standard operating procedure of NCGG Biobank. In brief, blood samples tubes
were gently inverted a few times, put in an upright-position for at least 30 min to
clot, and then centrifuged for 15 min at 3500 rpm at 4 °C. After centrifugation,
serum was transferred to storage tubes containing 500 μl per tube and immediately
stored in −80 °C freezers. Total RNA was extracted from a 300 μl serum sample
using a 3D‐Gene RNA extraction reagent from a liquid sample kit (Toray Indus-
tries, Inc.), as previously described34. Comprehensive miRNA expression analysis
was performed using a 3D‐Gene miRNA Labeling kit and a 3D‐Gene Human
miRNA Oligo Chip (Toray Industries, Inc.), which was designed to detect 2562
miRNA sequences registered in miRBase release 21 (http://www.mirbase.org/).

The normalization of miRNA expression was performed by the following steps.
Mean and standard deviation (SD) were calculated using a set of pre-selected
negative control signals (background signals), the top and bottom 5% of which
were removed. Signal values greater than mean+ 2 SD of the background signals
were replaced using log2(signal–mean) and labeled effective signals. The remaining
signal values were replaced by the minimum of the effective signals–0.1.
Undetected signal values were replaced by the average signal of each miRNA signal.
To normalize the signals across different microarrays, a set of pre-selected internal
control miRNAs (miR-149-3p, miR-2861 and miR-4463), which had been stably
detected in more than 500 serum samples, was used. Each miRNA signal value was
standardized with the ratio of the average signal of the three internal control
miRNA signals34.

Risk prediction model construction. We calculated the z-value corresponding to
the miRNA in the logistic regression model in each disease (AD, VaD and DLB,
Fig. 1) in the following way:

logit Pið Þ ¼ α0 þ α1 ´ Sexi þ α2 ´Agei þ α3 ´APOEi þ α4 ´miRNAi;

The z-value was the regression coefficient divided by its standard error. The cutoff
value, T, of the z-value, and n, the number of miRNAs (n= 1, …, 2562), was pre-
selected (Fig. 1). Next, the PCA was performed using the pre-selected miRNAs. The
risk prediction models were constructed based on the combination of the miRNAs
and PC scores as defined by Fig. 1:

logit Pið Þ ¼ β1 ´ PC1 þ ¼ þ βm ´PCm;

where PCi = l1 × x1 + … + ln × xn, and xj is the normalized expression value of
miRNAj. These calculations were iteratively performed for all combinations of
cutoff values (T = 0.1, 0.2, …, 5.0) and the top PC scores (m = 1, …,10) (Fig. 1).
This optimal parameter set (T, m) was determined in the discovery cohort using
10-fold cross-validation. The regression method used in this study was conducted
using the glmnet package in the statistical software R60.

Evaluation of risk prediction models. All data were strictly separated into the
discovery cohort and validation cohort. An optimal parameter set (T, m) was
detected using 10-fold cross-validation in the discovery cohort with respect to each
disease (AD, VaD and DLB). Final models were constructed with the optimal
parameter sets using the complete discovery cohort. The adjusted models were
evaluated on an independent validation cohort. The receiver operator characteristic
(ROC) curves61 on the validation cohort and the AUC were used as the dis-
criminative accuracy of the risk prediction models. In order to further apply these
final risk prediction models to prospective cohort data, we calculated prognostic
index in each sample as defined by:

prognostic index ¼
X

i

βi ´PCi ;

where β is the estimated regression coefficient of each PC score using a supervised
PCA logistic regression method in the discovery cohort. These optimal prognostic
indices were determined using a maximum average sensitivity and specificity of the
ROC curve in the discovery cohort.

Target gene annotation of miRNAs. The functional gene annotation of miRNAs
was conducted using miRDB, which includes predicted gene targets regulated by a
comprehensive 6709 miRNAs24. All the gene targets have a prediction score in the
range between 0 and 100 assigned by MirTarget V3, with a higher score repre-
senting more statistical confidence in the prediction result. Only gene targets with
the score of >90 were used as functional gene annotation for our analysis.

Gene co-expression network analysis. COXPRESdb25 provides gene co-
expression relationships for 11 animal species (human, mouse, rat, monkey, dog,
chicken, zebrafish, fly, nematode, budding yeast and fission yeast). For all gene
pairs, Pearson’s correlation coefficients were calculated, and these values were
transferred to the Mutual Rank (MR) value62, which is the geometric average of
asymmetric ranks in co-expressed gene lists. In this study, gene pairs with a MR <
20 and Pearson’s correlation coefficients > 0.4 in human were used as co-expression
genes. The gene co-expression network was generated using Cytoscape v3.5.126.

Code availability. We used open source program languages R (version 3.4.1), Ruby
(version 2.4.0) and Python (version 3.5.1) to analyze data and create plots. Code is
available upon request from the corresponding authors.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All microarray data (2562 miRNAs) of this study are publicly available through the Gene
Expression Omnibus (GEO) database at the National Center for Biotechnology Infor-
mation (NCBI) and accessible through GEO series accession number GSE120584.
Datasets generated during the current study are available from the corresponding author
on reasonable request.

Received: 21 May 2018 Accepted: 24 January 2019

References
1. Robinson, L., Tang, E. & Taylor, J. P. Dementia: timely diagnosis and early

intervention. BMJ 350, h3029 (2015).
2. Haan, M. N. & Wallace, R. Can dementia be prevented? Brain aging in a

population-based context. Annu. Rev. Public Health 25, 1–24 (2004).
3. Kim, D. H. et al. Genetic markers for diagnosis and pathogenesis of

Alzheimer’s disease. Gene 545, 185–193 (2014).
4. Spires-Jones, T. L. & Hyman, B. T. The intersection of amyloid beta and

tau at synapses in Alzheimer’s disease. Neuron 82, 756–771 (2014).
5. Sheinerman, K. S. et al. Plasma microRNA biomarkers for detection of mild

cognitive impairment. Aging 4, 590–605 (2012).
6. Fagan, A. M. et al. Comparison of analytical platforms for cerebrospinal fluid

measures of beta-amyloid 1–42, total tau, and p-tau181 for identifying Alzheimer
disease amyloid plaque pathology. Arch. Neurol. 68, 1137–1144 (2011).

7. De Meyer, G. et al. Diagnosis-independent Alzheimer disease biomarker
signature in cognitively normal elderly people. Arch. Neurol. 67, 949–956
(2010).

8. Mistur, R. et al. Current challenges for the early detection of Alzheimer’s
disease: brain imaging and CSF studies. J. Clin. Neurol. 5, 153–166 (2009).

9. Miller, G. Alzheimer’s biomarker initiative hits its stride. Science 326, 386–389
(2009).

10. Schmand, B., Eikelenboom, P., van Gool, W. A. & Alzheimer’s Disease
Neuroimaging Initiative. Value of neuropsychological tests, neuroimaging,
and biomarkers for diagnosing Alzheimer’s disease in younger and older age
cohorts. J. Am. Geriatr. Soc. 59, 1705–1710 (2011).

11. Zheng, K., Li, H., Huang, H. & Qiu, M. MicroRNAs and glial cell
development. Neuroscientist 18, 114–118 (2012).

12. Satoh, J. MicroRNAs and their therapeutic potential for human diseases:
aberrant microRNA expression in Alzheimer’s disease brains. J. Pharmacol.
Sci. 114, 269–275 (2010).

13. Cogswell, J. P. et al. Identification of miRNA changes in Alzheimer’s disease
brain and CSF yields putative biomarkers and insights into disease pathways.
J. Alzheimers Dis. 14, 27–41 (2008).

14. Tacutu, R., Budovsky, A., Yanai, H. & Fraifeld, V. E. Molecular links between
cellular senescence, longevity and age-related diseases - a systems biology
perspective. Aging 3, 1178–1191 (2011).

15. Femminella, G. D., Ferrara, N. & Rengo, G. The emerging role of microRNAs
in Alzheimer’s disease. Front. Physiol. 6, 40 (2015).

16. Bair, E. & Tibshirani, R. Semi-supervised methods to predict patient survival
from gene expression data. PLoS Biol. 2, E108 (2004).

17. Kooperberg, C., LeBlanc, M. & Obenchain, V. Risk prediction using genome-
wide association studies. Genet. Epidemiol. 34, 643–652 (2010).

18. Shigemizu, D. et al. The construction of risk prediction models using GWAS
data and its application to a type 2 diabetes prospective cohort. PLoS One 9,
e92549 (2014).

19. Liang, Y. et al. Cancer survival analysis using semi-supervised learning
method based on Cox and AFT models with L1/2 regularization. BMC Med.
Genom. 9, 11 (2016).

20. Wu, H. Z. et al. Circulating microRNAs as biomarkers of Alzheimer’s disease:
a systematic review. J. Alzheimers Dis. 49, 755–766 (2016).

21. Heneghan, H. M., Miller, N., Kelly, R., Newell, J. & Kerin, M. J. Systemic
miRNA-195 differentiates breast cancer from other malignancies and is a
potential biomarker for detecting noninvasive and early stage disease.
Oncologist 15, 673–682 (2010).

22. Asaga, S. et al. Direct serum assay for microRNA-21 concentrations in early
and advanced breast cancer. Clin. Chem. 57, 84–91 (2011).

23. Roth, C. et al. Circulating microRNAs as blood-based markers for patients
with primary and metastatic breast cancer. Breast Cancer Res. 12, R90 (2010).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0324-7 ARTICLE

COMMUNICATIONS BIOLOGY |            (2019) 2:77 | https://doi.org/10.1038/s42003-019-0324-7 | www.nature.com/commsbio 7

http://www.mirbase.org/
http://www.ncbi.nlm.nih.gov/projects/geo/GSE120584
www.nature.com/commsbio
www.nature.com/commsbio


24. Wong, N. & Wang, X. miRDB: an online resource for microRNA target
prediction and functional annotations. Nucleic Acids Res. 43, D146–D152
(2015).

25. Okamura, Y. et al. COXPRESdb in 2015: coexpression database for animal
species by DNA-microarray and RNAseq-based expression data with multiple
quality assessment systems. Nucleic Acids Res. 43, D82–D86 (2015).

26. Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

27. Consortium, G. T. The Genotype-Tissue Expression (GTEx) project. Nat.
Genet. 45, 580–585 (2013).

28. Consortium, G. T. Human genomics. The Genotype-Tissue Expression
(GTEx) pilot analysis: multitissue gene regulation in humans. Science 348,
648–660 (2015).

29. Fang, C. et al. Serum microRNAs are promising novel biomarkers for diffuse
large B cell lymphoma. Ann. Hematol. 91, 553–559 (2012).

30. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers
for cancer detection. Proc. Natl. Acad. Sci. USA 105, 10513–10518 (2008).

31. Mizuno, H. et al. Identification of muscle-specific microRNAs in serum of
muscular dystrophy animal models: promising novel blood-based markers
for muscular dystrophy. PLoS ONE 6, e18388 (2011).

32. Maes, O. C., Chertkow, H. M., Wang, E. & Schipper, H. M. MicroRNA:
implications for Alzheimer disease and other human CNS disorders. Curr.
Genom. 10, 154–168 (2009).

33. Zhu, W., Qin, W., Atasoy, U. & Sauter, E. R. Circulating microRNAs in breast
cancer and healthy subjects. BMC Res. Notes 2, 89 (2009).

34. Shimomura, A. et al. Novel combination of serum microRNA for detecting
breast cancer in the early stage. Cancer Sci. 107, 326–334 (2016).

35. Geekiyanage, H., Jicha, G. A., Nelson, P. T. & Chan, C. Blood serum miRNA:
non-invasive biomarkers for Alzheimer’s disease. Exp. Neurol. 235, 491–496
(2012).

36. Bekris, L. M. et al. MicroRNA in Alzheimer’s disease: an exploratory study
in brain, cerebrospinal fluid and plasma. Biomarkers 18, 455–466 (2013).

37. Kumar, P. et al. Circulating miRNA biomarkers for Alzheimer’s disease.
PLoS One 8, e69807 (2013).

38. Kiko, T. et al. MicroRNAs in plasma and cerebrospinal fluid as potential
markers for Alzheimer’s disease. J. Alzheimers Dis. 39, 253–259 (2014).

39. Sorensen, S. S., Nygaard, A. B. & Christensen, T. miRNA expression profiles in
cerebrospinal fluid and blood of patients with Alzheimer’s disease and other
types of dementia - an exploratory study. Transl. Neurodegener. 5, 6 (2016).

40. Shigemizu, D. et al. The prediction models for postoperative overall survival
and disease-free survival in patients with breast cancer. Cancer Med. 6,
1627–1638 (2017).

41. Jun, G. et al. Genome-wide scan suggested novel Alzheimer’s disease
susceptibility genes by factoring influence of APOE. J. Alzheimer’s Assoc. 7,
S187 (2011).

42. Bol, G. M. et al. Expression of the RNA helicase DDX3 and the hypoxia
response in breast cancer. PLoS One 8, e63548 (2013).

43. Wu, D. W. et al. DDX3 loss by p53 inactivation promotes tumor malignancy
via the MDM2/Slug/E-cadherin pathway and poor patient outcome in non-
small-cell lung cancer. Oncogene 33, 1515–1526 (2014).

44. Sun, M., Song, L., Zhou, T., Gillespie, G. Y. & Jope, R. S. The role of DDX3 in
regulating Snail. Biochim. Biophys. Acta 1813, 438–447 (2011).

45. Hueng, D. Y. et al. DDX3X biomarker correlates with poor survival in human
gliomas. Int. J. Mol. Sci. 16, 15578–15591 (2015).

46. Shi, H. et al. YTHDF3 facilitates translation and decay of N(6)-
methyladenosine-modified RNA. Cell Res. 27, 315–328 (2017).

47. Cui, Q. et al. m(6)A RNA methylation regulates the self-renewal and
tumorigenesis of glioblastoma stem cells. Cell Rep. 18, 2622–2634 (2017).

48. Sanchez-Valle, J. et al. A molecular hypothesis to explain direct and inverse
co-morbidities between Alzheimer’s disease, glioblastoma and lung cancer. Sci.
Rep. 7, 4474 (2017).

49. Lehrer, S. Glioblastoma and dementia may share a common cause. Med.
Hypotheses 75, 67–68 (2010).

50. Driver, J. A. et al. Inverse association between cancer and Alzheimer’s disease:
results from the Framingham Heart Study. BMJ 344, e1442 (2012).

51. Musicco, M. et al. Inverse occurrence of cancer and Alzheimer disease: a
population-based incidence study. Neurology 81, 322–328 (2013).

52. Kosunen, O. et al. Diagnostic accuracy of Alzheimer’s disease: a
neuropathological study. Acta Neuropathol. 91, 185–193 (1996).

53. Dubois, B. et al. Research criteria for the diagnosis of Alzheimer’s disease:
revising the NINCDS-ADRDA criteria. Lancet Neurol. 6, 734–746 (2007).

54. Kapasi, A., DeCarli, C. & Schneider, J. A. Impact of multiple pathologies on
the threshold for clinically overt dementia. Acta Neuropathol. 134, 171–186
(2017).

55. McKhann, G. M. et al. The diagnosis of dementia due to Alzheimer’s disease:
recommendations from the National Institute on Aging-Alzheimer’s
Association workgroups on diagnostic guidelines for Alzheimer’s disease.
Alzheimers Dement. 7, 263–269 (2011).

56. Albert, M. S. et al. The diagnosis of mild cognitive impairment due to
Alzheimer’s disease: recommendations from the National Institute on Aging-
Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s
disease. Alzheimers Dement. 7, 270–279 (2011).

57. Roman, G. C. et al. Vascular dementia: diagnostic criteria for research studies.
Report of the NINDS-AIREN International Workshop. Neurology 43,
250–260 (1993).

58. McKeith, I. G. et al. Diagnosis and management of dementia with Lewy
bodies: fourth consensus report of the DLB Consortium. Neurology 89, 88–100
(2017).

59. Kawai, Y. et al. Neuropsychological differentiation between Alzheimer’s
disease and dementia with Lewy bodies in a memory clinic. Psychogeriatrics
13, 157–163 (2013).

60. R Development Core Team. R: A Language and Environment for Statistical
Computing (R Foundation for Statistical Computing, Vienna, 2009).

61. Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing
classifier performance in R. Bioinformatics 21, 3940–3941 (2005).

62. Obayashi, T. & Kinoshita, K. Rank of correlation coefficient as a comparable
measure for biological significance of gene coexpression. DNA Res. 16,
249–260 (2009).

Acknowledgements
We thank NCGG Biobank for providing the study materials, clinical information and
technical support. This study was supported by the “Development of Diagnostic Tech-
nology for Detection of miRNA in Body Fluids” grant from the Japan Agency for
Medical Research and Development and New Energy and Industrial Technology
Development Organization (to S.N., Grant Number JP17ae0101013).

Author contributions
D.S. and S.A. developed the method and performed the analyses; K.M., M.I., H.S. and
S.T. performed the experiments of miRNA expression; Y.A., K.A.B., A.S. and T.T. pro-
vided the technical assistance; T.S. contributed to data acquisition and the analyses; D.S.,
T. O., K.O. and S.N. wrote the manuscript and organized this work. All authors con-
tributed to and approved the final manuscript.

Additional information
Supplementary information accompanies this paper at https://doi.org/10.1038/s42003-
019-0324-7.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0324-7

8 COMMUNICATIONS BIOLOGY |            (2019) 2:77 | https://doi.org/10.1038/s42003-019-0324-7 | www.nature.com/commsbio

https://doi.org/10.1038/s42003-019-0324-7
https://doi.org/10.1038/s42003-019-0324-7
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Risk prediction models for dementia constructed by�supervised principal component analysis using miRNA expression data
	Results
	Japanese samples
	Construction of risk prediction models
	Effective miRNAs and the functional gene annotations
	Functional modules using co-expression network analysis
	Validation in a prospective cohort

	Discussion
	Materials and methods
	Ethics statements
	Clinical samples
	miRNA expression
	Risk prediction model construction
	Evaluation of risk prediction models
	Target gene annotation of miRNAs
	Gene co-expression network analysis
	Code availability
	Reporting summary

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




