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Environment-specificity and universality of the
microbial growth law
Qirun Wang1 & Jie Lin 1,2✉

As the nutrient quality changes, the fractions of ribosomal proteins in the proteome are

usually positively correlated with the growth rates due to the auto-catalytic nature of ribo-

somes. While this growth law is observed across multiple organisms, the relation between

the ribosome fraction and growth rate is often more complex than linear, beyond models

assuming a constant translation speed. Here, we propose a general framework of protein

synthesis considering heterogeneous translation speeds and protein degradations. We

demonstrate that the growth law curves are generally environment-specific, e.g., depending

on the correlation between the translation speeds and ribosome allocations among proteins.

Our predictions of ribosome fractions agree quantitatively with data of Saccharomyces cere-

visiae. Interestingly, we find that the growth law curve of Escherichia coli nevertheless appears

universal, which we prove must exhibit an upward bending in slow-growth conditions, in

agreement with experiments. Our work provides insights on the connection between the

heterogeneity among genes and the environment-specificity of cell behaviors.
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Cells can adapt to different environments and alter the
expression levels of multiple genes. The genome-wide gene
expression profile can change dramatically as cells switch

between different environments. However, proliferating cells,
including bacteria and unicellular eukaryotes, exhibit a growth
law as the nutrient quality changes: the fraction of ribosomal
proteins in the proteome (ϕR) and the growth rate (μ) are posi-
tively correlated. The growth law curve (ϕR vs. μ) is often fit by a
linear relation, ϕR= μ/κ+ ϕ01–6, which can be rationalized by a
simple translation model (STM): ribosomes are engaged in
translation with a constant translation speed that is proportional
to κ2,4. ϕ0 represents the fraction of inactive ribosomes that are
not producing proteins, independent of environments in the
STM. While the STM is simple and intuitive, it does not always
provide a good empirical fitting to the experimental growth law
curves, e.g., it apparently breaks down in slow-growth conditions
of Escherichia coli (doubling time longer than 60min at 37 °C) in
which more ribosomes are produced than the prediction of the
STM7. A similar breakdown was also observed for other bacteria1.

We remark that two important biological features beyond the
STM are crucial to interpreting the growth law curve, as we show
in this work. The first is the heterogeneous translation speeds of
ribosomes producing different proteins. Recent studies showed
that the translation speeds are highly heterogeneous among dif-
ferent proteins due to multiple mechanisms, including codon
usages8 and amino acid compositions9. In particular, the trans-
lation speeds of ribosomal proteins are much slower than the
average translation speed over non-ribosomal proteins due to the
abundance of positively charged amino acids in ribosomal
proteins9. Nowadays, the ribosome profiling technique allows us
to quantify the allocation of ribosomes toward the production of
different proteins. These experimental techniques enable us to
rethink the growth law in the presence of heterogeneity in
translation speeds9.

The second feature is finite protein degradation rates. The STM
neglects protein degradation and predicts that at zero growth rate,
ϕR= ϕ0 so that all ribosomes are inactive. However, this con-
tradicts experiments of nongrowing bacteria in which translation
activities are observed10. Protein degradation must be considered
at zero growth rate to balance protein production to ensure a
constant protein mass. Therefore, protein degradation must be
important to the growth law, at least in slow-growth conditions.

In this work, we show that the heterogeneous translation
speeds and protein degradations significantly influence the
growth law by introducing a general theoretical framework of
protein synthesis. We find that the fraction of ribosomal proteins
ϕR depends not only on the growth rate but also on the statistical
properties of environments. Besides the growth rate, ϕR depends
on two correlation coefficients among proteins. One is between
the translation speeds and ribosome allocations towards the
production of different proteins. The other is between the
degradation rates and mass fractions of proteins. Both correlation
coefficients are environment-specific. We compute the above
correlation coefficients using proteomics and ribosomal profiling
datasets of S. cerevisiae11. Interestingly, we find that the correla-
tion between the translation speed and ribosome allocations
becomes stronger when the growth rate decreases; cells tend to
produce more proteins with higher translation speeds in poor
nutrients. In contrast, the correlation between the protein
degradation rates and mass fractions is almost independent of
growth rates.

We derive the general form of growth law involving the above
correlations and demonstrate that for environments with similar
correlation coefficients, the growth law curve is universal and has
the following form, ϕR= (μ+ c1)/(c2μ+ c3) where c1, c2, and c3
are constants depending on the above correlation coefficients. In

particular, c2, which sets the nonlinearity of the growth law curve,
is finite due to the slow translation speed of ribosomal proteins.
We prove that a universal growth law curve must be mono-
tonically increasing and convex. Surprisingly, we find that a
universal growth law applies to E. coli and our theories justify the
upward bending of the growth law curve of E. coli in slow-growth
conditions relative to a linear line7. However, if the experiments
are implemented in multiple environments with dramatically
different correlation coefficients, the growth law curve is non-
universal and environment-specific. Our analysis of experimental
data suggests that this scenario may apply to S. cerevisiae. We fit
the experimentally measured growth law curves by our model
predictions, from which we can estimate the translation speed of
ribosomal and non-ribosomal proteins. Consistent with direct
experimental measurements9, the estimated translation speed of
ribosomal proteins is indeed much slower than non-ribosomal
proteins.

Results
Model of protein synthesis. Given a constant environment, we
consider a population of cells with a constant growth rate, and the
protein synthesis processes are in a steady state. Ribosome pro-
filing allows us to quantify the fraction of ribosomes in the pool of
total active ribosomes producing protein i, which we call ribo-
some allocation χi. Here the index i represents one particular
protein i. Mass spectrometry also allows us to measure the mass
fractions ϕi of all proteins in the proteome12. The translation
speed of ribosomes on the corresponding mRNAs is ki, which is
the averaged mass of translated amino acids per unit time. Note
that ki is averaged over the sequence of the corresponding mRNA
so that each protein has one ki. We also assume that protein i
degrades with a constant rate αi. The mass production rate of
protein i becomes

dMi

dt
¼ kiχiðR� R0Þ � αiMi: ð1Þ

Here R is the number of ribosomes, and R0 is the number of
inactive ribosomes. Our model is summarized in Fig. 1.

In this work, we focus on the effects of heterogeneous
translation speeds ki and finite degradation rates αi. Therefore,
for simplicity, we assume them to be invariant of environments.
We also mainly consider the effects of nutrient quality and do not
consider the impact of antibiotics in this work, which can
decrease the overall effective translation speed and increase ϕR as
the growth rate decreases4.

We define the total protein mass M=∑iMi, and the protein
mass fraction ϕi=Mi/M. Using Eq. (1), we find the fraction of
ribosomal proteins in the proteome in the steady state, (see
detailed derivations in Methods)

ϕR ¼ mRðμþ∑iαiϕiÞ
∑ikiχi

þ ϕ0: ð2Þ

Here μ is the growth rate of the total protein mass μ ¼ _M=M,
and mR is the total amino acid mass of a single ribosome. ϕ0 is the
mass fraction of inactive ribosomes, which we assume to be
constant for simplicity. In this work, i= 1 is reserved for
ribosomal proteins so that ϕ1= ϕR, k1= kR, and α1= αR. Here, kR
and αR are the effective translation speed and degradation rate of
the coarse-grained ribosomal protein averaged over all ribosomal
proteins. They are approximately independent of environments
due to the tight regulation of relative doses of different ribosomal
proteins13 and their generally low degradation rates. It is easy to
find that if all proteins have the same translation speed (ki= k for
all i) and protein degradations are negligible (αi= 0), Eq. (2) is
reduced to the STM.
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Universal and non-universal growth law curves. To disentangle
the effects of heterogeneous translation speeds and protein
degradations, we first simplify the model by taking αi= 0 for all
proteins and only consider the effects of heterogeneous transla-
tion speeds ki. We rewrite ∑ikiχi ¼ kRχR þ ð1� χRÞ∑N

i¼2 kieχi in
Eq. (2). Here, N is the number of proteins and χi ¼ ð1� χRÞeχi so
that ∑N

i¼2 eχi ¼ 1. In the following, we define hkiχ ¼ ∑N
i¼2 kieχi as

the χ-weighted average translation speed over all non-ribosomal
proteins. As we derive in Methods, the fraction of ribosomal
proteins can be written exactly as a Hill function of the growth rate:

ϕR ¼ μ

aμþ b
þ ϕ0; ð3Þ

where the expressions of a, b are shown in Methods. We are
particularly interested in the sign of a because it determines the
shape of the ϕR(μ) curve. Interestingly, we find that a∝ kR− 〈k〉χ.
If kR is smaller than 〈k〉χ, a is negative so that the second derivative
of the ϕR(μ) curve is positive. In other words, the ϕR(μ) curve is
upward bent in slow-growth conditions relative to a linear line.

〈k〉χ depends on both the elongation speeds ki and the
ribosome allocations χi. To find its value, we further rewrite
〈k〉χ= 〈k〉(1+ Iχ,k). Here 〈k〉 is the arithmetic average of
translation speeds over all non-ribosomal proteins. Iχ,k is a metric
we use to quantify the correlation between the ribosome
allocations and the translation speeds:

Iχ;k ¼
heχikii � heχiihki

heχiihki : ð4Þ

Here, the bracket represents an average over all non-ribosomal
proteins. Biologically, the higher Iχ,k is, the more ribosomes are
allocated to mRNAs with higher translation speeds. Because the

ribosomal allocations χi are generally different in different
environments, we use Iχ,k to characterize an environment.
Imagine that we grow cells in multiple environments with equal
Iχ,k. We find that as long as Iχ,k is not too close to −1, which we
confirm later using experimental data, a is always negative since
the translation speed of ribosomal proteins kR is much lower than
〈k〉9. Therefore, Eq. (3) predicts an upward bending of the ϕR(μ)
curve in slow-growth conditions.

We verify the above theoretical predictions by numerically
simulating the model of protein synthesis (Methods). The
translation speeds are randomly sampled among proteins and
fixed for all environments, with kR < 〈k〉. We randomly sample χi
for each environment and compute the resulting growth rate μ
and protein mass fractions ϕi. We show the results from
environments with preselected Iχ,k, which agree well with the
theoretical formula Eq. (3) (Fig. 2a).

We also consider another simplified model in which the
translation speeds are homogeneous, but protein degradation
rates are finite and heterogeneous. We find that in this model, the
growth law curve is linear with a reduced slope and increased
intercept compared with the STM (see details in Methods). The
actual shape of the growth law curve depends on the parameter
Iϕ,α, which is a metric to characterize an environment by
quantifying the correlation between the protein mass fractions
and degradation rates:

Iϕ;α ¼
heϕiαii � heϕiihαi

heϕiihαi : ð5Þ

Here, the bracket represents an average over all non-ribosomal
proteins and eϕi ¼ ð1� ϕRÞϕi. Biologically, a high Iϕ,α value means

Fig. 1 A schematic of the model. Given a constant environment, cells allocate different fractions of active ribosomes (χi) to translate mRNAs corresponding
to different proteins. In general, the translation speeds ki are heterogeneous among proteins. αi is the degradation rate of protein i. χi, ki and αi together
determine the mass fraction of protein i. The ribosome allocation strategies reflect the adaptation of cells to different environments. In this schematic, we
show three proteins for simplicity.
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that the proteome are enriched with proteins with high
degradation rates. We verify the above theoretical predictions
by numerical simulations and randomly sample the protein
degradation rates that are fixed for all environments. We show
the results from environments with preselected Iϕ,α and our
theoretical predictions Eq. (18) are nicely confirmed (Fig. 2b).

Finally, we turn to the full model with both the heterogeneities
in the translation speeds and protein degradation rates. We find
that the growth law curve has the following general form,

ϕR ¼ μþ c1
c2μþ c3

; ð6Þ

where the expressions of the constants, c1, c2 and c3 are shown in
Methods. We prove that given fixed Iχ,k and Iϕ,α (as long as they
are not too close to −1), the growth law curve must be
monotonically increasing and convex, which suggests an upward
bending in slow-growth conditions (Methods). In particular,
c2∝ kR− 〈k〉χ, which means that it is the slower translation speed
of ribosomal proteins than other proteins that generates the
nonlinear shape of the growth law curve. The simulation results
match the theoretical predictions (Fig. 3a). We note that the
uncertainness of real environments often leads to random
production of proteins and random allocation of ribosomes. To

address this question, we also simulate models in which noises
exist in the translation speeds ki and the allocation fractions χi.
We find that both noises do not affect our conclusions
qualitatively (Fig. S1). Note that adding noises to the translation
speeds and allocation fractions only makes the resulting growth
law curves even noisier and therefore does not affect our main
conclusion that the growth law curve is generally environment-
specific, as we show later.

In real situations, we remark that the actual growth curve shape
depends on the particular environments. To verify this, we
compute the resulting growth law curve with multiple environ-
ments, and the Iχ,k and Iϕ,α of each environment are randomly
sampled from Gaussian distributions (Fig. 3b, e) (Methods). We
find that when the Gaussian distributions have large standard
deviations, the growth law curve is non-universal and depends on
the particular chosen environments (Fig. 3c). This means that if
we randomly pick some environments from Fig. 3c, the resulting
growth law curves are generally different. In contrast, when the
Gaussian distributions have small standard deviations, the growth
law curve is well captured by our theoretical predictions Eq. (6)
because the environments share similar Iχ,k and Iϕ,α (Fig. 3f). To
quantify the effects of heterogeneous Iχ,k and Iϕ,α across
environments, we repeatedly sample 20 random points from
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Fig. 3c, f and fit them using Eq. (6) (Methods), imitating the
sampling processes in real experiments. We find that when the
chosen environments have significantly different Iχ,k and Iϕ,α, the
median root mean squared error RMSE= 1.69 × 10−2 (Fig. 3d).
In contrast, in the case of similar environments, RMSE= 4.44 ×
10−3 (Fig. 3g). The above results suggest that we can use the
fitting error as a criterion of the universality of the growth law
curve, which we apply to the experimental data later.

Experimental tests of theories. In this section, we test our model
using published datasets of S. cerevisiae14 (Methods). For each
strain and nutrient quality, we computed the correlation coeffi-
cients between the translation speeds and ribosome allocations
Iχ,k, and the correlation coefficients between the protein degra-
dation rates and protein mass fractions Iϕ,α. Given the values of μ,
Iχ,k, and Iϕ,α, we predicted the fraction of ribosomal proteins ϕR
using Eq. (6) (Fig. 4a, d). We note that one parameter ϕ0 is not
known experimentally. By choosing a common ϕ0= 0.048, our
model predictions nicely match the experimentally measured
values of ϕR (with one data point slightly above the theoretical
prediction). We find that regardless of the data processing pro-
cedures, the relative relationships between the predicted curves
always agree with those of the experimental values (Methods and
Fig. S2).

Our model is simplified as we assume that the translation
speeds and protein degradation rates do not depend on
environments. Remarkably, our model predictions still quantita-
tively match the experimental observations, suggesting that our
assumptions may be reasonable for most situations. While our
model cannot predict the growth rate dependence of ϕ0, our
results show that a constant ϕ0 is consistent with three of four
data points in Fig. 4a, and the outlier may have a higher ϕ0 in that

particular environment. Our analysis cannot exclude the
possibility that ϕ0 is also environment-specific.

Interestingly, we found that Iϕ,α ≈−0.33 for all the conditions
we computed. However, Iχ,k are negatively correlated with the
growth rates, suggesting cells tend to allocate more ribosomes to
translate mRNAs with higher ki in poor nutrient conditions
(Fig. 4b). To find out what genes acquire more resources when
the environment is shifted, we perform Gene Set Enrichment
Analysis (GSEA)15,16 for wild type cells (Methods) and find that
eight gene sets from the Gene Ontology (GO)17,18 database are
enriched in both the GSEA where genes are ordered by ki and the
GSEA where genes are ordered by log2 fold change (log2FC) of χi
when the nutrient changes (Fig. S3a).

We find that five gene sets related to stress response are
enriched in the regime of higher ki and increasing χi when the
environment is changed from 2% glucose to 2% glycerol (Fig. 4c).
This is consistent with the environmental stress response (ESR) of
S. cerevisiae as an adaptation to the shifts of environments19. We
propose that higher translation speeds of stress response proteins
enable cells to respond rapidly to environmental changes, which
is evolutionarily advantageous. We also find two gene sets related
to the rRNA process enriched in the regime of lower ki and
decreasing χi (Fig. 4c). We also perform GSEA for natAΔ cells
and get similar results (Fig. S3b, c).

Applications of theories to experimental growth law curves. An
important application of our theories is that one can estimate the
translation speeds by fitting the experimental growth law curve to
our model prediction Eq. (6) (Methods). Because there are
6 unknown parameters in the definition of c1, c2, and c3
(Eqs. (23)–(25)), we can estimate three of the parameters given
the values of the other three. For the S. cerevisiae data from Ref. 6,
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we use the experimentally measured degradation rate of riboso-
mal proteins αR and the mass of ribosomal proteins mR as given.
We approximate the ϕ-averaged degradation rate 〈α〉ϕ by 〈α〉
(1+ Iϕ,α) where Iϕ,α=−0.33, justified by the observations that
Iϕ,α is independent of environments (Fig. 4b). We find that the
fitted parameters c1, c2 and c3 having a wide range of 95% con-
fidence intervals (Fig. 5a, c) with RMSE= 1.35 × 10−2. The
inferred ranges of ϕ0, kR and 〈k〉χ are also unreasonably large
(Fig. 5c). All these results suggest that the growth law curves of S.
cerevisiae are non-universal and large variations of Iχ,k and Iϕ,α
exist among environments (Fig. 3d).

We also apply our theories to E. coli7 (Fig. 5b). Because most
proteins are non-degradable in bacteria20,21, we set αR and 〈α〉ϕ as
0, and the mass of ribosomal protein mR= 8.07 × 105Da12. In this
case, the fitted parameters have much smaller range of 95%
confidence intervals with RMSE= 3.60 × 10−3. The estimated kR,
and 〈k〉χ are consistent with previous studies22–24 (Fig. 5c). Our
analysis of experimental data demonstrates that the translation
speed of ribosomal proteins is indeed smaller than the χ−
averaged translation speed, in agreement with experimental
observations9. Our results suggest that E. coli has similar values of
Iχ,k and Iϕ,α in the chosen environments of Ref. 7 so that it has a
universal growth law curve. In contrast, S. cerevisiae appears to
have significantly different Iχ,k and Iϕ,α across different environ-
ments of Ref. 6 so that the growth law curve depends on the
chosen environments and therefore non-universal.

Discussion. It has been known since the 1950s that the chemical
compositions and cell size of bacteria are functions of growth rate
and seem to be independent of the medium used to achieve the
growth rate25. This view has been broadly accepted in the study of
bacteria physiologies in the past decades. The growth law

acquired its name because of the independence of the environ-
ment. However, recent findings hint at an unforeseen complexity
in the growth law. For example, bacterial cell sizes have been
shown to depend on the presence of antibiotics, and over-
expression of useless proteins26, and dramatically different cell
sizes can exist at the same growth rate27. Our study focuses on the
growth law regarding the fraction of ribosomal proteins in the
proteome and further uncovers the importance of environment-
specificity to microbial physiologies. We go beyond the simple
translation model and take account of the heterogeneous trans-
lation speeds and finite protein degradations. Given the transla-
tion speeds and protein degradation rates, our model is
completely general and virtually applies to any cells, including
both proliferating cells (μ > 0) and non-proliferating cells (μ= 0).
In this work, we mainly consider the scenario in which the
growth rate changes due to the nutrient quality and the fraction
of ribosomal proteins (ϕR) increases monotonically as the growth
rate increases.

We demonstrate that the growth law curve generally has the
form of Eq. (6). The actual shape of the growth law curve
depends on two correlation coefficients: one is between the
ribosome allocations and the translation speeds (Iχ,k); the other is
between the protein mass fractions and protein degradation rates
(Iϕ,α). By analyzing the dataset from14, we found that Iϕ,α is
independent of growth rate, while Iχ,k appears to be negatively
correlated with the growth rate. This means that cells tend to
produce proteins with faster translation speeds in slow-growth
conditions, which can be an economic strategy under evolu-
tionary selection. Remarkably, our theoretical predictions of ϕR
reasonably match the experimentally measured values14. We
note that the upward bending of the growth law curves of
bacteria compared with a linear relation appears to hint at an
increasing fraction of inactive ribosomes in slow-growth
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Fig. 5 Fitting of the full model to different datasets. a The non-linear fitting to data of S. cerevisiae from Ref. 6. The shadow represents the 95% prediction
interval. b The non-linear fitting to data of E. coli from Ref. 7. c Detailed fitting results of (a) and (b). Note that the reference value of 〈k〉χ of (a) is
approximated by 〈k〉(1+ Iχ,k) where the minimal Iχ,k= 0.608 and the maximal Iχ,k= 2.415 (Fig. 4d).
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conditions. While this mechanism appears plausible, it has not
been confirmed experimentally as we realize. In our work, we
demonstrate that the apparent upward bending can be merely a
consequence of heterogeneous translation speeds among pro-
teins and therefore raises caution on the biological interpretation
of the shape of the growth law curve.

We apply our model predictions to the growth law curves of S.
cerevisiae6 and E. coli7. In the former case, data fitting to our
model prediction is subject to very large uncertainty. This
observation agrees with the computed Iχ,k that are variable across
conditions using the ribosome profiling and mass spectrometry
data from14 (Fig. 4b). In contrast, the fitting of E. coli data
exhibits a much smaller uncertainty, suggesting that common Iχ,k
and Iϕ,α may apply to all the nutrient qualities used in the
experiments of Ref. 7. We expect that this idea can be tested when
genome-wide measurements, such as the translation speeds of E.
coli are available in the future so that critical parameters such as
Iχ,k can be calculated for E. coli.

We remark that in the absence of heterogeneous translation
speeds and protein degradation, the mass fraction of protein i, ϕi
must equal the ribosome allocation χi. Indeed, these two datasets
are often highly correlated among proteins in E. coli12,28.
However, in a more realistic scenario, ϕi also depends on the
translation speed and protein degradation rate. Given the same
χi, proteins with higher translation speeds or lower degradation
rates should have higher mass fractions (Methods). We note that
using the current genome-wide datasets of S. cerevisiae, the
predicted protein mass fractions ϕi,pre based on the ribosome
allocations χi14, the translation speeds ki9, and the protein
degradation rates αi11 do not correlate strong enough with the
measured ϕi. We note that these datasets are from different
references, and the deviation is likely due to the noise in the
measurements of ki (Table S2). We expect our theories to be
further verified when more accurate measurements of translation
speeds are available.

For simplicity, in this work, we assume that the translation
speeds and protein degradation rates are invariant as the nutrient
quality changes. Therefore, we can use the two correlation
coefficients Iχ,k and Iϕ,α to characterize a particular environment.
We remark that our model can be generalized to more complex
scenarios in which the translation speeds or protein degradation
rates depend on the growth rate7. In this case, one just needs to
include four additional environment-specific parameters: kR, 〈k〉,
αR, and 〈α〉.

Methods
Derivations of Equation (2). All variables are summarized in Table S3.

Because the total protein mass M=∑iMi, we sum over all proteins on both
sides of Eq. (1) and obtain

dM
dt

¼ ∑
i

dMi

dt
¼ ðR� R0Þ∑

i
kiχi �∑

i
αiMi: ð7Þ

We then divide both sides by M and obtain the expression of the growth rate

μ ¼ dM=dt
M

¼ R� R0

M
∑
i
kiχi �

∑iαiMi

M

¼ ϕR � ϕ0
mR

∑
i
kiχi �∑

i
αiϕi;

ð8Þ

from which Eq. (2) is obtained.
We can also find the changing rate of ϕi=Mi/M using Eq. (1),

dϕi
dt

¼ kiχiðϕR � ϕ0Þ
mR

� αiϕi � μϕi ¼ 0; ð9Þ

which leads to the expression of ϕi in the steady state as

ϕi ¼
kiχiðϕR � ϕ0Þ
mRðμþ αiÞ

: ð10Þ

Since all proteins grow in the same rate in the steady-state, the growth rates of

protein i defined as

μi ¼ _Mi=Mi ¼ kiχiðϕR � ϕ0Þ=ðmRϕiÞ � αi; ð11Þ
must be equal to μ, which can be easily verified using Eq. (10). Using the
normalization condition ∑iϕi= 1, we can write ϕi using Eq. (10) as

ϕi ¼
kiχi=ðμþ αiÞ

∑jkjχj=ðμþ αjÞ
: ð12Þ

We can also write the normalization condition as

1 ¼ ϕR � ϕ0
mR

∑
i

kiχi
ðμþ αiÞ

: ð13Þ

Details of the simplified model without protein degradation. In deriving Eq.
(3), we neglect protein degradation and rewrite Eq. (2) as

ϕR ¼ mRμ

kRχR þ ð1� χRÞhkiχ
þ ϕ0: ð14Þ

Meanwhile, we compute the growth rate using the auto-catalytic nature of
ribosomal proteins,

μ ¼
dMR
dt

MR
¼ kRχR

mR
1� ϕ0

ϕR

� �
: ð15Þ

The above equation allows us to replace χR by μ in Eq. (14), from which we
obtain Eq. (3) where

a ¼ kR � hkiχ
kRð1� ϕ0Þ þ hkiχϕ0

; ð16Þ

b ¼ kRhkiχ
mR½kRð1� ϕ0Þ þ hkiχϕ0Þ�

: ð17Þ

Details of the simplified model with finite protein degradation rates. We now
discuss the effects of finite protein degradation rates and assume that the trans-
lation speeds are homogeneous and equal to k for all proteins. We rewrite the
∑iαiϕi term in Eq. (2) such that ∑iαiϕi ¼ αRϕR þ ð1� ϕRÞ∑N

i¼2 αieϕi. Here, ϕi ¼
ð1� ϕRÞeϕi so that ∑N

i¼2
eϕi ¼ 1. We define the ϕ− averaged degradation rates over

all non-ribosomal proteins as hαiϕ ¼ ∑N
i¼2 αieϕi . Therefore, Eq. (2) can be written as

ϕR ¼ μþ c
k=mR þ d

þ ϕ0: ð18Þ

where

c ¼ hαiϕð1� ϕ0Þ þ αRϕ0; ð19Þ

d ¼ hαiϕ � αR: ð20Þ
To find the sign of d, we further rewrite 〈α〉ϕ as 〈α〉ϕ= 〈α〉(1+ Iϕ,α) where 〈α〉 is

the arithmetic average of degradation rates over all non-ribosomal proteins.
Imagine that we grow cells in multiple environments with equal Iϕ,α. We

assume that the degradation rate of ribosomal protein αR is slower than the
average of non-ribosomal proteins 〈α〉, which is biologically reasonable since
ribosomal proteins are generally non-degraded. Therefore, as long as Iϕ,α is not
too close to −1, which we confirm using experimental data, d is positive since αR
is always smaller than 〈α〉ϕ. Therefore, our model predicts that the growth law
curve is linear given a constant Iϕ,α and finite protein degradation decreases the
slope relative to the STM. The intercept at μ= 0 is also larger than ϕ0. Therefore, a
finite fraction of ribosomes are still translating at zero growth rate. We verify the
above theoretical predictions by numerical simulations and randomly sample the
protein degradation rates that are fixed for all environments, with αR < 〈α〉
satisfied.

Derivations of the full model. In this section we derive the full model considering
both the heterogeneities in the translation speeds and protein degradation rates.
We rewrite Eq. (2) in the main text as

ϕR ¼ mR½μþ αRϕR þ ð1� ϕRÞhαiϕ�
kRχR þ ð1� χRÞhkiχ

þ ϕ0: ð21Þ

Meanwhile, the growth rate is

μ ¼ kRχR
mR

1� ϕ0
ϕR

� �
� αR: ð22Þ

Combining Eq. (21) and Eq. (22) allows us to solve ϕR as a function of μ and we
obtain Eq. (6)

ϕR ¼ μþ c1
c2μþ c3

; ð6Þ
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where

c1 ¼
hkiχϕ0
mR

þ hαiϕ; ð23Þ

c2 ¼ 1� hkiχ
kR

; ð24Þ

c3 ¼ hαiϕ �
αRhkiχ
kR

þ hkiχ
mR

: ð25Þ

It is straightforward to find that the condition for Eq. (6) to be monotonically
increasing is that c3 > c1c2. Using the above expressions, we find that

c3 � c1c2 ¼
hkiχ ð1�ϕ0Þ

mR
þ

hki2χϕ0
kRmR

þ hkiχ ðhαiϕ�αRÞ
kR

:
ð26Þ

We find that the first two terms are always positive, and the last term is positive
as long as Iα,ϕ is not too close to −1. Therefore, the ϕR(μ) curve must increase
monotonically. It is straightforward to find that the second derivative of the ϕR(μ)
curve is proportional to (c1c2− c3)c2, which is always positive as long as Iχ,k is not
too close to −1.

Details of the numerical simulations. We summarize the parameters we use in
the numerical simulations in Table S1. We consider a cell with 4000 genes. We set
the elongation speed ki and the degradation rates αi of non-ribosomal genes to
follow lognormal distributions. We set kR= 2.07 × 104 Da/min, 〈k〉= 4.80 × 104

Da/min, αR= 4.83 × 10−4min−1, and 〈α〉= 1.10 × 10−3min−1 as the experimen-
tally measured values of S. cerevisiae9,11. The coefficients of variation (CV) of the
lognormal distributions can be found in Table S1. In all simulations, we set
ϕ0= 0.08. We note that in Fig. 2a, we set αi= 0 for all proteins and in Fig. 2b, we
set ki= 〈k〉 for all proteins.

To simulate a random environment, we generate a random χR. Meanwhile, a
lognormal distribution of χi of non-ribosomal genes is also randomly generated. The
CV of the lognormal distribution is included in Table S1. We then search for the ϕR
and μ that simultaneously satisfy Eq. (22) and Eq. (13). ϕi, Iχ,k and Iϕ,α are then
calculated using Eq. (10), Eq. (4) and Eq. (5), respectively. For a chosen pair of Iχ,k
and Iϕ,α, the predicted ϕR(μ) curve is obtained using Eq. (6). To obtain Fig. 3d, g, we
randomly sample 20 points from Fig. 3c, f respectively, fit them using Eq. (6), and
calculate the resulting RMSE. We repeat the above process 5000 times.

Details of the experimental data analysis. For the ribosome profiling data14, we
first trim the adapter with Cutadapt (version 3.4)29. Then we use Bowtie2 (version
2.4.2)30 to eliminate ribosomal RNAs (rRNA) as mentioned in31. The cleaned reads
are then mapped to S. cerevisiae genome R64.1.1 with HISAT2 (version 2.2.1)32.
Read counts are then generated with featureCount (version 2.0.1)33. We then
manually eliminate the non-coding RNAs. The ribosome allocation χi is calculated
based on the mean count fraction of all samples (Supplementary Data 3).

For the proteomics data14, we perform the absolute quantification (or the in-
sample relative quantification) of proteins based on the intensities of peptides using
xTop (version 1.2)12. The intensity ratio of 2 proteins in the same sample of
proteomics data does not directly represent the real abundance (either the mass or
the copy number) ratio, so the abundance fraction can not be replaced with the
intensity fraction12,34. xTop is a software that accurately calculates the in-sample
relative protein copy number with the maximum a posteriori probability (MAP)
algorithm12. We then calculate all proteins’ mass fraction ϕi with the xTop results
and the protein molecular mass (Supplementary Data 2). In12, the authors further
calibrated ϕi with ribosome profiling data assuming homogeneous ki. In this work,
we alternatively calibrate ϕi with L−0.57 where L is the protein length, as mentioned
in12. Calibration with L−0.57 is independent of ribosome profiling data, although it
reduces the distance between χi and calibrated ϕi12. We also show the result with
calibration of L−1 or without calibration in Fig. S2b, c. To compute ϕR, we sum up
the ϕi of all proteins annotated as the cytoplasmic ribosomal protein in the
Saccharomyces Genome Database (SGD).

For the elongation speed ki, we first calculate vi as mentioned in9. ki is then
calculated using the relationship ki= viai where vi is the number of translated amino
acids per unit time, and ai is the averaged mass of amino acids over the sequence of
protein i (Supplementary Data 1). For the degradation rate αi, data is obtained
from11. We calculate the experimental Iχ,k, Iϕ,α, 〈k〉 and 〈α〉 for non-ribosomal genes
that exist in all data sets of χi, ϕi, ki and αi. We also calculate the χ-averaged k of
ribosomal proteins as kR and ϕ-averaged α of ribosomal proteins as αR.

For the molecular mass of the ribosome, we calculate the effective mR.
Considering the efficiency of the mass spectrometry (MS), not all proteins can be
detected. Therefore, we define the effective mR as the molecular weights of
ribosomal proteins detected in the proteome. Because most of the ribosomal
proteins can be expressed by two paralogous genes in S. cerevisiae, we count the
average molecular mass when both proteins of the paralogs are detected in the
proteome. We also show our predictions of ϕR using the actual ribosome mass
(mR= 1.40 × 106 Da) in Fig. S2a.

For the growth rate μ (Supplementary Data 4), it is obtained from the growth
curve, OD600 versus time from14 with the method mentioned in35. Briefly, the
slopes of lnðOD600Þ versus time in 5-point windows are calculated. Then windows
with slopes at least 95% of the maximum slope are extracted. The slope of points
within these windows is calculated as the growth rate. With these results, we
predict the corresponding ϕR(μ) curves and compare them with the experimental
data points.

We further calculate the predicted mass fraction ϕi,pre of non-ribosomal proteins
with Eq. (12). Pearson correlation coefficients ρ between ϕi,pre and ϕi are calculated.
We also compute ρ under the assumptions that αi= 0 or ki= 〈k〉 (Table S2).

For GSEA analysis, we first perform the differential expression analysis on the
ribosome profiling data of WT or natAΔ cells using the package DEseq2 (version
1.24.0)36 in R (version 3.6.1). The log2 fold changes in counts when cells changed
from SC+2% glucose to SC+2% glycerol, the p-value of the two-sided Wald test, and
the FDR q-values are calculated. Ribosomal genes and genes with FDR q-value > 0.05
are eliminated. We then pick out genes that also exist in the data sets of ki. GSEA on
these genes is performed twice using the R package clusterProfiler (version 3.12.0)37

and org.Sc.sgd.db (version 3.8.2)38. In the first GSEA, genes are ordered by the log2
fold change (denoted as log2FC-ordered GSEA). In the second GSEA, genes are
ordered by ki (denoted as ki-ordered GSEA). We then find the common gene sets
from GO database17,18 enriched in these two GSEA. The cut-off criteria are set as the
p-value < 0.05 (single-sided permutation test) and the FDR q-value < 0.25. The
number of permutations used in the analysis is 105.

Details of fitting in Fig. 5. Nonlinear fitting is performed with MATLAB (version
R2020b). We obtain the fitting parameters c1, c2 and c3 with their 95% confidence
intervals, and then compute ϕ0, kR and 〈k〉χ using Eqs. (23), (24), (25). To compute
the ranges of these values, we numerically find the maximum and the minimum
value of the multivariate functions ϕ0(c1, c2, c3), kR(c1, c2, c3) and 〈k〉χ(c1, c2, c3) as
their upper and lower bounds, where the ranges of c1, c2 and c3 are their 95%
confidence intervals.

Statistics and reproducibility. We use the two-sided Wald test in the differential
expression analysis of the ribosome profiling data. In GSEA, we use a single-sided
permutation test. As for reproducibility, no biological experiments are performed
in our work, and all data are acquired from public repositories (see Data
Availability).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Ribosome profiling data from14 was deposited at GEO (GSE140255) (link https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140255). The Proteomics data from14 was
deposited at ProteomeXchange (PXD015217) (link http://proteomecentral.proteomexchange.
org/cgi/GetDataset?ID=PXD015217). The growth rate data was acquired from the figures of
OD600-versus-time curves in14. The Ribosomal protein list was acquired from Saccharomyces
Genome Database (SGD) (link https://yeastgenome.org). The data needed calculating
elongation speeds was acquired from the supplementary materials of9. The protein
degradation rate data was acquired from the supplementary materials of11. The ϕR-μ data of E.
coli was acquired from the supplementary materials of7. The ϕR-μ data of S. cerevisiae was
acquired from the figure in6. Calculated data of ki , ϕi , χi , and μ have been provided in
Supplementary Data 1-4.

Code availability
All codes for mathematical simulations and data analysis are available in the following
link (https://github.com/QirunWang/Codes-for-Environment-specificity-and-
universality-of-the-growth-law).
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