Methods. A total of 2831 Carb-NS GN respiratory isolates collected from 2014 to 2017 were tested centrally (IHMA, Inc., Schaumburg, IL). Minimum inhibitory concentrations (MIC) were determined for CFDC, cefepime (FEP), ceftazidime–avibactam (CZA), ceftolo-zane-tazobactam (C/T), ciprofloxacin (CIP), colistin (CST), and meropenem (MEM) by broth microdilution and interpreted according to the 2018 CLSI guidelines. CFDC MICS were tested in iron-depleted cation-adjusted Mueller–Hinton broth, and interpreted according to the 2018 CLSI provisional breakpoints. Carb-NS strains were defined as MEM MIC of $\geq 2 \,\mu g/mL$ for Enterobacteriaceae (ENB) and of $\geq 4 \,\mu g/mL$ for nonfermenters (NF).

Results. CFDC exhibited predictable *in vitro* activity against 2807 clinically relevant Carb-NS GN isolates (214 ENB, 1086 *A. baumannii* complex, 693 P. *aeruginosa*, 794 *S. maltophilia*, and 20 *Burkholderia cepacia*) isolated from respiratory infections. CFDC was the most active agent against Carb-NS ENB with 97.7% susceptibility followed by 78.0% CZA, 59.4% CST, and 16.4% CIP. Against Carb-NS *A. baumannii* complex, CFDC demonstrated 94% susceptibility vs. 83.7% for CST. CFDC was the most active agent against Carb-NS *P. aeruginosa* with 99.9% susceptibility followed by 97.8% CST, 77.6% CT, and 77.5% CZA. 99.7% of *S. maltophilia* and 100% of *B. cepacia* isolates had CFDC MICs of ≤ 4 µg/mL. The MIC₆ so f tested compounds for clinically relevant pathogens are shown in the table.

Conclusion. In a multinational collection of Carb-NS GN respiratory isolates, CFDC demonstrated potent *in vitro* activity with MIC₉₀ of $\leq 4 \mu g/mL$ for all clinically relevant ENB and NF. These findings suggest that CFDC can be a potential option for the treatment of respiratory infections caused by Carb-NS ENB, *A. baumannii* complex, *P. aeruginosa*, *S. maltophilia*, and *B. cepacia*.

T -	-		
- Ia	D	Ie.	

				MI	C ₉₀ (µg/r	nL)							
Organism	N	CFDC	FEP	CZA	C/T	CIP	CST	MEM					
Enterobacteriaceae	214	4	>64	>64	>64	>8	>8	>64					
P. aeruginosa	693	1	64	64	>64	>8	2	64					
A. baumannii complex	1086	2	>64	>64	>64	>8	>8	>64					
S. maltophilia	794	0.25	>64	>64	>64	8	8	NA					
B. cepacia	20	0.5	>64	32	>64	>8	NA	16					

Disclosures. All authors: No reported disclosures.

693. *In Vitro* Activity of Ceftazidime–Avibactam and Comparator Agents Against *Enterobacteriaceae* and *Pseudomonas aeruginosa* Collected From Patients with Bloodstream Infections as Part of the ATLAS Global Surveillance Program, 2014–2017

Krystyna Kazmierczak, PhD¹; Gregory Stone, PhD²; Daniel F. Sahm, PhD¹; ¹IHMA, Inc., Schaumburg, Illinois; ²Pfizer, Inc., Groton, Connecticut

Session: 68. Novel Antimicrobials and Approaches Against Resistant Bugs Thursday, October 3, 2019: 12:15 PM

Background. Avibactam (AVI) is a β -lactamase inhibitor with potent inhibitory activity against Class A, Class C, and some Class D serine β -lactamases. The combination of ceftazidime (CAZ) with AVI has been approved in Europe and in the United States for several indications. This study evaluated the *in vitro* activity of CAZ-AVI and comparators against *Enterobacteriaceae* (*Eba*) and *Pseudomonas aeruginosa* (*Pae*) isolates collected from patients with bloodstream infections as part of the ATLAS surveillance program in 2014–2017.

Methods. A total of 53416 *Eba* and 15050 *Pae* nonduplicate clinically significant isolates, including 5155 *Eba* and 845 *Pae* isolated from bloodstream infections, were collected by 167 hospital laboratories in 36 countries in Europe, Latin America, Asia/ Pacific (excluding China), and the Middle East/Africa region. Susceptibility testing was performed by CLSI broth microdilution. CAZ-AVI was tested at a fixed concentration of 4 µg/mL AVI. Meropenem-nonsusceptible (MEM-NS) *Eba* and *Pae* isolates were screened for the presence of β -lactamase genes.

Results. Susceptibility data are shown in the Table. Percentages of susceptibility (% S) to the tested agents were 0.2–2.8% lower among *Eba* and *Pae* from bloodstream infections compared with isolates from combined sources in most cases. CAZ-AVI showed potent *in vitro* activity against all *Eba* bloodstream isolates and subsets of CAZ-NS and colistin-resistant (CST-R) isolates (MIC₉₀, 0.5–2 µg/mL, 96.0–100% S). Reduced activity against MEM-NS *Eba* was attributable to carriage of class B metallo-β-lactamases (MBLs) because all MEM-NS MBL-negative isolates were susceptible to CAZ-AVI. CAZ-AVI also showed good *in vitro* activity against the majority of *Pae* bloodstream isolates (MIC₉₀, 16 µg/mL, 89.5% S). Activity was reduced against CAZ-NS, MEM-NS and CST-R subsets (53.7–85.0% S), which included isolates carrying MBLs, but exceeded the activity of CAZ and MEM against these subsets by 15–65%. CST and amikacin were the only tested comparators that demonstrated comparable or greater activity against *Pae* bloodstream isolates.

Conclusion. CAZ-AVI provides a valuable therapeutic option for treating bloodstream infections caused by MBL-negative *Eba* and *Pae* isolates.

Source	Organism/Phenotype (n)	Drug (MIC ₉₀ [µg/ml]/%					ni]/% S	suscept	sceptible)				
	CAZ-AVI		CAZ		MEM		AMK		CST				
	MIC ₉₀	%S	MIC ₉₀	%S	MICso	%S	MIC ₉₀	%S	MIC ₉₀	%S			
All	Enterobacteriaceae, All (53416)	0.5	99.1	64	75.4	0.12	96.2	8	97.1	>4	83.2		
Blood	All (5155)	0.5	98.9	64	72.6	0.12	94.9	8	96.7	>4	87.5		
	CAZ-NS (1413)	1	96.0	>128	0.0	>8	82.1	32	89.6	2	90.5		
	MEM-NS (262)	>128	78.6	>128	3.4	>8	0.0	>32	67.6	>4	72.9		
	MEM-NS, MBL-negative (206)	2	100	> 128	4.4	>8	0.0	>32	71.4	>4	72.8		
	CST-R (140) ^a	2	98.6	> 128	35.0	>8	60.7	32	85.0	>4	0.0		
All	P. aeruginosa, All (15050)	8	91.2	64	76.1	>8	72.7	32	89.8	2	97.1		
Blood	All (845)	16	89.5	64	77.3	>8	70.5	32	87.9	2	97.6		
	CAZ-NS (192)	128	53.7	>128	0.0	>8	23.4	>32	56.8	2	96.9		
	MEM-NS (249)	128	65.5	>128	41.0	>8	0.0	> 32	63.9	2	96.8		
	MEM-NS, MBL-negative (201)	32	80.6	>128	50.3	>8	0.0	> 32	74.6	2	96.5		
	CST-R (20)	32	85.0	32	70.0	>8	60.0	>32	80.0	4	0.0		

R, resistant; MBL, metallo-β-lactamase. % Susceptible was determine using CLSI 2019 breakpoints. *Excludes isolates of Proteeae and Senatia spp., which are intrinsically resistant.

Disclosures. All authors: No reported disclosures.

694. In vitro Antibacterial Activity of Sulbactam-Durlobactam (ETX2514SUL) Against 121 Recent Acinetobacter baumannii Isolated from Patients in India Alita Miller, PhD¹; Sarah McLeod, PhD¹; Tarun Mathur, PhD²; Ian Morriseey³; ¹Entasis Therapeutics, Waltham, Massachusetts; ²IHMA Inc., Gurugram, Haryana, India; ³IHMA Europe, Monthey, Valais, Switzerland

Session: 68. Novel Antimicrobials and Approaches Against Resistant Bugs Thursday, October 3, 2019: 12:15 PM

Background. The incidence of infections caused by multidrug-resistant *Acinetobacter baumannii* is increasing at an alarming rate in Southeast Asia and other parts of the world. Sulbactam (SUL) has intrinsic antibacterial activity against *A. baumannii*; however, the prevalence of β -lactamases in this species has limited its therapeutic use. Durlobactam (ETX2514, DUR) is a novel β -lactamase. DUR restores SUL *in vitro* activity against Multidrug-resistant *A. baumannii*. Against >3,600 globally diverse, clinical isolates from 2012–2017, addition of 4 mg/L DUR reduced the SUL MIC₉₀ from >32 to 2 mg/L. SUL-DUR is currently in Phase 3 clinical development for the treatment of infections caused by carbapenem-resistant *Acinetobacter* spp. The goal of this study was to determine the activity of SUL-DUR and comparator antibiotics (amikacin (AMF), ampicillin-sulbactam (AMP-SUL), cefoperazone-sulbactam (CFP-SUL) and meropenem (MEM)) against *A. baumannii* isolated from hospitalized patients in India.

Methods. A total of 121 clinical *A. baumannii* isolates from multiple hospital settings and infection sources were collected between 2016–2019 from six geographically diverse hospitals in India. Species identification was performed by MALDI-TOE, Susceptibility of these isolates to SUL-DUR (10µg/10µg) and comparator antibiotics was determined by disk diffusion using CLSI methodology and interpretive criteria, except for CFP-SUL, for which resistance was defined using breakpoints from the CFP-SUL package insert.

Results. As shown in Table 1, resistance of this collection of isolates to marketed agents was extremely high. In contrast, based on preliminary breakpoint criteria, only 11.5% of isolates were resistant to SUL-DUR.

Conclusion. The *in vitro* antibacterial activity of SUL-DUR was significantly more potent than comparator agents against multidrug-resistant *A. baumannii* isolates collected from diverse sites in India. These data support the continued development of SUL-DUR for the treatment of antibiotic-resistant infections caused by *A. baumannii*.

Table 1.	Table 1. Percent Resistant A. baumannii (N = 121)						
SUL-DUR	AMP-SUL	MEM	AMK	CFP-SUL			
11.5%	90.9%	95.9%	88.4%	79.3%			

Disclosures. All authors: No reported disclosures.

695. Activity of Imipenem–Relebactam and Ceftolozane–Tazobactam Against a Contemporary Collection of Gram-Negative Bacteria from New York City Alejandro Iregui, MD; Zeb Khan, MD; David Landman, MD; John M. Quale, MD; SUNY Downstate Medical Center, Brooklyn, New York

Session: 68. Novel Antimicrobials and Approaches Against Resistant Bugs Thursday, October 3, 2019: 12:15 PM

Background. Carbapenem-resistant Gram-negative bacteria are important nosocomial pathogens, and therapeutic options are often limited.

Methods. Clinical isolates were gathered during a surveillance study in 2017 involving 7 hospitals in Brooklyn, NY. Isolates underwent susceptibility testing using the agar dilution method; for the combination of imipenem-relebactam and ceftolozane-tazobactam, the concentrations of relebactam and tazobactam were fixed at 4 µg/mL. Breakpoints were defined according to CLSI criteria; for imipenem-relebactam, the breakpoint of imipenem was utilized. Isolates were screened by PCR for common carbapenemases.

Results. Overall susceptibility patterns are given in the Table. Of 1805 isolates of *E. coli* (including 4 with $bla_{\rm KPC}$), 100% were susceptible to imipenem and imipenem-relebactam. Of 503 isolates of *K. pneumoniae* (including 19 isolates with $bla_{\rm KPC}$), all were susceptible to imipenem-relebactam. Of 171 isolates of *Enterobacter* spp. (including 3 with $bla_{\rm KPC}$), 100% were susceptible to imipenem-relebactam. Of 260 isolates of *P. aerug-inosa*, 96% were susceptible to imipenem-relebactam and nearly all to ceftolozane-ta-zobactam. Against *A. baumannii*, the activity of imipenem-relebactam was the same as imipenem and the ceftolozane-ta-zobactam MIC was $\leq 4 \mu \text{g/mL}$ in 65% of isolates.

Conclusion. Imipenem-relebactam possesses promising activity against multidrug-resistant *Enterobacteriaceae* endemic to New York City. Ceftolozane-tazobactam demonstrated excellent activity against *P. aeruginosa*, including isolates resistant to carbapenems.

	MIC50	MIC90	Range	Susceptible (%)
E. coli (n=1805)				
Imipenem	0.25	0.25	≤ 0.12 - 1	100%
Imipenem/relebactam	0.125/4	0.25/4	≤ 0.015/4 - 0.5/4	100%
Ceftolozane/tazobactam	≤ 0.25/4	≤ 0.25/4	≤ 0.25/4 - >16/4	99.8%
Piperacillin/tazobactam	2/4	4/4	≤ 0.25/4 ->128/4	98.8%
K. pneumonise (n=503)				
Imipenem	0.25	0.5	≤ 0.12 - >4	96%
Imipenem/relebactam	0.25/4	0.25/4	≤ 0.015/4 - 0.5/4	100%
Ceftolozane/tazobactam	≤ 0.25/4	1/4	≤ 0.25/4 - >16/4	96%
Piperacillin/tazobactam	4/4	8/4	≤ 0.25/4 ->128/4	96%
Enterobacter spp. (n=171)				
Imipenem	0.5	1	≤ 0.12 - 2	98%
Imipenem/relebactam	0.25/4	0.5/4	0.06/4 - 0.5/4	100%
Ceftolozane/tazobactam	0.5/4	2/4	≤ 0.25/4 ->16/4	92%
Piperacillin/tazobactam	4/4	32/4	1/4 -> 128/4	89%
P. aeruginosa (n=260)				
Imipenem	2	>4	≤ 0.12 - >4	75%
Imipenem/relebactam	0.5/4	2/4	0.03/4 ->4/4	96%
Ceftolozane/tazobactam	1/4	2/4	≤ 0.25/4 ->16/4	98.8%
Piperacillin/tazobactam	8/4	128/4	2/4 -> 128/4	76%
A. baumannii (n=49)				
Imipenem	0.5	>4	0.25 - >4	61%
Imipenem/relebactam	0.5/4	>4/4	0.12/4 ->4/4	
Ceftolozane/tazobactam	1/4	16/4	≤ 0.25/4 ->16/4	
Piperacillin/tazobactam	32/4	>128/4	≤ 0.25/4 ->128/4	45%

Disclosures. All authors: No reported disclosures.