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Simple Summary: Opuntia ficus-indica is rich in a variety of active substances, such as anthocyanins,
flavonoids, and polysaccharides. Anthocyanins play an important role in regulating intestinal flora.
To explore the relationship between anthocyanins in Opuntia ficus-indica and human intestinal flora,
this study uses Opuntia ficus-indica as raw material to conduct animal experiments to study the effects
of Opuntia ficus-indica anthocyanins on human gut microbes and short-chain fatty acid metabolites.
The findings provide a theoretical basis for anthocyanins in Opuntia ficus-indica as dietary supplements
to regulate human intestinal flora.

Abstract: Opuntia ficus-indica is rich in a variety of active substances, such as anthocyanins, flavonoids,
and polysaccharides. Some studies have shown that anthocyanins extracted from natural plants can
regulate intestinal flora. The fruit was used as raw material, and anthocyanins were extracted from it.
In vivo experiments were used to study the effect of Opuntia ficus-indica anthocyanins on the mouse
intestine by 16S rRNA high-throughput sequencing (NovaSeq 6000 platform) and gas chromatog-
raphy (hydrogen flame ionization detector (FID)) methods. Microbiota and effects of short-chain
fatty acids (SCFAs). The results showed that after feeding anthocyanins, the diversity of intestinal
microorganisms in mice was significantly increased (p < 0.05), the ratio of Firmicutes/Bacteroidetes
(F/B value) was significantly decreased (p < 0.05), the relative abundances of beneficial bacteria
Lactobacillus, Bifidobacterium, Prevotella, and Akkermansia in the intestinal tract of mice were
significantly increased (p < 0.05), and the relative abundance of pathogenic bacteria Escherichia-
Shigella and Desulfovibrio decreased significantly (p < 0.05). Furthermore, anthocyanins significantly
increased the content of short-chain fatty acids in the cecum of mice, among which the content of
acetic acid, propionic acid, and butyric acid increased the most. Opuntia ficus-indica anthocyanins can
change the microbial diversity and flora composition of the mouse gut and promote the production
of short-chain fatty acids. The findings provide a theoretical basis for the use of Opuntia ficus-indica
anthocyanins as dietary supplements to regulate human intestinal flora.

Keywords: Opuntia ficus-indica; anthocyanins; gut microbiota; high-throughput sequencing; SCFAs

1. Introduction

The gut microbiota comprise a group of bacteria that inhabit the human gut and
exhibit interdependence with the human body. In the human stomach, there are a variety of
microorganisms. From birth to aging, these intestinal microorganisms maintain a dynamic
balance in the human body and restrict each other [1]. Because of the long-term synergy
between the body and the intestinal flora, the gut microbiota forms an inseparable part
of the human body and plays an immeasurably important role in maintaining physical
health [2]. As a person grows, the intestinal flora also undergoes certain changes. Due to
the influence of various acquired factors, such as living habits, psychological factors, mode
of delivery, age, race, geographical environment, dietary habits (including consumption of
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probiotics), and antibiotics, and other factors that affect intake, unique microbial species
are formed. Among these various factors, the main reason for the change in intestinal flora
is diet, because it not only provides nutrients for the body, ut also provides energy for
the flora, which changes the environment in which the flora lives. As a result, changing
the diet structure may cause changes in the gut microbiota that allow the gut microbiota
to return to normal, thereby improving health [3]. Diet is widely recognized as a major
food-related factor affecting the composition and function of the human gut microbiota.
For example, a diet rich in non-starch indigestible polysaccharides and dietary fiber affects
the gut microbiota, primarily by reducing the Firmicutes/Bacteroidetes ratio [4].

The fruit produced by Opuntia plants is called Opuntia ficus-indica. Opuntia is a native
plant found in the American continent. It is a multi-pulp plant, widely distributed in South
Africa. It is also abundant in tropical areas of China, such as Hainan, Yunnan, and Guangxi,
and has climate tolerance [5]. Its pulp contains a variety of bioactive substances, such as
anthocyanins, polysaccharides, flavonoids, proteins, amino acids, and vitamins [6]. Antho-
cyanins are ingested by the human body and digested and absorbed by the gastrointestinal
tract. The unabsorbed part of anthocyanins and their degradation products reach the area
of the large intestine inhabited by microbes. The regulatory effect of anthocyanins on
intestinal microorganisms is evident in two aspects. Anthocyanins interact with intestinal
flora, and, through a series of metabolic activities, they have direct physiological activities
(such as regulating diabetes and obesity). Further, anthocyanins and their degradation
products change the number and composition of intestinal microorganisms by regulating
the growth of specific bacteria in the microbial community and play a role in promoting
human health [7]. Anthocyanins can also interact with endogenous and microbial enzymes,
resulting in the production of a large number of circulating and excreted anthocyanin
metabolites and catabolic products acting on the intestinal flora [8]. However, to the best
of our knowledge, little is known about the functional interactions between Opuntia ficus-
indica anthocyanins and the gut microbiota and their relevance to gut health. Therefore, the
aim of this study was to investigate the effect of Opuntia ficus-indica anthocyanins on the
gut microbiota and the production of short-chain fatty acids (SCFAs).

According to the previous in vitro fermentation study, we found that Opuntia ficus-
indica anthocyanins are digested in an amount in the stomach, a large amount is digested
in the small intestine, and most of them are left. They can change the diversity and
composition of microbes in the intestinal tract and promote the production of short-chain
fatty acids. In order to further confirm whether Opuntia ficus-indica anthocyanins can
play a prebiotic role in the intestinal tract of normal mice, we took the animal experiment
in vivo [9].

2. Materials and Methods
2.1. Materials and Reagents

Opuntia ficus-indica was obtained from Hainan Province, China, and Opuntia ficus-indica
anthocyanins were purified from peeled Opuntia ficus-indica, and the purity is 14.16% [10].
HiPure StooL DNA Kits were acquired from Magen Biotechnology Co., Ltd. (Guangzhou,
China). Agarose was purchased from Biowest. Goldview I was purchased from USA. PCR-
related reagents were purchased from New England Biolabs (Ipswich, MA, USA). A mixed
standard of 6 water-soluble fatty acids was purchased from Tanmo Quality Inspection
Technology Co., Ltd. (Jiangsu, China). All other reagents provided by the laboratory were
of analytical grade.

2.2. Animal Experiment

Forty male Kunming mice (body weight (BW) 20 ± 2 g) were purchased from Liaoning
Changshen Biotechnology Co., Ltd. (SCXK(liao)2020-0001, Benxi, China). The animals were
kept at relative humidity (60 ± 10%) and temperature (23 ± 2 ◦C) under controlled condi-
tions, housed in a specific pathogen-free animal room (SPF grade) with a 12-h light–dark
cycle (8 am to 8 pm), with ad libitum access to food and water. After 7 days of normal diet,
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the mice were randomly divided into four groups [11]: (1) K group (blank group), fed with
sterile water every day; (2) L group (low dose group), fed with 50 mg/kg.BW anthocyanin
solution every day; (3) M group (medium dose group), fed daily 100 mg/kg.BW antho-
cyanin solution; (4) H group (high dose group), fed 150 mg/kg.BW anthocyanin solution
every day. Breeding procedures were strictly in accordance with national regulations.

2.3. Animal Behavioral Observation

The body weights of all mice were measured during the gavage period (the amount of
each gavage was calculated). The daily mental state, coat color, gloss, food intake, water
intake, and urine output of the mice were recorded. The fecal properties of the mice were
recorded, and the samples were stored at −80 ◦C for further integrated analysis.

2.4. Calculation of the Coefficient of Each Tissue Organ

Sixteen hours after the last gavage, the mice were sacrificed by decapitation for aseptic
sampling. The sampling sites were heart, liver, spleen, lung, kidney, thymus, and cecum
contents (the contents of the cecum were stored in two parts). All tissue samples were
weighed and frozen. After wrapping with tin foil, it was transferred to a sterile enzyme-free
tube, pre-frozen in liquid nitrogen, and immediately transferred to a −80 ◦C refrigerator
for storage.

The fat on the surface of the heart, thymus, spleen, liver, lung, and kidney was removed
and washed with normal saline, the water on the surface was absorbed, and samples were
weighed, organ weights were recorded, and the organ coefficient was calculated.

2.5. DNA Extraction

Genomic DNA was extracted using HiPure Stool DNA Kits according to the manufac-
turer’s instructions. By using a Nanodrop spectrophotometer (NC2000; Thermo Scientific,
New York, USA), we compared the absorbance ratio A260/A280 to assess the purity of
isolated DNA. DNA quality was confirmed by electrophoresis on a 0.8% agarose gel, and
bands were visualized with a DYY-6C electrophoresis analyzer (Liuyi Instrument Factory,
Beijing, China).

2.6. 16S rDNA Gene Amplification and Sequencing

Using forward primer 341F: CCTACGGGNGGCGWGCAG and reverse primer 806R:
GGACTACHVGGGTATCTAAT, the target fragment 16S rDNA V3-V4 region was amplified
by PCR. We amplified the target product with the barcode in the first primer as a specific
primer. The first and second rounds of amplification were used to purify the PCR products
using AMPure XP Beads (Beckman Coulter, Pasadena, CA, USA), and quantification was
performed with Qubit3.0 (Thermo Fischer Scientific, Waltham, MA, USA) after purification.
Using AMPure, the second-round amplification products were purified by XP Beads,
quantified by ABI StepOnePlus Real-Time PCR System (Life Technologies, Grand Island,
NY, USA), and sequenced on-board according to the PE250 mode pooling of NovaSeq 6000.

2.7. Bioinformatics Analysis of Gut Microbiota Profiles

The UCLUST function in QIIME was used to select high-quality sequence data and
cluster them into operational taxonomic units (OTUs) with 97% similarity. Bacteria were
then determined using the number of OTUs observed α Diversity. In QIIME and R software,
unweighted UniFrac principal coordinate analysis (PCoA), unweighted UniFrac non-metric
multidimensional scale (NMDS), and unweighted pairwise group method (UPGMA) with
arithmetic mean were used for β diversity analysis. The potential microbial communities of
different regions and species were further compared between the groups using transfer data.
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2.8. Detection of Short-Chain Fatty Acids in the Cecum by Gas Chromatography
2.8.1. Treatment of Cecal Contents

We took 100 mg of cecal contents into a test tube, added 5 mL of ultrapure water to an
ice-water bath, vortexed to mix the samples, then sonicated for 10 min, and immediately
placed them in an ice-water bath for 20 min. Sampled were then centrifuged at 4800 r/min
for 20 min. The supernatant was passed through a 0.22-µm filter and transferred to a gas
chromatography injection bottle for testing [12].

2.8.2. Gas Chromatography Conditions

The initial oven temperature was 70 ◦C for 1 min, then increased to 160 ◦C at
15 ◦C/min and to 210 ◦C at 30 ◦C/min, and finally held at 210 ◦C for 5 min. The sample
loading volume was 1.5 µL, the chromatographic column was a 10 m DB-WAX capillary
column, the injection port temperature was 220 ◦C, the split ratio was 10:1, the column flow
rate was 1.5 mL/min, and the nitrogen cross-flow was performed using a hydrogen flame
detector (FID) at a detector temperature of 250 ◦C [13,14].

2.9. Statistical Analysis

The paired sample test was used for statistical evaluation, and SPSS 17.0 analysis
software was used. A p value of <0.05 was considered to indicate statistically significant
results. All bar graphs in this study were exported using Origin 2021. The data were
expressed as mean ± SD. NovaSeq 6000 was used for gut microbiota diversity analysis.

3. Results
3.1. Effect of Opuntia ficus-indica Anthocyanins on the Body Weight of Mice

The body weight changes of all Kunming mice in the experiment reflected their
physical condition, as shown in Figure 1. After one week of acclimatization, all mice had
different body weights due to individual differences between mice. The weights of group
K were in the range of 38.7–42.3 g, that of group L was 35.9–39.4 g, that of group M was
34.1–38.6 g, and that of group H was 40.6–43.6 g. There was no significant difference in
the body weights of mice between groups (p < 0.05). The weights of mice in each group
showed an upward trend during the feeding period. The increase was relatively slow after
15 days, and there was no significant difference compared with the K group (p < 0.05). The
results showed that Opuntia ficus-indica anthocyanins did not affect the body weights of
normal mice. During the feeding period, the mental state, coat color, gloss, and feces of
the mice were compared with those of the normal mice. The mice urinated and defecated
normally, indicating that the anthocyanins from the Opuntia ficus-indica did not affect the
physiological state of the normal mice.

3.2. Effects of Opuntia ficus-indica Anthocyanins on the Organ Coefficient of Mice

Organ coefficient is the ratio of organ weight to body weight of experimental animals.
Excluding the difference in the intragastric dose, under all the same conditions such as
feeding and ignoring the individual differences in the mice, the coefficient of each organ
can well reflect the physical condition of the mice. It can be seen from Table 1 that after
the three-week gavage, there were no significant differences in the heart coefficient, liver
coefficient, spleen coefficient, lung coefficient, and kidney coefficient of the mice in the
L, M, and H groups compared with that in the K group (p > 0.05); thus indicating that
the administration of anthocyanins will not cause adverse reactions to various organs of
normal mice, such as organ enlargement or shrinkage.
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Table 1. Mouse Organ Ratio Index.

Group Cardiac
Coefficient%

Liver
Coefficient%

Spleen
Coefficient%

Lung
Coefficient%

Kidney
Coefficient%

K group 0.487 ± 0.04 4.663 ± 0.38 0.303 ± 0.08 0.586 ± 0.08 1.447 ± 0.19
L group 0.584 ± 0.07 4.661 ± 0.58 0.337 ± 0.11 0.698 ± 0.12 1.599 ± 0.16
M group 0.529 ± 0.04 4.742 ± 0.58 0.344 ± 0.06 0.744 ± 0.19 1.456 ± 0.11
H group 0.543 ± 0.06 4.844 ± 0.46 0.387 ± 0.21 0.638 ± 0.11 1.439 ± 0.18

3.3. PCR Amplification Gel Electrophoresis Results

PCR amplification was performed on the 16SrDNAV3-V4 region of the target fragment.
As can be seen from Figure 2, the bands were clear and the size was correct, all of which
were a single band, and the next test could be carried out.
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dose); 10, 11, and 12 represent L1, L2, and L3 (low dose).
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3.4. α-Diversity

Compared to the K group, the values of Chao1 index and ACE index decreased sig-
nificantly (p < 0.01) after three weeks of Opuntia ficus-indica anthocyanin feeding, in a
dose-dependent manner, indicating a change in the uniformity of gut microbes (Table 2).
Compared with the K group, the Shannon index and Simpson index increased significantly
(p < 0.05), indicating that the diversity of the flora had been altered (Table 2). The results
show that the intestinal bacteria of mice fed Opuntia ficus-indica anthocyanins had greater
variation, which was the same effect as observed following the previous in vitro fermen-
tation of Opuntia ficus-indica anthocyanins. The curve of sequencing depth at 20,000 was
flattened out (Figure 3), indicating that the sequencing was reliable. It can be seen from
Figure 4 that the blank group has the longest curve and a uniform decline, indicating that
the abundance of the sample composition is relatively uniform and the species composition
diversity is high. Compared with the blank group, the curves for the low, medium, and
high dose groups decreased rapidly and steeply, indicating that the distribution of species
abundance in the samples was low, the proportion of dominant bacteria was high, and
the diversity was reduced. The curves of the middle and high dose groups were similar,
indicating that the species similarity was high, and it was further concluded that the low
dose group contained the highest dominant flora. The results indicate that feeding antho-
cyanins to mice could change the species composition richness and increase the growth of
dominant flora.

Table 2. Effects of anthocyanins on the alpha diversity index of gut microbiota.

Group Chao1 ACE Shannon Simpson

K group 1023.41 ± 43.58 2052.29 ± 48.65 7.08 ± 0.07 0.98 ± 0.004
L group 905.81 ± 9.51 ** 929.96 ± 13.27 ** 7.53 ± 0.04 * 1.53 ± 0.001 *
M group 938.84 ± 37.39 ** 967.38 ± 40.00 ** 7.82 ± 0.03 * 1.95 ± 0.001 *
H group 958.26 ± 32.89 ** 987.78 ± 32.94 ** 8.31 ± 0.18 * 2.42 ± 0.003 *

Note: * and ** indicates a statistically significant difference compared with the blank group, * p < 0.05, ** p < 0.01.
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3.5. β-Diversity

The results from the analysis of differences between the PCoA samples are shown in
Figure 5a. The points of color do not overlap or intersect with each other, indicating that
the samples are completely separated, which can better describe the characteristics of the
mouse intestine. The results indicate that the microbial colonies in the guts of the mice were
altered and varied. Among them, the distance between group H and group K is the largest,
indicating that the similarity between group H and K is the lowest, i.e., the similarity of the
microbial community is the lowest and the difference is large. Furthermore, the distance
between group L and group K is the smallest, indicating that group L and K have the
greatest similarity. The difference is small. From Figure 5b, NMDS can obtain the stress
function value streets = 0.014 ≤ 0.01, which indicates that it has excellent representativeness.
From Figure 5c, it can be concluded that R = 0.633 indicates a significant difference between
groups, and p = 0.001 < 0.05 is significant. According to the results of the ANOSIM
analysis, R = 0.985 indicates a significant difference between groups, and p = 0.001 < 0.01 is
extremely significant.

3.6. OTU Numbers

There are four groups, namely group K, group L, group M, and group H. There
are 12 samples in total, with three samples in group. The average sequencing depth of
these 12 samples is 63752 ± 2235. According to the similarity of 97%, each sample has
905 ± 55 OTUs, indicating that the measurement results can accurately represent the real
situation of the intestinal flora in mice. Groups L, M, and H shared 35 OTUs, accounting
for 1.4% of the total sequence. There were 411 OTUs in group L, group M, group H, and
group K, accounting for 16.2% of the total sequence. The unique OTUs of groups K, L, M,
and H were 455, 358, 411, and 510, respectively, accounting for 17.9%, 14.1%, 16.2%, and
20.1% of the total sequences, respectively (Figure 6). The results showed that compared
with that in group K, Opuntia ficus-indica anthocyanins altered the composition of the cecal
microbiota in mice.
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3.7. Effect of Opuntia ficus-indica Anthocyanins on Microbiota Taxonomic Composition
3.7.1. Species Composition Analysis at the Phylum Level

As shown in Figure 7, the intestinal microbes of mice mainly include Firmicutes,
Bacteroidetes, Proteobacteria, and Patescibacteria, in addition to a small number of warts.
Compared with the K group, Proteobacteria decreased significantly (p < 0.05), Bacteroidetes
increased significantly (p < 0.05), and Firmicutes also showed an increasing trend. Com-
pared with the K group, the ratios of Firmicutes/Bacteroidetes decreased to 40.2%, 21.4%,
and 14.1%, respectively (Figure 8). These results suggest that Opuntia ficus-indica antho-
cyanins alter the composition of the gut microbiota in mice.
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3.7.2. Species Composition Analysis at the Genus Level

Desulfovibrio, Ruminococcaceae_UCG-014, and Candidatus_Saccharimonas were in group
K. After the oral administration of anthocyanins, Prevotella, Akkermansia, Lactobacillus, and
Bifidobacterium were the main species (Figure 9). After the oral administration of antho-
cyanins, compared with the K group, the proportion of Escherichia coli was significantly
decreased (p < 0.01), the proportion of Desulfovibrio was significantly decreased (p < 0.05),
and the proportion of Prevotella and Lactobacillus significantly increased. (p < 0.05). Bifi-
dobacteria also showed an upward trend (Figure 10). In addition, compared with the K
group, Akkermansia was unique in the L, M, and H groups. These results suggest that
gavage with Opuntia ficus-indica anthocyanins is beneficial for the growth of intestinal
probiotic-producing bacteria in mice.
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3.8. Effect of Opuntia ficus-indica Anthocyanins: SCFA production

As shown in Figure 11, the concentrations of acetic acid, propionic acid, and butyric
acid in Opuntia ficus-indica-anthocyanins-treated groups increased relative to the control
(p < 0.05). Compared with the K group, the contents of i-butyric acid, i-valeric acid, and
valeric acid were significantly different in the M and H groups (p < 0.05). It was also found
that the Opuntia ficus-indica-anthocyanins-treated groups exhibited significantly higher
production of total SCFAs relative to the K group (p < 0.05). The results revealed that
Opuntia ficus-indica-anthocyanins can be fermented to SCFA-producing bacteria.
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4. Discussion

Among the many effects of anthocyanins, the most popular among scholars is the
antioxidant effect [15]. However, in recent years, studies have found that anthocyanins can
play a role in promoting human health by regulating intestinal flora. For example, in some
immune diseases such as allergies, cardiovascular and cerebrovascular diseases, such as
high blood pressure, high cholesterol, high blood sugars, and thrombosis, as well as some
chronic diseases and metabolic diseases, such as diabetes; it also has a protective effect on
the nervous system and the prevention of obesity [16–21]. However, according to previous
in vitro simulated digestion results from our research group, the digestibility of Opuntia
ficus-indica anthocyanins through the stomach intestine was 34.9%, with 65.1% finally reach-
ing the large intestine. This shows that most of the anthocyanins of Opuntia ficus-indica will
not be digested by the human body and may reach the large intestine and be utilized by the
intestinal flora [22–24]. Therefore, starting from the regulation of intestinal flora, preventing
the occurrence of certain diseases has become a research hotspot [25]. The gut microbiota
is considered to be an essential part of maintaining human health, with protective effects
against the pathogenesis of various diseases [26]. Wang W et al. [27] used Lactobacillus
plantarum 69-2 and GOS supplements in aging model mice, and the results showed that
L. plantarum 69-2 and GOS could activate the hepatic AMPK/SIRT1 signaling pathway
by regulating the gut microbiota and metabolites through the liver-gut axis to restore
hepatic antioxidant activity to alleviate aging. Due to the digestion of certain compounds,
such as polyphenols and polysaccharides, in the gastrointestinal tract, these compounds
can interact with the gut microbiota to alter gut bacterial diversity [28]. Gowd et al. [29]
studied the degree of digestion and absorption of anthocyanins by establishing an in vitro
digestion model to simulate oral and gastrointestinal digestion. The results showed that
anthocyanins interacted with intestinal bacteria to present a dose gradient. Accordingly, it
was inferred that the specific source of anthocyanins has an influence on their digestion and
absorption. Our study also showed that Opuntia ficus-indica anthocyanins can modulate the
composition of gut microbiota.

The abundance of bacterial species among the gut microbiota was determined based
on OTUs. Some scholars found that the polysaccharides in purple potato increased the
number of OTUs and α-diversity index in normal mice [30]. Consistent with these findings,
Opuntia ficus-indica anthocyanins increased the number of OTUs in fecal bacteria in mice.
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The intestinal microbes of mice mainly include Firmicutes, Bacteroidetes, Proteobacteria,
and Patescibacteria, in addition to a small amount of Verrucomicrobia, Actinobacteria,
and Epsilonbacteraeota. Among them, Bacteroidetes and Firmicutes are the two most
important phyla in the gut, accounting for nearly 90% of the total number of bacteria [31].
Bacteroidetes are gram-negative bacterial phyla that play an important role in carbohydrate
metabolism. Mammalian gut Bacteroides have SUS-like systems that target a variety of
different glycans [32]. Firmicutes, a diverse group of Gram-positive bacteria, are considered
to be the major butyrate producers and major degraders of indigestible polysaccharides in
the gut [33]. The present study found that Bacteroidetes and Firmicutes in the intestinal tract
of mice showed an upward trend after gavage with Opuntia ficus-indica anthocyanins. In
contrast, Proteobacteria, which represent the vast majority of pathogenic bacteria, showed
a downward trend [34–36].

Wang W et al. [37] found that when healthy mice were fed Isaria cicadae Miquel (ICM)
fruiting body polysaccharides, the relative abundances of Lactobacillus, Akkermansia, and
Bacteroides were found to increase significantly, while that of Clostridium decreased signifi-
cantly. Some researchers have used black raspberry anthocyanins as a dietary supplement
to enhance the growth of Eubacterium rectum, Faecalibacterium prausnitzii, and Lactobacillus
and inhibit the growth of Desulfovibrio and Enterococcus [38]. Wang et al. [39] showed that
cyanidin-3-O-glucoside and black rice anthocyanins significantly induced a significant
increase in the number of Bifidobacteria and Lactobacilli (p < 0.05). It has the effect of regu-
lating intestinal microbes to stimulate the growth of beneficial bacteria. Our results also
showed that the number of Lactobacillus, Bifidobacterium, and Prevotella in the intestinal tract
of mice increased after gavage with anthocyanins from Opuntia ficus-indica. In addition, the
unique Akkermansia bacteria were identified. As a new type of probiotic, Akkermansia can
maintain a stable state of intestinal microbes and reduce the occurrence of obesity, diabetes,
intestinal inflammation, and liver disease. Muriel et al. [40] found that in patients with
gastrointestinal inflammation and metabolic disorders, Akkermansia was generally reduced
in patients. From this, it was inferred that Akkermansia had some anti-inflammatory effect.
Plovier [41] found that Akkermansia was reduced in diabetic obese mice fed high-fat diet,
fat mass development, insulin resistance, and dyslipidemia in mice. Moreover, the content
of Desulfovibrio and Escherichia coli decreased after gavage with Opuntia ficus-indica antho-
cyanins. Desulfovibrio can release a large amount of hydrogen sulfide (H2S) in the process of
metabolism. Therefore, in recent years, it has been proposed that Desulfovibrio can damage
the intestinal epithelium, thereby causing lesions of the digestive system [42–44]. Therefore,
the current results show that anthocyanins from Opuntia ficus-indica promoted the growth
of beneficial bacteria and inhibited the growth of harmful bacteria.

Studies have shown that during the gastrointestinal digestion of anthocyanins in
purple cabbage, bioactive compounds can be metabolized by human colonic flora to
produce metabolites with higher biological activity and more beneficial effects; these
metabolites are known as short-chain fatty acids (SCFAs). Our results also showed that
Opuntia ficus-indica anthocyanins can up-regulate the levels of acetate, propionate, and
butyrate in mice. In addition to providing energy for intestinal epithelial cells, SCFAs
play an important role in maintaining water and electrolyte balance, regulating intestinal
pore balance, improving intestinal function and resistance to microorganisms, have anti-
inflammatory properties, and preventive effects against obesity and type 2 diabetes mellitus
(T2DM) [45]. In addition to being an important energy source for intestinal cells, acetic
acid also activates G protein-coupled receptors, which activate fat-insulin signaling [46].
Acetic acid is one of the major metabolites of the gut, which not only reduces appetite by
directly stimulating the nervous system, but also prevents obesity-related hyperinsulinemia
and hypertriglyceridemia [47]. Propionate is involved in immune regulation and reduces
high fatty acid levels in the liver and plasma [48]. Propionate also increases the number
of gut-derived regulatory T cells and positively affects the central nervous system by
increasing myelin regeneration [49]. Short-term rectal administration of propionate has
been shown to improve depressive symptoms in rats in a chronic unpredictable mild
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stress (CUMS) model [50]. Butyrate stimulates the expression of fatty acid oxidation
genes, thereby reducing total cholesterol in the liver [51]. Butyrate also increases the
concentration of the central neurotransmitter 5-HT, promotes the expression of brain-
derived neurotrophic factor (BDNF), and significantly improves depression-like behavior
in CUMS model mice [52]. Our results show that Opuntia ficus-indica anthocyanins are
fermented to produce various SCFAs, suggesting that the intake of Opuntia ficus-indica
anthocyanins is beneficial to health.

5. Conclusions

Anthocyanins from Opuntia ficus-indica can play a role in regulating the intestinal flora
of mice, reducing pathogenic bacteria and increasing beneficial bacteria. In addition, the
intake of anthocyanins from Opuntia ficus-indica can modulate SCFA-producing bacteria,
thereby increasing the content of total SCFAs. Our findings provide new ideas for the
potential dietary application of anthocyanins from Opuntia ficus-indica.
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