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Abstract

Obstructive sleep apnea (OSA) is associated with abnormal cerebral perfusion at

wakefulness, but whether these anomalies evolve over time is unknown. Here, we

examined longitudinal changes in regional cerebral blood flow (rCBF) distribution in

late middle-aged and older adults with treated or untreated OSA. Twelve controls

(64.8 ± 8.0 years) and 23 participants with newly diagnosed OSA (67.8 ± 6.2 years)

were evaluated with polysomnography and cerebral 99mTc-HMPAO single-photon

emission computed tomography during wakeful rest. OSA participants were referred

to a sleep apnea clinic and 13 of them decided to start continuous positive airway

pressure (CPAP). Participants were tested again after 18 months. Voxel-based analy-

sis and extracted relative rCBF values were used to assess longitudinal changes.

Untreated OSA participants showed decreased relative rCBF in the left hippocampus

and the right parahippocampal gyrus over time, while treated participants showed

trends for increased relative rCBF in the left hippocampus and the right para-

hippocampal gyrus. No changes were found over time in controls. Untreated OSA is

associated with worsening relative rCBF in specific brain areas over time, while

treated OSA shows the opposite. Considering that OSA possibly accelerates cogni-

tive decline in older adults, CPAP treatment could help reduce risk for cognitive

impairment.
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1 | INTRODUCTION

Obstructive sleep apnea (OSA) is characterized by repeated obstruc-

tions of the upper airway during sleep causing episodes of decrease

(hypopnea) or complete cessation (apnea) of the respiratory flow. OSA

is common, especially in the elderly population where the prevalence

can reach 50% according to some studies (Senaratna et al., 2017), with

the majority of cases being undiagnosed (Braley et al., 2018). The dis-

turbed respiratory flow leads to intermittent hypoxemia and micro-

arousals (Malhotra & White, 2002) and together, they may cause
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excessive daytime sleepiness, cognitive dysfunction and decreased effi-

ciency in daily activities (Ferini-Strambi, Marelli, Galbiati, &

Castronovo, 2013; Gagnon et al., 2014). More recently, OSA has been

identified as a possible risk factor for incident mild cognitive impairment

and dementia (Gosselin, Baril, Osorio, Kaminska, & Carrier, 2019).

During nocturnal respiratory events, an initial increase in cerebral

blood flow (CBF) is seen, followed by a decrease in CBF below resting

values (Franklin, 2002). Disturbed nocturnal CBF combined with the

intermittent decrease in blood oxygen saturation cause regional cere-

bral hypoxia, potentially damaging neural and vascular tissues (Angelo

et al., 2014; de Lima et al., 2010; Feng, Zhang, & Chen, 2012; Pizza,

Biallas, Wolf, Werth, & Bassetti, 2010), which may impact cerebral

functioning during wakefulness. Indeed, in the case of neuronal and

vascular damage, we could expect a decrease in regional CBF (rCBF)

during wakefulness, as rCBF is strongly coupled with brain activity

and metabolism (Lecrux & Hamel, 2011).

In agreement with this hypothesis, neuroimaging studies using arte-

rial spin labeling to assess rCBF during wakefulness found hypo-

perfusion in the right frontal lobe, the temporal lobes, the

parahippocampal gyri, the right hippocampus, the basal ganglia, the cer-

ebellum and the brainstem in moderate to severe OSA relative to con-

trols (Chen et al., 2017; Innes, Kelly, Hlavac, Melzer, & Jones, 2015; Nie

et al., 2017; Yadav et al., 2013). Similar brain regions were found to be

affected in OSA using single photon emission computed tomography

(SPECT) to assess rCBF pattern and positron emission tomography

(PET) to quantify metabolism distribution (Joo, Tae, Han, Cho, &

Hong, 2007; Kim et al., 2017; Shiota et al., 2014; Yaouhi et al., 2009).

While most studies have included middle-aged subjects (mostly

between 30 and 60), our group recently studied rCBF in late middle-

aged to elderly participants (mean age: 64.5) (Baril et al., 2015). In

severely affected patients, as defined by an apnea-hypopnea index

(AHI) >30, we found decreased relative rCBF in the left parietal lobe,

the left precentral gyrus, the bilateral postcentral gyri and the right

precuneus. Since this pattern of hypoperfusion is seen in early

Alzheimer's disease and given the potential causal role played by OSA in

neurodegenerative processes (Gosselin et al., 2019), it is of the utmost

importance to clarify whether OSA treatment with continuous positive

airway pressure (CPAP) can slow down or reverse rCBF anomalies.

In the present study, our first objective was to explore relative

rCBF changes during wakefulness over 1.5 years in late middle-aged

to elderly individuals with treated or untreated OSA compared to a

control group. We hypothesized that participants with untreated OSA

would present decreased relative rCBF over time in regions previously

found to be sensitive to OSA and that CPAP treatment would

increase relative rCBF in these regions.

2 | METHODS

2.1 | Participants

Participants aged between 56 and 82 years were recruited for this

project from the Hôpital du Sacré-Coeur de Montréal Sleep Apnea

Clinic's waiting list and from local newspaper ads. Inclusion and exclu-

sion criteria were described in details in our previous studies (Baril

et al., 2015; Baril et al., 2017; Baril, Gagnon, Brayet, et al., 2018).

Exclusion criteria were (a) neurological (including neurodegenerative),

psychiatric or pulmonary diseases; (b) sleep disorders other than OSA;

(c) uncontrolled hypertension or diabetes; (d) body mass index

>40 kg/m2 (Braley et al., 2018); (e) medication affecting the central

nervous system or substance abuse. Claustrophobic subjects,

preventing prolonged SPECT acquisition, were also excluded. Written

and informed consent was obtained for all participants. The research

protocol was approved by the Centre intégré universitaire de santé et

des services sociaux du Nord-de-l'Île-de-Montréal Ethic's Committee

(#2012-697). This study was part of a larger research program on

OSA and mild cognitive impairment, which aims to understand the

contribution of OSA on cognitive decline as well as cerebral structure

and function in middle-aged and elderly people.

2.2 | Protocol overview

Following a phone interview, participants meeting the inclusion

criteria were invited to the sleep laboratory. All participants filled out

the following questionnaires: Epworth Sleepiness Scale (Johns, 1991),

Beck Depression Inventory-II (Beck, Steer, Ball, & Ranieri, 1996) and

Beck Anxiety Inventory (Beck, Epstein, Brown, & Steer, 1988). A vas-

cular burden score was also calculated for each participant to assess

cardiovascular risk factors (hypertension, dyslipidemia, diabetes,

carotid stenosis, coronary diseases, angina pectoris, myocardial infarc-

tion, coronary artery bypass, arrythmia and transitory ischemic

attacks) (Villeneuve, Belleville, Massoud, Bocti, & Gauthier, 2009). The

Montreal Cognitive Assessment was administered (Nasreddine

et al., 2005) and mild cognitive impairment diagnoses at Time 1 were

made using a comprehensive neuropsychological assessment

described in our previous study (Gagnon et al., 2019). All participants

were recorded for a full night of in-laboratory polysomnography and

underwent a brain SPECT scanning during wakeful rest (Time 1) in the

morning. SPECT statistical analyses were not conducted blind to

group, but all participants were offered the possibility to undergo

SPECT imaging. Participants presenting OSA were then referred to

the sleep apnea clinic and were offered a CPAP treatment, which they

were free to accept or refuse. Approximately 18 months after their

first assessment, participants were called for a follow-up (Time 2), dur-

ing which a follow-up brain SPECT recording was performed, again

during wakeful rest. For subjects who started CPAP treatment, com-

pliance was followed using either information from the CPAP unit

(n = 7) or self-reported by the participants during telephone inter-

views (n = 6). Compliance to CPAP treatment was considered ade-

quate when participants used the CPAP device on average

>4 hr/night and used it at least 70% of nights/month (Weaver &

Grunstein, 2008). Four participants started CPAP treatment but did

not meet the compliance criteria and were therefore considered

untreated. Of those four subjects, three barely used CPAP and one

used it on average 3 hr/night for the first 5 months only. Subjects
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were separated in three groups: Controls (AHI <5), untreated OSA

(AHI >15) and treated OSA. Participants with an AHI between 5 and

15 (n = 19) were not included in the untreated group as our previous

study, in line with the literature in middle-aged patients, showed that

a higher severity of OSA is needed to observe changes in rCBF (Baril

et al., 2015; Innes et al., 2015; Kim et al., 2017; Nie et al., 2017). The

exclusion of participants with an AHI between 5 and 15 from the

untreated group was also chosen to better match the treated OSA

groups: as it is the case in the present study, OSA individuals that are

proposed and accept treatment generally present with a higher sever-

ity. However, as a sensitivity analysis, we explored whether our find-

ings extended to this group of OSA participants with an AHI between

5 and 15.

2.3 | Polysomnographic recording

In-laboratory polysomnography included an electroencephalogram using

an 18-channel montage according to the international system (Fz, F3, F4,

F7, F8, Cz, C3, C4, T7, T8, Pz, P3, P4, P7, P8, Oz, O1 and O2) with a con-

tralateral mastoid reference (American Electroencephalographic

Society, 1991). Polysomnography also included an electrooculogram,

electromyogram and electrocardiogram, as described in our previous

studies (Baril et al., 2015; Baril et al., 2017). Respiratory events were

recorded with thoraco-abdominal gauges, a nasal cannula with a thermal

sensor and a transcutaneous finger oximeter. Sleep and respiratory

events were identified by an electrophysiology technologist in accor-

dance with recent rules (Berry, Budhiraja, Gottlieb, et al., 2012; Iber,

Ancoli-Israel, Chesson & Quan, 2007). Apnea was defined as a reduction

in airflow ≥90% from the baseline which lasted ≥10 s. A hypopnea was

defined by a reduction of the airflow ≥30% compared to the reference

and which lasted ≥10 s and was accompanied by either a desaturation

≥3% or by a micro-arousal on the electroencephalogram. The AHI was

computed as the total apneas and hypopneas divided by total sleep time.

2.4 | SPECT image acquisition

The morning after the PSG recording, participants received an intrave-

nous dose of 750 MBq of 99mTc-HMPAO, followed by a saline flush

of 30 cc during which participants laid on a stretcher with their eyes

closed. 99mTc-HMPAO uptake in the brain takes about a minute, and

thus, this fast uptake reduces the likelihood of drowsiness or even

sleep during the uptake phase. Next, using a high-resolution brain-

dedicated scanner (NeuroFOCUS, NeuroPhysics, Shirley, MA), we per-

formed a static 30 min scan during wakeful rest. The scanner provided

a 2.5 mm full-width half-maximum spatial resolution. Using a filtered

back projection, 32 slices were reconstructed on a 128 × 128 matrix,

followed by attenuation correction using Chang's method with a coef-

ficient of 0.01/cm. The cerebellum was not accurately evaluated in all

participants with this SPECT system, and we therefore excluded the

cerebellum in all subsequent analyses. Images were visually reviewed

for artifacts. The same procedure was used for Time 1 and Time 2.

2.5 | SPECT image analysis

Images were processed using SPM8 (Statistical Parametric Mapping

8, Wellcome Department of Imaging Neurosciences, Institute of Neu-

rology, University of London, United Kingdom) in MATLAB 8.5 (The

MathWorks, Natick, MA), as previously described (Baril et al., 2015;

Baril et al., 2018). Briefly, images were co-registered and normalized

to the SPECT template in SPM8. For voxel-based analyses, images

were then smoothed using a 12-mm FWHM Gaussian filter. We used

a proportional scaling normalization of individual images, so that the

final regional results were relative to the mean global signal of CBF

fixed at 50 ml/100 g/min. For extraction analyses, we used the tool-

box Marsbar (Brett, Anton, Valabregue & Proline, 2002) to extract

rCBF values from normalized images in 90 different brain regions, as

defined by the Automated Anatomical Labelling Atlas (Tzourio-

Mazoyer et al., 2002). We also used a proportional scaling normaliza-

tion during extraction to adjust for mean global signal of CBF fixed at

50 ml/100 g/min. At the end of the extraction processing, we finished

with a rCBF value, relative to the global CBF, for each region of the

brain, excluding the cerebellum since it was partially outside the field

of view of our SPECT scanner. To reduce the number of statistical

analyses, we excluded occipital regions since they do not appear to be

altered in OSA (Baril et al., 2015; Chen, Lin, Lu, et al., 2017; Innes

et al., 2015; Joo et al., 2007; Kim et al., 2017; Nie et al., 2017; Shi

et al., 2017).

The technique we used to assess rCBF only allows commenting

on the relative distribution of CBF. It does not yield, as used, a true

quantification of rCBF values (although a different type of acquisition

using this technique can; [Matsuda et al., 1993]). However, other

authors (Chen, Lin, Lu, et al., 2017; Innes et al., 2015; Nie et al., 2017;

Yadav et al., 2013) have studied OSA with arterial spin labeling, which

measures rCBF in values of ml/100 g/min tissue, and those authors

have shown that OSA is linked to absolute decreases of rCBF values.

It would then appear reasonable to consider that the regions we

report here as showing hypoperfusion relative to the global CBF are

actually hypoperfused in absolute terms. We will therefore character-

ize those areas as such.

2.6 | Statistical analysis

All statistical analyses, except for voxel-based ones, were performed

using SPSS 24 (IBM SPSS Statistics, New York). Chi-square tests and

one-way analyses of variance (ANOVAs) with Tukey's post-hoc tests

were used to determine if there were significant differences between

the three groups for demographic, clinical and polysomnographic vari-

ables. We used two-way repeated measures ANOVAs (three groups

and one repeated measure) to test for group and time effects for the

Beck Depression Inventory-II, the Beck Anxiety Inventory, the

Epworth sleepiness scale and the Montreal Cognitive Assessment.

The results were considered significant at p < .05.

Regarding rCBF, we used two statistical analyses approaches, one

based on voxel analysis and one based on extracted regions of
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interest. For the voxel-based analyses, we used SPM 8 and paired

t tests in each group to examine changes in rCBF over time. Results

were considered significant when at least 200 contiguous voxels

reached a height threshold of p < .001 uncorrected. For the regions of

interest analyses, we used ANOVAs with three groups and one

repeated measure for each of the extracted regions of interest of the

associative, sensorimotor, limbic and subcortical structures. Results

were considered significant at p < .01 for the Group x Time interac-

tion, a more stringent level of significance in order to reduce multiple

comparisons effect, and p < .05 for post-hoc analyses when significant

interactions were observed.

3 | RESULTS

3.1 | Demographic and clinical variables.

Seventy-seven participants underwent SPECT imaging at Time 1 and

38 participants came back for Time 2. All subjects with OSA were

newly diagnosed at Time 1 and untreated at the beginning of the

study. Three participants were excluded from the analyses due to

poor SPECT quality. The final sample consisted of 35 participants

(mean age: 66.8 ± 6.9 years, 6 women). Among the 35 participants,

12 were controls (mean AHI at baseline: 2.0 ± 1.5 events/hr, range:

0.2–4.5), 10 had untreated OSA (mean AHI at baseline: 28.8 ± 6.2

events/hr, range: 20.6–39.2) and 13 decided to use CPAP to treat

their OSA after the baseline assessment (mean AHI at baseline:

37.0 ± 25.1 events/hr, range: 7.7–96.6). Demographic, clinical and

polysomnographic variables at baseline are presented in Table 1.

BMI was significantly lower in the control group (mean: 26.0, range:

20.7–32.3) than in the treated group (mean: 30.1, range: 25.5–36.4)

while the untreated group (mean: 27.6, range: 25.6–32.4) did not

statistically differ from the other groups. At Time 1, 2 controls,

3 non-treated OSA and 5 treated OSA participants had a mild cogni-

tive impairment based on their neuropsychological assessment. They

were evaluated with SPECT at Time 2 on average 18.3 ± 1.7 months

(range: 14–22 months) after the Time 1 evaluation, with no differ-

ence between groups. The symptomatology, including sleepiness,

mood and global cognition are presented in Table 2. No Group X

Time interaction as well as no Group or Time effects were observed

on any of the questionnaires nor on the Montreal Cognitive

Assessment.

TABLE 1 Demographic, clinical and polysomnographic variables at baseline for control, untreated OSA and treated OSA groups

Variables Controls (A) Untreated OSA (B) Treated OSA (C) F or X2 values Post-hoc tests

Number of subjects 12 10 13

Sex 9 M; 3F 10M 10 M; 3F 2.9

Education (years) 16.3 (2.5) 16.1 (3.4) 14.3 (3.4) 1.4

Age (years) 64.8 (8.0) 67.4 (4.1) 68.2 (7.6) 0.8

BMI (kg/m2) 26.0 (3.0) 27.6 (2.0) 30.1 (3.4) 6.1* A < C

Time between SPECT scans (months) 18.8 (1.9) 18.2 (1.5) 18.1 (1.7) 0.5

Index of vascular burden score (Time 1) 1.0 (1.0) 0.8 (0.8) 1.8 (1.2) 2.5

PSG variables—Time 1

Total sleep time (min) 363.3 (76.6) 365.0 (57.9) 377.7 (67.0) 0.2

Wake duration after sleep onset (min) 104.4 (56.2) 99.6 (63.3) 99.4 (43.1) 0.03

Sleep efficiency (%) 77.3 (13.3) 79.0 (12.8) 78.9 (9.5) 0.07

Micro-arousal index (events/hr) 11.3 (3.8) 18.1 (8.5) 21.9 (9.6) 5.9* A < C

Sleep latency (min) 13.0 (7.7) 5.8 (4.8) 12.8 (14.0) 1.8

Stage N1 (%) 16.8 (8.2) 27.6 (10.6) 30.8 (15.1) 4.7* A < C

Stage N2 (%) 58.5 (6.9) 53.0 (7.6) 52.5 (12.1) 1.5

Stage N3 (%) 9.7 (10.6) 5.2 (6.1) 4.3 (4.1) 1.9

REM sleep (%) 15.0 (5.0) 14.3 (5.1) 12.4 (4.0) 1.0

Apnea-hypopnea index (events/hr) 2.0 (1.5) 28.8 (6.2) 37.0 (25.1) 16.4** A < B,C

Total sleep time with apnea (%) 1.4 (1.2) 20.1 (10.5) 22.7 (15.8) 9.8** A < B,C

Mean SpO2 (%) 95.0 (1.0) 94.2 (1.0) 93.8 (1.2) 3.5* A > C

Minimal SpO2 (%) 89.7 (2.9) 82.5 (6.4) 81.2 (6.0) 9.0** A > B,C

Time spent with SpO2 < 90% (min) 0.1 (0.3) 11.8 (15.2) 16.3 (25.0) 2.9

Note: Results are presented as means (standard deviations).

Abbreviations: BMI, body mass index; F, females; M, males; NREM, non-REM sleep; ns, non-significant; OSA, obstructive sleep apnea; REM, rapid eye

movement sleep; SpO2, oxygen saturation.

*p < .05.

**p < .001.
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3.2 | Relative rCBF changes over 18 months

Using the voxel-based approach, no significant difference in rCBF dis-

tribution was found between Time 1 and Time 2 when measured in

the three groups separately. However, when using the relative rCBF

of extracted regions of interest, we observed a significant Group X

Time interaction for the left hippocampus (F(2,32) = 6.161, p = .005,

η2p =0.278). Post-hoc ANOVAs with one-repeated measure (Time) in

each group separately revealed no changes with time in the control

group (F(1,11) = 2.977, p = .112), while the untreated OSA group

showed significant decrease in relative perfusion (F(1,9) = 7.915,

p = .020) and the treated OSA group showed a trend for increased rel-

ative perfusion as compared to the baseline (F(1,12) = 3.486, p = .086)

(see Figure 1). Also, we found a significant interaction for the right

parahippocampal gyrus (F(2,32) = 5.391, p < .010, η2p =0.252), where

no changes were found in the control group over time. Again, untreated

subjects showed decreased relative perfusion (F(1,9) = 14.806, p = .004)

and treated subjects showed a trend for increased relative perfusion

over time (F(1,12) = 3.808, p = .075).

As a sensitivity analysis, we explored whether rCBF changes over

time that we observed in the left hippocampus and right para-

hippocampal gyrus were present in OSA individuals with an AHI

between 5 and 15, corresponding to a mild severity (n = 19, mean

age: 64.1 ± 7.0 years; 3 women; AHI: 9.9 ± 2.8 events/hour). No rCBF

changes over time were observed in this group, suggesting that longi-

tudinal changes over 18 months did not display a dose–response pat-

tern and were limited to the OSA population with a higher severity.

4 | DISCUSSION

In this study, we investigated longitudinal changes in rCBF during

wakefulness in late middle-aged and elderly adults with untreated or

treated OSA and compared them to controls. We found that OSA

participants with CPAP showed a trend for increased relative rCBF

over time in hippocampal and parahippocampal areas, while

untreated participants showed decreased relative rCBF in those

same areas over time. No changes were found in control subjects.

The hippocampal and parahippocampal regions seemed particularly

sensitive to the presence of OSA and its treatment. Interestingly,

despite regional perfusion changes over time, general cognitive func-

tioning and symptoms of depression, anxiety and sleepiness

remained stable. Our findings suggest that OSA might affect medial

temporal functioning before significant clinical symptoms occur, and

these focal perfusion alterations might be prevented by an efficient

CPAP treatment.

4.1 | Decreased relative rCBF in untreated OSA
over time

Participants with untreated OSA showed a significant decrease of rel-

ative rCBF in the left hippocampus and the right parahippocampal

gyrus over the 18-month duration of the study. These regions were

previously reported as being either absolutely (Innes et al., 2015; Nie

et al., 2017) or relatively hypoperfused (Joo et al., 2007; Kim

et al., 2017) in a younger sample (mean age ranging from 38 to

57 years) of OSA patients compared to controls.

In the present study, these changes were observed even if many

of our untreated OSA participants had relatively asymptomatic OSA

(5 out of 10 patients had an Epworth Sleepiness Score ≤10). Reduced

rCBF could be explained by endothelial dysfunction (e.g., inability of

the vessels to properly dilate in response to metabolic activity). In fact,

intermittent hypoxemia has the potential to increase oxidative stress,

inflammation and cell apoptosis while reducing nitric oxide availability,

and impairing repair processes (Büchner et al., 2011; Feng

TABLE 2 Symptomatology of OSA
groups using two-way repeated
measures ANOVA Variables Controls Untreated OSA Treated OSA

Interaction (time X groups)

F p value

Epworth sleepiness scale

Time 1 8.4 (6.0) 11.7 (5.2) 8.2 (4.8) 0.042 .959

Time 2 7.4 (5.9) 10.1 (6.2) 6.9 (3.5)

Beck anxiety inventory

Time 1 3.9 (4.9) 4.7 (4.9) 4.3 (4.8) 0.074 .929

Time 2 3.1 (2.6) 3.9 (7.5) 2.9 (2.8)

Beck depression inventory-II

Time 1 4.1 (3.8) 9.4 (5.9) 7.5 (6.0) 0.035 .966

Time 2 4.2 (3.3) 8.8 (8.7) 7.4 (7.2)

Montreal cognitive assessment

Time 1 27.7 (2.3) 28.1 (2.0) 28.5 (1.6) 0.825 .447

Time 2 26.7 (2.8) 27.4 (1.3) 26.5 (2.1)

Note: Results are presented as means (SD).

Abbreviation: OSA, obstructive sleep apnea.
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et al., 2012; Gaspar, �Alvaro, Moita, & Cavadas, 2017; May &

Mehra, 2014); all of those can impact vascular function. Moreover,

one study has reported increased oxidative stress and inflammation

specifically in the hippocampus and the enthorinal cortex, a part of

the parahippocampal gyrus, suggesting high vulnerability of these

regions to OSA (Snyder, Shell, Cunningham, & Cunningham, 2017).

Several studies also found decreased vasoreactivity in OSA, which

could explain reduced rCBF (Coloma Navarro, Jiménez Caballero,

Vega, Ayo-Martín, & Segura Martín, 2016; Gregori-Pla et al., 2018;

Prilipko, Huynh, Thomason, Kushida, & Guilleminault, 2014; Urbano,

Roux, Schindler, & Mohsenin, 2008).

Reduced rCBF in OSA could also be explained by neuronal, syn-

aptic and glial impairment, since perfusion is tightly coupled with

brain activity. In animal models, intermittent hypoxemia leads to

neuronal cell death (Douglas et al., 2010; Xu et al., 2004). Moreover,

a meta-analysis found reduced gray matter volume in the bilateral

parahippocampal gyri and in the left middle temporal gyrus,

suggesting tissue loss (Weng et al., 2014). Thus, our results raise the

possibility that neglecting to treat OSA might maintain intermittent

hypoxemia capable of inflicting ongoing damage to neuronal cells,

leading to decreased relative rCBF over time in these sensitive

areas.

4.2 | Increased relative rCBF in treated OSA

The main treatment for OSA is CPAP, which keeps the upper airway

open during sleep. CPAP considerably reduces the number of respira-

tory events, thus improving sleep efficiency, oxygen saturation, sleepi-

ness and overall quality of life (Giles, Lasserson, Smith, et al., 2006).

CPAP also improves diurnal systolic and diastolic blood pressure,

highlighting the effects of OSA on blood flow regulation as well as the

impact of an efficient treatment of vascular health (Jonas et al., 2017).

Few neuroimaging studies have evaluated the impact of CPAP on

brain function during wakefulness. One PET study in middle-aged

OSA patients found hypometabolism before treatment in several brain

regions, notably the bilateral precentral gyri and the left cingulate cor-

tex, which increased after 3 months of CPAP treatment without

reaching control levels (Ju et al., 2012). Two studies have evaluated

changes in relative rCBF following CPAP treatment using a similar

imaging technique as ours. In the first one, hypoperfusions were

observed during wakefulness in the superior and middle frontal gyri in

severe OSA before treatment in middle-aged subjects, which re-

normalized after a 3-month CPAP treatment (Shiota et al., 2014). By

comparing the rCBF of OSA patients before and after CPAP treat-

ment, they found an increase from baseline in rCBF in the

F IGURE 1 Changes in relative regional cerebral blood flow (rCBF) between Time 1 and Time 2 in the control, untreated obstructive sleep
apnea (OSA) and treated OSA groups. Significant decreases in relative rCBF over time are seen in the left hippocampus and the right
parahippocampal gyrus in the untreated OSA group. Trends for increases in relative rCBF are seen in the left hippocampus and right
parahippocampal gyrus of the treated OSA group. Relative rCBF values correspond to adjusted signal of the given area to the mean global signal
set at 50 ml/100 g/min. Error bars represent the SDs. Results in tables are presented as means (SD)
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parahippocampal gyri, the right lingual gyrus, the cuneus, and the

frontal area. Finally, one study showed hypoperfusion during wakeful-

ness in multiple brain regions including the left parahippocampal

gyrus, the bilateral medial frontal gyri, the right anterior cingulum and

the right cingulate gyrus in middle-aged subjects, which all increased

compared to baseline after a 7.9-month CPAP treatment (Kim

et al., 2017).

In our study, participants with treated OSA over 18 months

showed a trend toward increasing relative rCBF in the left hippocam-

pus and the right parahippocampal gyrus, a pattern also seen in previ-

ous studies (Kim et al., 2017; Shiota et al., 2014). CPAP may increase

rCBF by attenuating the pathological stress caused by intermittent

hypoxemia and sleep fragmentation. Indeed, CPAP is known to reduce

blood markers of oxidative stress after a 2-month treatment (Alonso-

Fernandez et al., 2009; Christou et al., 2009; de Lima et al., 2010;

Zhou, Chen, Peng, & Ouyang, 2016). However, it remains unclear if

CPAP reduces inflammation as studies have reported conflicting

results using different blood markers. These inconsistencies might be

explained by differences in studied populations and biomarkers, and

that patient-specific factors such as adipose tissue distribution

(android vs. gynecoid) could modulate the inflammatory response to

CPAP (Cheng, 2003; McNicholas, 2009; Unnikrishnan, Jun, &

Polotsky, 2015). A meta-analysis found that a 1 to 6-month CPAP

treatment leads to significant and clinically relevant improvement in

endothelial function (Schwarz, Puhan, Schlatzer, Stradling, &

Kohler, 2015). Another study concluded that a minimum of 6 months

of CPAP treatment is needed to decrease carotid intima-media thick-

ness, an indicator of atherosclerosis (Chen et al., 2017). Consequently,

long treatment duration seems necessary to reverse severe impair-

ment in vascular function. Thus, by reducing intermittent hypoxemia,

CPAP could allow vascularization recovery in areas sensitive to OSA,

resulting in an increase in rCBF. Additionally, treatment studies found

increased gray matter volume (Canessa et al., 2011; Kim et al., 2016),

as well as the reversal of white matter abnormalities after treating

OSA (Castronovo et al., 2014). The authors hypothesized that hyper-

trophy and proliferation of the neuropil could explain the increase in

gray matter volume, which could explain increasing rCBF with treat-

ment as well.

Surprisingly, in the present study, CPAP treatment did not signifi-

cantly reduce daytime sleepiness as measured by the Epworth Sleepi-

ness Scale. However, our treated CPAP group did not display

particularly elevated levels of excessive daytime sleepiness to begin

with. Although sleepiness is commonly associated with OSA, only

15% of older individuals with OSA report excessive daytime sleepi-

ness (Sforza, Pichot, Martin, Barthélémy, & Roche, 2015). An animal

model suggested that sleepiness might not only be a consequence of

sleep fragmentation induced by OSA, but might also be caused by

hypoxic damage to wake-promoting neuronal networks (Zhu

et al., 2007). Treated elderly participants with OSA and excessive day-

time sleepiness might thus have a different rCBF pattern over time

than our treated group with minimal sleepiness. Our findings might

therefore not be generalizable to other older OSA patients experienc-

ing excessive daytime sleepiness.

4.3 | OSA, aging and risk of neurodegeneration

At Time 2, 9 of our 23 OSA participants showed a performance

<26/30 on the MoCA, which suggests the presence of mild cognitive

impairment (Gagnon et al., 2018). It is therefore possible that a pro-

portion of our participants had ongoing neurodegenerative processes.

Interestingly, the parahippocampal region and the hippocampus were

the most susceptible to show either reduced perfusion in untreated

participants or improved perfusion in treated participants. These

regions are also among the earliest regions to show changes

(i.e., atrophy or reduced metabolism and perfusion) in mild cognitive

impairment and Alzheimer's disease and these changes appear even

before behavioral or clinical manifestations of neurodegeneration

(Mak et al., 2017; Wierenga, Hays, & Zlatar, 2014). Moreover, hypo-

perfusion in the parahippocampal gyrus and hippocampus has been

linked to conversion from mild cognitive impairment to Alzheimer's

disease, suggesting the importance of these areas in neurodegenera-

tive progression (Caroli et al., 2007; Chao et al., 2010; Eskildsen,

Coupe, Fonov, et al., 2015; Park et al., 2012). Whether reduced perfu-

sion of those structures found in our untreated OSA participants

could represent vulnerability for neurodegeneration is unknown and

needs to be investigated in larger longitudinal studies. The increase in

the relative rCBF as compared to baseline observed in the treated

OSA group might provide protection against neurodegeneration. Con-

cordant with this hypothesis, one study showed that CPAP delays the

appearance of mild cognitive impairment (Osorio, Gumb, Pirraglia,

et al., 2015) and reduces cognitive decline in Alzheimer's disease

(Troussière et al., 2014).

4.4 | Limitations

We used an observational approach to explore longitudinal changes in

rCBF in treated OSA, untreated OSA and control subjects. Our results

reinforce the idea that larger randomized and controlled studies of the

effects of CPAP are needed to understand the impact of OSA and its

treatment on brain function in middle-aged and older adults. How-

ever, there are some limitations to our study. First, we were not able

to analyze the cerebellum due to limitations of our SPECT scanner.

The cerebellum seems to be sensitive to OSA, as it has been reported

to be atrophied (Shi et al., 2017) and hypoperfused in middle-aged

participants (Chen, Lin, Lu, et al., 2017; Kim et al., 2017; Nie

et al., 2017). Second, we found relative rCBF changes in untreated

and treated OSA groups using the extraction analyses, while we found

no difference using the voxel-based approach. This can likely be

explained by the fact that changes in perfusion are possibly diffuse

within a specific region and were not localized enough to reach signifi-

cance on a voxel-by-voxel analysis. Extracting a global value from a

region of interest might be more suitable to capture changes in rCBF

in OSA. Another explanation might be a lack of power due to our

small sample size. However, with 35 participants (12 controls,

23 OSA) and considering the longer study period, our study presents

an average sample size comparable to other longitudinal CBF studies
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(Kim et al., 2017; Prilipko et al., 2014; Shiota et al., 2014). Moreover,

we did not adjust for BMI and AHI in our models because these vari-

ables did not differ significantly between the untreated and treated

participants with OSA. However, future studies with larger sample

sizes could include these as variables to verify whether they influence

the brain response to treatment. Also, the regions observed as suscep-

tible to OSA reached significance only in a unilateral pattern, raising

the question of whether OSA affects certain regions in a hemisphere

preferentially. This pattern could be explained because there is a true

lateralization of affected regions in OSA or, more probably, because

our study lacked statistical power to observe bilateral changes. Even

though individual neuroimaging studies in OSA commonly report lat-

eralization in affected regions, when we pool results from different

studies, we can notice an absence of a clear lateralization pattern (Shi

et al., 2017). Therefore, we hypothesize that the lateralization

observed in our study is the consequence of a lack of statistical

power. Another limitation of the study is the absence of data form the

CPAP unit for 6 participants. Though we confirmed CPAP adherence

with telephone interviews, we were not able to confirm the normali-

zation of AHI in these participants. However, the general ability of

CPAP treatment to reduce the AHI below 5 (Jonas et al., 2017) and

the efficacy seen in other participants in the study leads us to believe

it is a minor limitation. Lastly, this study did not use a randomized and

controlled protocol, because using a placebo CPAP for a long period

of time (i.e., 18 months) in symptomatic subjects would bring consid-

erable ethical issues. However, symptomatology and sleepiness (Brin,

Reuveni, Greenberg, Tal, & Tarasiuk, 2005; Chai-Coetzer et al., 2013;

Mehrtash, Bakker, & Ayas, 2019), cognitive impairment (Sierra-

Marcos, 2017; Wierenga et al., 2014; Zhang, Gordon, &

Goldberg, 2017) and socioeconomic factors (Brin et al., 2005; Cadar

et al., 2018; Hackman, Kuan, Manuck, & Gianaros, 2018; Hasselgren

et al., 2018; Shahrabani, Tzischinsky, Givati, & Dagan, 2014; Simon-

Tuval et al., 2009; Tzischinsky, Shahrabani, & Peled, 2011; Yaffe,

Falvey, Harris, et al., 2013) could influence both the participant's

choice of whether or not to start CPAP treatment and the rCBF pat-

tern observed.

A strength of our study is that by using an 18-month delay

between visits, we were able to explore the long-term changes in

rCBF associated with CPAP, as compared to previous studies with a

treatment duration of 3–8 months (Kim et al., 2017; Shiota

et al., 2014). Moreover, by including participants that refused CPAP

treatment, we were also able to compare the time course of untreated

OSA to an efficient treatment. While shorter randomized and con-

trolled protocols are necessary to assess the effects of CPAP on brain

function, longitudinal observational studies over long periods of time

offer the possibility to explore changes associated with long-term

CPAP use.

5 | CONCLUSION

Our study suggests that using CPAP in OSA cases could have benefi-

cial effects on brain function. Considering that more than 40% of

people refuse treatment at diagnosis, and between 29 and 83% of

people using CPAP are considered non-adherent (Lee, Leow, Song,

Li, & Ong, 2017), our study brings important information regarding

the longitudinal changes that could be expected in brain function

when CPAP is not used. Given recent evidence that OSA is associated

with increased risk of dementia, our findings of rCBF changes in key

areas for the development of Alzheimer's disease suggest that CPAP

treatment might be an important consideration in OSA individuals at

high risk for dementia. This study also highlights the needs to investi-

gate the long-term impact of treated and untreated OSA on risk of

neurodegeneration in large cohorts of late middle-aged and older

adults.
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