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The structure of dynamic folds in microbial chromosomes is largely unknown. Here, we find that
genes with a highly biased codon composition and characterizing a functional core in Escherichia
coli K12 show to be periodically distributed along the arcs, suggesting an encoded three-
dimensional genomic organization helping functional activities among which are translation and,
possibly, transcription. This extends to functional classes of genes that are shown to systematically
organize into two independent positional gene networks, one driven by metabolic genes and the
other by genes involved in cellular processing and signaling. We conclude that functional reasons
justify periodic gene organization. This finding generates new questions on evolutionary pressures
imposed on the chromosome. Our methodological approach is based on single genome analysis.
Given either core genes or genes organized in functional classes, we analyze the detailed
distribution of distances between pairs of genes through a parameterized model based on signal
processing and find that these groups of genes tend to be separated by a regular integral distance.
The methodology can be applied to any set of genes and can be taken as a footprint for large-scale
bacterial and archaeal analysis.
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Introduction

Multiple experiments have shown that several hundreds of
genes are essential for the life of a microbial organism, in the
sense that the organism would not survive without them. This
estimation is dependent on the biological complexity and
environmental specificity of the organism. On the other hand,
several important genes may not be directly involved in
growth, but rather in conditions of starvation or stress, and
their loss may lead to such a lower degree of fitness that their
deletion will never be fixed in natural populations. We address
the question of whether these genes, forming a functional core
of genes for the organism, are organized in regularly spaced
groups within the Escherichia coli K12 genome, possibly
depending on transcription regulation patterns or on common
functional activities of genes in the groups. Both these
possibilities explaining the distribution of genes as a product
of structural periodicity are attractive. In fact, the localization
of certain core genes along structural chromosomal ‘faces’

would have the advantage of creating spatial chromosomal
subregions in which core genes could be accessed by limited
diffusion of RNA polymerase or RNA polymerase fixed in
factories (Sinden and Pettijohn, 1981; Cook, 2002; Thanbichler
and Shapiro, 2006). The solenoid model (Képès and Valliant,
2003; Képès, 2004) and the rosettes model (Cook, 2002) of
chromosomes have been proposed as possible functional and
spatial organizations of chromosomes. The idea behind these
models is to bring close in space different genes through
an encoded three-dimensional genomic organization. The
solenoid model organizes loops of DNA along a solenoidal
three-dimensional arrangement and the rosettes model orga-
nizes DNA loops radially in a flower-like three-dimensional
structure.

Evidence for spatial organization of genes along chromo-
somes has been already noticed for E. coli K12. It has been
shown that groups of genes regulated by the same transcrip-
tion factors reveal chromosomal periodicity (Képès, 2004),
that spatial series of transcriptional activity exist (Jeong et al,
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2004), and that evolutionarily conserved gene pairs also reveal
chromosomal periodicity (Wright et al, 2007). These analyses
start on pairs of genes (co-evolving pairs or gene-regulator
pairs), which satisfy co-localization based on (already known)
interactions and check whether pairs relative positioning
along the chromosome follows a periodic pattern. Contrary to
what has been done earlier, we analyze sets of genes that have
undergone evolutionary or functional constraints but that are
not pairwise organized, and ask whether a large-scale signal of
periodic gene organization exists. The ultimate aim is to be
able to extract numerical properties from the signal and use
those to derive biological insights on gene organization, if any.

Here, we consider core genes to be those genes that have
undergone an important evolutionary pressure and that are
especially encoded with a very biased codon composition. On
the basis of a computational method allowing for the
identification of highly biased genes (Carbone, 2006), we
define a pool of core genes, some of which are conserved
across many species, some depend on the environmental
living conditions of the organism, some are involved in the
stress response, and others have no yet identified function.
These predicted core genes cover roughly 10% of all genes in
E. coli K12, they are expected to be either highly expressed or
rapidly expressed when needed (Grantham et al, 1980; Sharp
and Li, 1987) and they tend to be overrepresented in the class
of genes deemed to be essential for E. coli (Gerdes et al, 2003;
Carbone, 2006). An important property of core genes pointed
out in Carbone (2006) is that they cover all the spectrum of
microbial functions. This means that for any functional class of
genes, some representative of the class belongs to the
functional core. Consequently, we reasoned, the three-dimen-
sional chromosomal arrangement of these genes may be
important to fulfill basic functional responses.

Our goal is to test the existence of periodicity for core genes
and other sets. On the back of our mind, there are two main
biological hypothesis that we try to approach. First, that a
structured localization of core genes can help them to reach
fast expression. Second, that the organization of core genes is
justified by the joint functional activity of closely localized
genes. Both these hypothesis support the idea that significant
similarities in gene activities extend beyond the length of an
operon and that local patterns of co-expression are dependent
on DNA supercoiling. Our analysis highlights that the pool of
genes and rRNAs involved in transcription and translation
(after Clusters of Orthologous Groups (COGs) classification;
Tatusov et al, 2003) is organized by a periodic distribution of
117 kb period as found earlier in Wright et al (2007). But the
striking result is that a stronger signal of periodicity appears at
33 kb when considering core genes, the set of genes involved in
metabolism and, in particular, the larger set of genes covering
all functional classes classified in COGs (Tatusov et al, 2003).
Core genes are (up to a few unclassified genes) the highly
biased subset of this larger set. We found that gene periodic
arrangement systematically organizes functional classes into
two independent positional gene networks. The two networks
are out of phase among each other but they preserve a 33-kb
period as a common parameter.

Beside core genes and functional classes in COGs, we tested
several other data sets of genes with different functional
importance, some of them based on in silico analysis and some

on experimental evidence. All sets confirmed the existence of a
large-scale periodic gene organization at 33 kb.

Results

We identified a set of core genes for E. coli K12 by applying a
computational method introduced and validated on gene
knockout experimental data in Carbone (2006). This set is
characterized by genes having a highly biased codon
composition and contains ubiquitous genes, non-orthologous
genes, environment-specific genes, genes involved in the
stress response, and genes with no identified function but
highly likely to be essential for the cell. All genes in the set
have been selected to have a high Self-Consistent Codon Index
(SCCI), where SCCI is highly correlated in E. coli K12 to the
known Codon Adaptation Index (Carbone et al, 2003). An
asymmetric distribution of core genes preferring the leading
strands is observed and the uneven distribution is even
stronger for the top 100 core genes. Also, core genes are
slightly more numerous around the ORI than the TER (see
Supplementary Table I).

We studied the distribution of core genes on two types of
chromosomal models (Figure 1; Supplementary Figure 1). The
models are general and they do not depend on genes to belong
to the functional core. For this, we describe them for a generic
set of genes X, where X will become a set of core genes in our
first usage of the models. The first model, called circular
model, does not make any hypothesis on the chromosomal
structure and it considers minimal distances between all pairs
of genes in X along the circular chromosome. On this basis, we
look for a statistically significant period within the distribution
of all minimal distances. Notice that, given n genes in X, the
number of pairs is about n2. The second type of models, called
arc-based models, assume the origin (ORI) and the terminus
(TER) of the E. coli K12 chromosome to have a structurally
privileged function in chromosomal architecture and, in
consequence, that genes in X belonging to the left and to the
right arcs of the chromosome organize independently. We
defined three different arc-based models, which are dependent
on gene location in the chromosome and consider X to be
either the set of genes located on the lagging strands, or on the
leading strands (see Supplementary Figure 1) or anywhere
along the chromosome, respectively. In this latter case, we
speak about ‘full arc-based model.’ For each arc-based model,
we considered all distances between pairs of genes in X, which
are located on the right arc and all distances between pairs of

Figure 1 Different models of the circular chromosome. Leading and lagging
strands are described, with the arrows coding for the 50–30 direction.
Chromosomal arcs have distinguished color (purple, brown). Scirc, Sall, Slagging,
Sleading are the sets of distances between genes associated to the models.
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genes that are located on the left arc, and looked for a
statistically significant period within the union of these two
sets of distances. Intuitively, the arc-based models relative to
lagging and leading strands have been introduced to analyze
the positional origin of the periodic signal relative to
chromosomal strands. They help the understanding of the full
arc-based model.

We analyzed the detailed distribution of distances between
pairs of core genes for the circular model and for all arc-based
models and found that core genes tend to be separated by a
regular integral distance of 33 kb. This period displays the
strongest signal for the circular model and for the arc-based
models defined over the whole chromosome and over the
lagging strands. The analysis of core genes for the full arc-
based model is illustrated in Figure 2B (see Supplementary
Figure 3 for the analysis on the circular model). As expected,
the shape of the histogram describing distribution of distances
in arc-based models looks roughly like a ‘triangle,’ where most
gene pairs are combined with short distances and a fewer are
distantly spaced (Supplementary Figure 2). The number of
distances is expected to remain essentially the same across
distances (Supplementary Figure 3) for the circular model. To
evaluate whether there is a spatial regularity in the organiza-
tion of core genes along the chromosome, we computed, based
on a signal processing parameterized model and a Fast Fourier
Transform (FFT) analysis, the spectral response of the distance
distributions. Ideally, the best information content we would
hope for corresponds to a single period with a sharply detected
amplitude of the signal. This would correspond to genes,
which are perfectly positioned in a periodic phase along the

chromosome. In general, this is not the case, and we should
expect several periods, which are associated to amplitudes of
variable intensity. Significance of the periods is established by
comparing the strength of the signal with a random model
based on the generation of random genomes that satisfy
properties, which are sufficiently close to the ones of the E. coli
K12 genome. Our random genomes resemble the E. coli K12
genome: the distribution of intergenic regions is the same as
for the E. coli K12 chromosome, and the number of genes and
the distribution of gene lengths are the same for corresponding
leading and lagging strands. The statistical significance
computed on such random structures is more demanding
than the one based on random structures generated by
allowing chromosomal length to grow (due to length
variability of intergenic regions and genes).

The periodic distance of 33 566 nt between core genes of
E. coli K12 appears with a very pronounced spectral value, which
turns out to be a few s.d. away from the mean of the peaks
distribution (P-value o10�4, computed on 10 000 randomiza-
tions; the exceptional difference between this spectral peak
and the mean value of the peak distribution is measured
by a Z-score¼7.81) for the full arc-based model (Figure 2B;
Supplementary Table III). There is another peak that we detect
at 228 571 nt (with a lower Z¼4.39). A 33-kb periodicity is also
detected (but with a weaker signal) by the arc-based model
that considers core genes located on lagging strands
(P¼0.0123, Z¼7.13). Core genes on leading strands give rise
to much weaker signals (Supplementary Table III). The
circular model shows a period of 33 566 nt (Po10�4, Z¼8.19;
Supplementary Table III). Core genes are therefore not
randomly spaced along the genome but prefer specific
genomic intervals of k� 33 kb.

Because of the way we defined pairs of distances (by taking
distances between all pairs of genes in an arc or by taking all
minimal distances between genes in the circular chromo-
some), there are no many different distributions of locations
for the genes in E. coli K12 that could generate the periodic
distributions that we found. Any sufficiently large subgroup of
genes that is periodically spaced with a period of 33 kb and
which is out of phase with the majority of periodically spaced
core genes, could negatively interfere with the detection of the
signal due to the quadratic effect of the method that looks at
the distribution of roughly n2 possible gene pairs for n given
core genes. This means that one should expect genes to be
strongly co-localized in a series of positions that are spread
across the entire chromosome (see the periodically spaced
peaks of the SCCI curve in Figure 3A). We found that core
genes tend to be localized in specific regularly spaced islands
along each arc of the chromosome. These islands form
positional gene networks, which are governed by the period
of 33 kb (Figures 4C, D and 5). The existence of sharp peaks
collecting the majority of genes has been observed also in
Wright et al (2007). Compared with Wright et al (2007), we
show the existence of a periodic gene organization for a much
smaller period (less than a third of the 117 kb detected in
Wright et al (2007)). Notice that 452 out of the 563 core genes
belong to Wright’s data set (Wright et al, 2007) and that
nevertheless, no 117 kb period appears as significant for core
genes. On the other hand, when the full arc-based model is
applied to the Wright’s data set, the resulting maximal period
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Figure 2 Histograms and periodograms are computed on the distance
distribution of E. coli K12 core genes (with the full arc-based model; B) and on
the theoretical distribution (A). The original distance distribution has been
symmetrized giving origin to an ‘isoscele triangle’ shape. Detrend is applied to the
histogram series in the FFT analysis. E. coli K12 histogram is truncated at the
central column; the maximum y value is at 706. Distances near zero are
overrepresented, and the corresponding peak has been taken from the
periodogram (this peak is on the plot for the ideal distribution). Notice that no
periodic signal can be detected from the ideal distribution.
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is an integer multiple of 33 566 nt (Supplementary Table X).
Functional analysis of these groups of genes puts some light on
these data and we shall come back to this later.

To explore the functional basis of the distribution, we
examined the relationship between SCCI values of E. coli K12
genes and transcription data for three different growth
conditions. These transcriptional data have been analyzed
earlier in Wright et al (2007). In all three cases, we found that
the smoothed SCCI curve, called SCCI*, fits well the high levels
of transcription obtained experimentally. This is expected
because SCCI values are known to correlate well with CAI
values (Carbone et al, 2003) and high CAI values are known to
correlate well with high expression (Sharp and Li, 1987). We
found that the SCCI* curve mirrors the log-phase transcript
data along the chromosome (Allen et al, 2003) (see Figure 3A;
Pearson correlation coefficient R¼0.59, s.d. sR¼0.0017 and
Po2.2e�16), and that this correlation decreases for transcrip-
tomic data under stress conditions, as heat shock (R¼0.47 and
sR¼0.0034) and acid shock (R¼0.54 and sR¼0.0016) (Supple-
mentary Figure 15) (Allen et al, 2003). Similar correlations
were found in Wright et al (2007).

To study the SCCI* curve, we looked at the local maxima of
the curve. These peaks do not necessarily correspond to
positions for genes with a high SCCI value but rather to

positions for genes that display higher SCCI values than their
neighbors. To analyze the distribution of peaks, we considered
the local correlation of the SCCI* curve with the Expression*
curve (i.e. the smoothed curve of transcriptional values),
constructed a Pearson local correlation curve between them
(Figure 3B) and studied the contiguous regions along the
chromosome where the SCCI* values are positively correlated
with Expression* values, called sectors. One expects a high
Pearson correlation coefficient between the two curves to
correlate with the existence of a small number of sectors.
Hence, the highly biased genome of E. coli K12 is expected to
be organized in few large sectors.

Only seven sectors varying from 87 to 1634 kb cover 89% of
the E. coli K12 chromosome (Figure 3B; Table I; Supplementary
Table VII), against an average of 15 sectors that has been
estimated on 1000 randomly generated genomes (see Supple-
mentary Figure 17, top). For each sector, in the presence of a
uniform distribution of peaks, one would expect that about a
third of peaks would fall in windows of 11189 nt (i.e. a third of
the period 33 566 nt), which are periodically spaced of
22 377 nt along sectors. The ensemble of these intervals within
a sector is called chromosomal strip (see violet strips in Figure
3C and D, where the chromosome is enrolled around a spiral to
simplify the representation). A strong bias in peaks periodic
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a a

Figure 3 Periods and correlation between SCCI values and expression levels. (A) Plots of expression levels for wild type in log-phase growth (bottom, blue curve,
values of 3982 genes) and SCCI values (top, red curve, values of 4295 genes) of E. coli K12 genes, along the chromosome, with a periodically spaced grid in solid lines
of period 100 698 nt¼3� 33 566 nt and a grid in dashed points of period 33 566 nt. Many of the highest peaks in the transcription profile appear to fall near the 33-kb grid
lines defined by core genes. Smoothed values (denoted SCCI* and Expression*) are used to plot the curves. Distance above the horizontal axis indicates increasing
SCCI* and below the horizontal axis indicates increasing expression. (B) Local correlation is computed for the two curves in (A); chromosomal sectors are highlighted by
thick lines and named with capital letters; sector A overlaps right and left arcs. (C) Chromosomal spiral of period 33 566 nt; strips are highlighted in violet along sectors.
Most peaks of the SCCI* curve are located within these strips (Table I) and their narrow localization supports the visual effect of peaks matching the 33-kb grid in (A).
(D) Sectors and strips collecting the strongest peaks of the SCCI* curve, that is peaks with a spectral value mþs, where m and s are the mean and the s.d. of the SCCI*
distribution.
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Figure 4 E. coli K12 genes arranged on left and right arcs of the chromosomal spiral (period 33 566 nt). (A) Genes are plotted in colors corresponding to intervals of the
smoothed SCCI* curve. Only genes whose value is 1.1 s.d. above the mean (i.e. X0.1964) of the SCCI* distribution are plotted (they correspond to the highest peaks in
Figure 3A). For each gene, we expand the diameter of the dot corresponding to its position from the origin (O). (B) All core genes are plotted, with colors corresponding to
smoothed values. (C, D) Distribution of all core genes on the period 33 566 nt (starting from the origin O) and identified on successive windows of 5500 nt along
chromosomal arcs; smoothed curves (red) are computed with an s.d. of 2000 nt.
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Figure 5 Functional distribution of genes on the chromosomal spiral. (A) Distribution of genes belonging to three main functional groups is computed by counting the
number of genes located on the chromosomal spiral of period 33 566 nt (starting from the origin O) and on successive windows of 5500 nt along chromosomal arcs. The
three functional groups are: information storage and processing (based on COGs classes A, B, J, K, L), cellular processing and signaling (D, M, N, O, P, T, U, V, W, Y, Z),
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arcs. Two sharp periodic co-localizations of genes are observed on lagging strands, both on the right and on the left arc. The same clear signal appears on leading
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organization appears within E. coli K12 sectors: all seven
sectors present strips where at least 50% of the SCCI* peaks
fall into Table I. A P-value o10�3 is associated to this event
(Supplementary Figure 17, bottom). If one considers SCCI*
peaks having highest spectral values, that is 4mþs, where
m,s are mean and s.d. of the SCCI* distribution, then there
exist strips that cover at least 60% of the peaks for each sector
(Figure 3D; Table I, right). This biased periodic distribution of
peaks at 33 kb does not appear for the 117-kb period
determined in Wright et al (2007) where only two sectors
(the shorter ones) capture at least 50% of the peaks
(Supplementary Table VIII). The analysis of Expression* peaks
provides similar conclusions (Supplementary Table IX).

By considering the Expression* curve for the acid shock
stress condition, the same sectors as for log-phase are detected
(Supplementary Figure 16, top and middle; Figure 3B) with the
exception of the large sector A, located around the ORI, that
breaks in three subsectors. Under heat shock stress, only three
(sectors B, C, and D) of the seven chromosomal sectors of log-
phase are stably preserved, and they are located on a
contiguous chromosomal region on the left arc. Sector A
breaks into several very small sectors and the region around
the TER reorganizes into new sectors. The similar sector
organization induced in log-phase and under acid shock stress
suggests the existence of a three-dimensional stable chromo-
somal structure, where positive local correlations remain
detected even though gene expression levels might change.
The radically different sectors organization of the right arc
under heat shock stress suggests that some chromosomal
regions may be more affected than others by environmental
changes (see ‘Discussion’ section). Overall, sectors appear
robust to experimental noise as shown by several unchanged
sector boundaries (B, C, and D) that have been identified
under different experimental conditions.

To study the properties of the periodic organization, we
represent (without loss of generality) the E. coli K12 chromo-
some as being enrolled around a spiral of period 33 566 nt as
illustrated in Figure 4A and B. By comparing periodic gene
positions along the spiral, we can show a strong tendency of
core genes to concentrate on a specific location of the 33-kb
interval in both the right and left arcs (Figure 4C and D;
Supplementary Figure 13). On the left arc, the signal is stronger
and a single peak is uniquely determined. On the right arc, we
observe a bimodal distribution of genes and a milder signal
due to the much less regular distribution of core genes on the
leading strand (Figure 5B, top). To explain the bimodality and
to check whether the periodic signal is intrinsically linked to

the functional core or it has a more specific functional origin,
we analyzed the distribution of functional groups of genes
along the chromosome.

We considered those genes in E. coli K12 that have been
organized in COGs functional classes (Tatusov et al, 2003) and
applied our approach to verify whether the distribution of
distances for genes in COGs classes provides a significant
period, possibly coinciding with the one obtained for core
genes. The 3533 genes (542 of which are core) in COGs classes
display the first peak at 369 231 (¼11� 33 566 nt, P¼0.3514,
Z¼9.25) and the second one at 33 566 nt (Z¼3.82) for the full
arc-based model; the peak at 33 566 nt appears to be the only
statistically significant one for the circular model (P¼0.007,
Z¼10.52). When the analysis is done on the three main COGs
groups separately (see Supplementary Table XI), the signal at
33 566 nt is detected for genes involved in metabolism (1365
genes, 253 of those are core) with a main peak for the circular
model (P¼0.0041, Z¼5.63). The circular model recovers the
33-kb period for the information storage and processing genes
(681 genes, 140 of those are core) and for the cellular
processing and signaling genes (965 genes, 116 of those are
core) but not with a main peak (see Supplementary Table X).

Genes sharing the same function are preferably localized on
specific facets (i.e. periodic intervals of E10 kb kb) of the
spiral at 33 kb in Figure 5A. There are two such facets along
each chromosome arc, one organizing genes involved in
cellular processing and signaling (blue curve in Figure 5A) and
the other organizing genes involved in metabolism (violet).
Genes involved in information storage and processing (green)
seem to undergo the same evolutionary positional pressure as
the cellular processing and signaling gene positional network
in the right arc (curves with Pearson correlation coefficient
R¼0.89 and Po2.2e�16), and the metabolism gene positional
network in the left arc (R¼0.58 and Po2.2e�16). Core genes
(red) share the same chromosomal facet of genes involved in
metabolism (R¼0.65 on the left arc and R¼0.89 on the right arc
with Po2.2e�16), and in information storage and processing
on the left arc (R¼0.97 and Po2.2e�16) (see Supplementary
Table XII). The bimodality present in their distribution on the
right arc is explainable by the overlapping of the two
independent networks with which the red curve shares the
maximal peaks.

Our analysis applied to all E. coli K12 genes (Figure 6C;
Supplementary Table X) provides periods that are multiple
of 33 kb for arc-based models and for the circular model
with c¼3. All genes tend to localize in two specific
periodic subintervals of 33 kb. The bimodality is much more

Table I Positions of SCCI* peaks, sector, and strips

SCCI* peaks SCCI* peaks >m+s

Left arc Right arc Left arc Right arc

A B C D E F G A A B C D E F G A
Sector size (kb) 330 605 593 127 429 87 650 1304 330 605 593 127 429 87 650 1304
#Peaks in strip 8 12 9 3 8 3 9 18 0 7 4 0 1 0 4 9
#Total peaks 9 19 17 3 16 3 18 42 2 8 5 0 1 0 6 13

Peaks in the smoothed SCCI curve (Figure 3A, red) are organized in sector along the two chromosomal arcs (Figure 3B). A strip (Figure 3C and D) is defined to cover the
largest number of peaks within a sector; we report the number of peaks (left) and of peaks with large spectral value (right) that are captured by strips.
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pronounced for all genes though (Figure 6C). The weaker
signal identified by looking at all genes, justifies our strategy to
analyze core genes first, where the strength is much stronger.

To test further our results, we applied our method to two sets
of essential genes identified experimentally in Gerdes et al
(2003)(Gerdes’ data set, 602 genes) and in Baba et al (2006)
(Baba’s data set, 300 genes) (see Supplementary Table XI). The
two data sets share 201 genes (this showing the definition of
experimental essentiality to be ambiguous). The signal at
(integer multiples of) 33 kb is detected in both data sets
through several statistically significant peaks. Baba’s data set
displays a main periodic signal at 117 kb for both the full arc-
based model (Po10�4, Z¼5.47) and the circular model
(Po10�4, Z¼6.66). To search for the genes in Baba’s data set
that contribute most to the 117-kb period, we considered the
smoothed gene distribution curve defined on the 117-kb
interval (see Supplementary Figure 18). Then, we focused on
the subinterval defined by the two minima preceding and
following the maximum of the curve. We determined 172
Baba’s genes lying within the subinterval and we character-
ized the COGs functional classes whose number of genes
within the subinterval is overrepresented (i.e. for a COGs class,
we asked that 450% of its genes occurring in Baba’s data set
should lie in the subinterval). All three main COGs functional
groups are represented (classes ACHIJLMO satisfy the above
condition), this result showing a non-obvious functional
interpretation of the 117-kb period.

By filtering out from the COGs group of genes involved in
information storage and processing (ABJKL) those genes that
are not biased (i.e. genes with an SCCI value smaller than the
mean value of the SCCI distribution of all E. coli K12 genes), we
obtain a main peak at 117 kb for the full arc-based model and

the 117 kb signal as a second best period for the circular model
(Supplementary Table X). Notice that 72% of ABJKL genes in
Baba’s data set are involved in translation, ribosomal
structure, and biogenesis (COGs class J) and most of them
(85%) are core genes, therefore highly biased genes. Also, a
large portion (36%) of Baba’s genes (against 25% of Gerdes’
genes) are classified in ABJKL, and this corresponds to the
16% of the genes in ABJKL. No other COGs functional group
highlights a 117-kb period. This suggests that Baba’s set selects
those genes, especially involved in translation (only the 13%
of ABJKL genes in Baba’s data set lie in the COGs class K
involved in transcription), which are periodically spaced at
117 kb. We need to add here that when COGs analysis is
restricted to Wright’s data set (see Supplementary Table XI),
then the 117-kb period characterized in Wright et al (2007) is
identified as the second most important peak of COGs classes
involved in information storage and processing (ABJKL) for
the full arc-based model and the third best peak for the circular
model. No other COGs functional group highlights the 117-kb
period on Wright’s data set.

No signal enhancement was found when the analysis of core
genes considers their localization into operons (Supplemen-
tary Tables IV and V).

Discussion

Bacterial transcription and translation are known to be
intimately connected, and we exploit genomic translational
signals in E. coli K12 to detect a statistically significant periodic
distribution of core genes, that is highly biased genes, along its
chromosome. We show that the periodic signal in E. coli K12
genome does not come exclusively from core genes but that it
is definitely enhanced by them. Core genes carry a strong
periodic signal at 33 kb that we also find in functionally
organized groups and, at a minor extent, in the whole set
of E. coli K12 genes (see Table II for a summary). We show a
positional distribution of genes belonging to functional classes
(these genes do not necessarily belong to the functional core of
the organism). They organize in two different positional
networks, which occupy distinguished chromosomal ‘facets’
over the same period (Figure 5A; Supplementary Figure 8).
It might appear striking that the set of genes involved in E. coli
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Figure 6 Chromosomal gene mapping: curves (non-smoothed) tracing
chromosomal distribution of core genes (A), all genes in COGs classes (B),
and all E. coli K12 genes (C) along the entire chromosome with a period of
33 566 nt. The periodic co-localization of most core genes around a peak
between 10 and 20 kb from the origin is clearly defined. Two peaks
corresponding to the two identified networks are announced for COGs-classified
genes, and clearly observed for all genes.

Table II Classes of periodically distributed genes with main period at 33 kb (or a
multiple of it)

Data sets Full arc based Circular

P Z P Z

All genes (4295) 0.2092 10.03 0.9459 3.68
Core genes (563) o10�4 7.81 o10�4 8.19
All genes in COGs (3533) 0.3514 9.25 0.007 10.52
Wright’s genes (2247) 0.0230 8.21 Not principal
Core genes in COGs (542) 0.0002 7.9 o10�4 8.78
Core genes in Wright’s set (452) 0.0001 5.94 o10�4 7.63

P-values and Z-scores are reported for each main peak obtained on full arc-based
and circular models. Wright’s set display a 33-kb signal as third best period for
the circular model. The data set of all genes displays its fifth best peak at 33 kb,
and the third and forth best periods at integer divisor of 33 kb for the circular
model. Full information is found in Supplementary Table X.
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K12 metabolism is periodically organized in the same way as
the set of core genes (compare violet and red curves in
Figure 5A), but in fact, core genes have been used already
in Carbone and Madden (2005) to identify key metabolic
networks for a number of bacteria, including E. coli K12, and to
highlight that genes involved in metabolism are subject to a
strong evolutionary pressure on their codon bias. Our current
finding adds a new insight on our understanding of the
evolutionary pressure undergoing metabolic pathways, re-
porting that these genes need also to preserve a regular
positional distribution along the chromosome. The link
between essential metabolic pathways and chromosomal
superhelicity had been observed experimentally. Mutations
in metabolic genes was observed to affect DNA topology
(Hardy and Cozzarelli, 2005), and experimental analysis of the
citric acid cycle, known to be essential for E. coli K12 vitality,
showed DNA relaxation to be coupled to crucial metabolic
steps of the cycle (Blot et al, 2006).

The two main chromosomal networks highlighted for the
three main COGs functional groups (Figure 5A) would favor
specific chromosomal facets to transcription (Képès and
Valliant, 2003; Képès, 2004) and induce in this manner a
regulation of gene activity by DNA superhelicity. By running
FFT analysis on the three COGs groups separately in the full
arc-based model (data are shown in Supplementary Table X),
we obtained quite large main periods (685 714 nt for meta-
bolism, 145 455 nt for cellular processing and signaling, and
114 286 nt for information storage and processing) and all of
them are multiples of 28 571 nt. The plot of the gene
distribution for the three functional groups of COGs classes
for 28 kb (Supplementary Figure 19) shows the existence of
‘complementary’ facets favoring metabolism on one side,
cellular processing and signaling and information storage and
processing on the other side. This complementary distribution
is sharply present on both arcs and highlights once more the
existence of two independent gene networks separating
metabolic genes from other functional classes (see the
complementarity of the violet and the blue curves in
Supplementary Figure 19 as already observed in Figure 5A).
The positional gene organization confirmed by the 28-kb
period suggests that there might be an assortment of small
supercoiled loops, with variable sizes, that preserve positional
networks. This goes along the lines already pointed out in
Postow et al (2004). Notice that the 33 and 28 kb periods are
compatible with the critical loop size range described in
Postow et al (2004). The fluidity of loop sizes proposed there is
not supported by the functional role of gene positional
networks though, as only certain periods define positional
gene networks and consequently, might be of interest for cell
functioning.

Our finding can be considered as the in silico counterpart to
the experimental observations that uncovered the function of
DNA superhelicity in cellular activity. Alterations of global
DNA superhelicity have been shown to be linked to modula-
tion of genomic transcription (Azam and Ishihama, 1999;
Azam et al, 1999; Jeong et al, 2004; Peter et al, 2004;
Willenbrock and Ussery, 2004; Travers and Muskhelishvili,
2005a) and be associated to both growth transition and stress
response to environmental challenge (Balke and Gralla, 1987;
Dorman, 1996; Tse-Dinh et al, 1997; Cabrera and Ding, 2003;

Cheung et al, 2003; Travers and Muskhelishvili, 2005b). Only
the 8% of specific genes are found to respond to supercoiling in
E. coli K12 though (Peter et al, 2004), and the function of
superhelicity in organizing transcription remains obscure to
experimental approaches. Global transcription of the bacterial
genome during cellular growth has been shown to be
coordinated with a homeostatic regulation of supercoiling
(Blot et al, 2006).

Besides the experimental evidence of chromosomal super-
helical formation, a chromosome structuring into four macro-
domains was observed with fluorescent microscopy in Espéli
and Boccard (2006), and the impact on genome plasticity due
to structural constraints was experimentally addressed in
Esnault et al (2007). Even though we analyze the global
periodic signal all along the chromosome, and we use the
chromosomal spiral for representing the 33-kb periodic gene
arrangement (Figure 3C and Figure 4A and B), we looked
whether there were periodic patterns at 33 kb, which were
localized on specific regions along the chromosome. We found
that periodic patterns at 33 kb are present along most parts of
the E. coli K12 chromosome, and that the large majority of
maximal peaks in the SCCI* curve (Figure 3A) follows the
33-kb pattern. Strips identified for different sectors might be
out of phase across sectors (see Figure 3C), and this suggests
that the chromosomal superhelical structure might likely not
be a regular spiral. Sectors accommodate the idea of spiral
breaks along the chromosomal structure, suggesting a
structure that is flexible to local arrangements. The analysis
of three Expression* curves defined out of transcriptomic data
recorded for three different living conditions (Figure 3A;
Supplementary Figure 15), points out the existence of a stable
chromosomal structure where variations in local correlation
appear to be much more robust than one might imagine when
thinking of drastic changes in living conditions. Chromosomal
stability is reflected by positive local correlations that remain
detected even though gene expression levels might change for
different living conditions. Some chromosomal regions are
more affected than others by environmental changes and our
method allows for a detection of these regions (see Supple-
mentary Figure 16). An observation that confirms further our
finding is illustrated in Supplementary Figure 14, where we
show that three of our sector boundaries are localized on the
same chromosomal regions of three (out of the six) macro-
domain boundaries in Esnault et al (2007). One of these
macrodomains (the Right domain of Esnault et al (2007)) is
formed by the two sectors C and D, which we have detected
to be resistant to changements of E. coli living conditions
(see Supplementary Figure 16).

Sectors might also be a signal of an extra level of
organization for DNA loops (Postow et al, 2004) similarly to
the domain structure in Esnault et al (2007). Overall,
mechanisms and effects of chromosomal structuring are far
from being understood and any highlights on specific periodic
distribution of genes along the chromosome might be of
interest for further experimental design uncovering missing
biological information.

A chromosomal architecture organized in a spiral, or in a
‘rosette-like’ arrangement of domains (Cook, 2002), with
several 33-kb long loops, would provide a way to far apart
genes to be localized close by in the chromosome, as a few
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turns of the spiral can bring closer together distant parts of the
genome. An organization into a spiral was proposed in Wright
et al (2007), based on the much larger period of 117 kb. We
tested whether a rosette-like architecture could be suggested
by our gene networks but no meaningful arrangement of 33 kb
long loops was found.

Our single genome analysis to detect a periodic gene
distribution in E. coli K12 can be compared with the genomic
comparison approach of Wright et al (2007). The latter uses
proximity conservation of pairs of homologous genes across a
set of genomes and defines a distribution of distances for these
pairs in E. coli K12 genes that turns out to follow a periodic
organization at 117 kb. In contrast, our approach considers the
set of 563 E. coli K12 predicted core genes (452 of these genes
belong to the set of 2255 conserved genes considered in Wright
et al (2007)) and all possible distances between pairs of these
genes that are located in the right arc and in the left arc of the
chromosome. Our period is much smaller and helps to find two
positional gene networks that could not be detected in Wright
et al (2007) (Supplementary Figure 9). When the two methods
are compared with the same transcriptional data, our method
can explain peaks in the transcriptional curve at a finer scale
(through strips and sectors). Finally, our method can be
applied easily at large scale to any bacterial organism and it
does not demand a thorough genomic comparison of the
bacterium of interest with several others as in Wright et al
(2007). Namely, genes shared by several species are few, and
larger the number of compared species fewer is the number of
common genes (Mushegian and Koonin, 1996; Brown et al,
2001; Harris et al, 2003; Koonin, 2003; Charlebois and
Doolittle, 2004). In addition, genes might not be physically
close in a genome but be close in another and the integration of
a large number of genomes to ensure meaningful comparisons
is crucial when the method in Wright et al (2007) is applied at
large scale. This means that any database of precomputed
statistically significant pairs of genes could be used only
through an appropriate pair filtering, and that a genome
addition should reconsider all genomes previously analyzed
for the updating of new gene pairs. This approach, once applied
at large scale, requires an important computational cost.

Observe that the periodic signal at 33 kb has been found for a
large set of genes that does not a priori satisfy any particular
evolutionary constraint on coupling pairs of genes (in contrast
to Wright et al (2007)) and that the combinatorial method we
used amplifies noise quadratically. In light of these very loose
conditions satisfied by the sets of genes under study and by the
method, the strength of the periodic signal that we detect is
even more reinforced. In particular, the results support the idea
that strong evolutionary functional constraints are imposed
to gene organization along the chromosome.

In conclusion, an overall chromosomal organization exists
and it appears to help the expression of genes that belong to a
functional core or that are involved in metabolism, and
especially within the lagging strands (Figure 5B, bottom).
Genes located in the lagging strands have a known transcrip-
tional disadvantage due to the bacterial-replication mechan-
ism that might indeed involve a stronger evolutionary pressure
in lagging strands (Omont and Képès, 2004; Mirkin and
Mirkin, 2005). A very clear periodic signal is identified on the
left arc of the chromosome compared with a weaker signal

appearing on the right arc (see Figure 5B; Supplementary
Figure 12). This latter is known to undergo more important
gene conversions (French, 1992). Inversions of strands might
result, at times, in extremely deleterious rearrangements
(Louarn et al, 1985; Segall et al, 1988), and a disruption by
inversion of the periodic gene distribution affects the whole
chromosome and not just the inverted part, since the period,
which is a global parameter, might be affected as well as the
positional gene networks. New models for explaining tran-
scription versus translation, the interplay of transcription-
replication, and gene inversion might be found profitable to
account for the effect of the periodic chromosomal arrange-
ment of genes.

To know which three-dimensional model (structure) of the
chromosome, if any, is closer to the truth, one needs to
conceive appropriate experiments. Through the theoretical
analysis, we can find signals that can lead to a precise
conception of experiments and to hypothesis to be tested.
Exchanging the position of metabolic genes or genes involved
in translation in the chromosome (by keeping them in the
same chromosomal region but shifted by an interval Képès and
Valliant, 2003; Jeong et al, 2004; Képès, 2004). These results
will hopefully lead to conceiving new models or bring new
functional insights on old ones.

Materials and methods

Genomes and annotation

E. coli K12 MG1655 genome flat file was retrieved from GenBank. It
contains 4295 annotated genes. This genome is referred as E. coli K12.
E. coli K12 COGs (Tatusov et al, 2003) classification is found at http://
www.ncbi.nlm.nih.gov/sutils/coxik.cgi?gi¼115. The COGs class ‘In-
organic ion transport and metabolism,’ named P, has been found to
follow the same pattern of chromosomal gene distribution observed
for all COGs classes grouped as ‘cellular processing and signaling’
instead of the one followed by COGs classes grouped as ‘metabolism.’
Several characteristics of the E. coli K12 genome and lifestyle are
collected in Supplementary Table II.

Calculation of highly biased genes

The method used to automatically detect highly biased genes in a
genome is explained in Carbone et al (2003). It is based on a
generalized notion of Codon Adaptation Index (Sharp and Li, 1987),
called SCCI, which ranks genes in a genome depending on how much
they are affected by the dominant compositional bias governing the
genome. For fast growing organisms like E. coli K12, genes with high
SCCI rank correspond to genes carrying a strong signal of translational
bias in their codon usage, which have to be expressed rapidly in
specific moment of the life of the organism but not necessarily always.

Calculation of core genes

To detect the set of core genes, that is genes affected by a strong bias in
codon composition, we use the computational approach described in
Carbone (2006). This method is not based on comparative genomics
but on codon bias analysis of the genome. Many of the highly biased
genes detected by the method are experimentally proven to be
essential, and those which are found to be significant by the method
but not experimentally are usually stress response genes, which could
never be detected experimentally due to the extremely good living
conditions under which experiments are run. The numerical criterium
for prediction says that a core gene g has SCCI(g)4mþs, where m and
s are mean and s.d. of the distribution of SCCI values over all the genes
in the genome (for the E. coli K12 genome, m¼0.31 and s¼0.1028).

Chromosomal periodicity and positional networks
A Mathelier and A Carbone

& 2010 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2010 9

http://www.ncbi.nlm.nih.gov/sutils/coxik.cgi?gi&equals;115
http://www.ncbi.nlm.nih.gov/sutils/coxik.cgi?gi&equals;115
http://www.ncbi.nlm.nih.gov/sutils/coxik.cgi?gi&equals;115


This definition ensures that genes in the tail of the distribution largely
deviate from the average behavior of the genome, and that a significant
number of genes belong to the tail. The set of predicted core genes is
called functional genomic core. For E. coli K12, there are 563 predicted
core genes (SCCI(g)40.41), 486 of which are functionally classified in
COGs, 28 of which have unknown function, and 22 have an
hypothetical function; 223 core genes lie on the lagging strands and
340 on the leading strands.

Essential genes

Two data sets of essential genes have been experimentally identified by
Gerdes et al (2003) and Baba et al (2006). Gerdes’ essential genes were
retrieved from the Supplementary Table S1 of Gerdes et al (2003), at
http://www.integratedgenomics.com/online_material/gerdes/ table_
s1.xls. Among the 620 essential genes in the original set, we consider
the 602 that are annotated in the E. coli K12 GenBank file. Baba’s
essential genes were retrieved from the Supplementary Table VI of
Baba et al (2006), at http://www.nature.com/msb/journal/v2/n1/
extref/msb4100050-s8.xls. Among the 303 essential genes defined in
the original set, we consider the 300 that are annotated in the E. coli
K12 GenBank file.

Genes on the chromosome arcs, ORI, and TER

Given a set of genes X, we separate them into different classes
depending on their location in the chromosome. Leading and lagging
chromosomal strands, read from ORI to TER and from TER to ORI, give
rise to six distinguished subsets of genes in X depending on their
location (Supplementary Figure 1). Two sets, leading1 and leading2,
are constituted by all genes in X lying on the two leading strands,
respectively, located on the right and left arcs. Similarly, lagging1 and
lagging2 are constituted by all genes in X lying on the two lagging
strands. Two sets, left and right, are constituted by all genes in
X located on the left and on the right arc, respectively. Accordingly to
the analysis that is performed, the set X is the set of all core genes,
experimentally identified essential genes (Gerdes et al, 2003; Baba
et al, 2006), evolutionarily conserved gene pairs (Wright et al, 2007),
genes classified in specific COGs classes eCOG, or all E. coli K12 genes.
We speak about core genes ‘around the ORI (TER)’ and mean those core
genes located on the half chromosome around the origin (termination
site). To determine the half chromosome around the ORI (TER), we
consider the left and right arcs separately, cut them into two equal
parts, and consider the two quarters neighboring the ORI (TER).

Smoothing of curves

Curves are smoothed at times. This is done, all along the paper by
using a Gaussian smoothing window of s.d. s. For Figure 3A and
Supplementary Figure 15, s¼6 kb. For Figures 4C and D, and 5 and
Supplementary Figures 12, 18, and 19, s¼2 kb. Values of a smoothed
curve are indicated with * (when necessary, to avoid confusion).

Pearson correlation coefficient of pairs of curves

The Pearson correlation coefficient and corresponding P-values
between pairs of curves in Figure 5A are computed using the R
function cor.test in the R-package (R Development Core Team, 2008)
(http://www.r-project.org/).

Plots of genes and the periodic (smoothed) spiral

We generated Figure 3A by plotting SCCI* and Expression* values for
all genes along the arcs, where a gene location is determined by the
gene middle point position on the arc. Distributions of genes in Figures
4C and D, 5, and 6 and Supplementary Figures 8–12, 18, and 19 have
been realized by sliding consecutive windows of 5500 nt along the
chromosome arcs and by counting for each window the number of
overlapping genes (one nucleotide is sufficient for a gene to overlap a
window). The chromosome arc is represented on a spiral and each

distribution of genes is projected on the interval [0,y, Y] (where
Y¼33 565 when the period is 33 566 for instance). For each integer
iA[0,y, Y], a distribution records the sum of the number of genes
overlapping all the windows that are centered at Iþk Yþ 1, for kX0,
and covering the arc. (To center a window we use its middle point.)
(The ORI corresponds to i¼0 and k¼0.) Figure 4A and B plot the full
length of a gene that is all nucleotide positions of a selected gene are
colored in the spirals. Similarly, all nucleotide positions in a periodic
interval are plotted in Figure 3C and D.

Calculation of chromosomal periodic distributions

Let X be a set of genes as above. The distance between the two genes in
a set X is computed as the distance between starting points of those
genes. For the circular model, we consider minimal distances between
all pairs of genes in X along the chromosome, and call Scirc the set of all
these distances. For arc-based models, we compute distances between
all pairs of genes in X lying in the appropriate strand or arc; we call the
associated sets of distances Sleft, Sright, Sleading1, Sleading2, Slagging1,
Slagging2. The set of distances between the pairs of genes in X located in
the same chromosomal arc is Sall¼Sleft,Sright. (Notice that distances
between genes located in different arcs are not considered.) The set of
distances between pairs of genes in X located in the leading
chromosomal strands is Sleading¼Sleading1,Sleading2. Similarly, we
define Slagging¼Slagging1,Slagging2 (Figure 1).

Chromosomal periodicity is computed as follows. We construct a
distribution diagram on a set of distances (where histogram bins
record distances measured on steps of 5000 nucleotides) and
symmetrize it by centering the first histogram bin (see below on the
effects of symmetrization). Then, we compute the periodogram of the
histogram using the FFT of the corresponding series (in practice, we
used the function spec.pgram of the R language). To help the FFT
detection of the signal, if necessary, the series is padded with zeros
until its length is a highly composite number, data are detrended (i.e.
a linear trend is removed from the series; compare with Supplementary
Figures 4 and 6 for an analysis without detrend) and the mean is
removed. A proportion of 0.5 of the data has being tapered.
Chromosomal periodicity has been computed for several sets X of
genes (Supplementary Tables III–VI and X) on the four models
of Figure 1. Sets of distances Scirc, Sall, Sleading, and Slagging were defined
accordingly to the set X used in the application.

For each periodogram, we identify a period, possibly several
periods, whose spectral values are sufficiently distant from the mean
of the distribution. Namely, given a periodogram, we consider all
spectra that are local maxima, compute the distribution of these
spectra, and extract those periods that are associated to spectra lying
on the queue of the distribution, that is at least c s.d. away from
the mean mspectra. In the text, c¼3 if not specified otherwise. Given a
maximal spectrum M selected as above, we associate to its
corresponding period a Z-score defined as M�mspectra/sspectra. The
statistical significance of a period is determined with respect to
P-values computed from the null model described below, whereas the
notion of Z-score is interesting for comparing different periodograms
as in Supplementary Figure 7.

Generation of random genomes

To generate a random genome close enough to the E. coli K12 genome,
we tag core genes in the E. coli K12 genome and define two sets: one
contains all gene lengths with a tag on those lengths originally
associated to core genes, and the other contains the lengths of all
intergenic regions. To construct a random genome, we shuffle the two
sets independently, and put them together by randomly inserting a
gene between two intergenic regions along a linear arrangement. The
starting and ending points of this random arrangement coincide with
the ORI of the randomized circular chromosome and the TER is fixed at
the same ORI-TER distance, which is characteristic of the E. coli K12
genome. Gene (leading or lagging) strand is determined by respecting
the original strand in the E. coli K12 genome. By construction, the
distribution of intergenic region lengths, the distribution of gene
lengths, and the number of core genes in the randomized genomes are
the same as for the E. coli K12 genome. Notice, however, that the
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number of genes in each arc is not preserved. The methodology we
describe can be applied to any set X of selected genes, not only to core
genes. P-values computed for sets in Supplementary Table X are
evaluated through randomly generated genomes as described.

Comparison of periodogram peaks against the null
model

Given a random genome, we calculate its periodograms on Sall, Sleading,
Slagging, and Scirc as done for the original genome (see Supplementary
Figure 10 for instance). We count how many maximal spectral values
are higher than the maximal spectral value of the corresponding
periodogram on the original genome. We randomly generate 10 000
genomes and perform 10 000 times the analysis. A P-value is defined by
counting the number of randomized genomes displaying a spectral
value for the maximal peak, which is as strong as or stronger than the
spectral value of the maximal peak determined for the E. coli K12
genome, and by dividing this number by 10 000 (Supplementary Tables
III–VI and X). A P-valueo10�4 says that 10 000 randomizations did not
generate peaks, which were stronger than the E. coli K12 genome
strongest peak. In Supplementary Table VI, we consider peaks with a
spectral value 4mrþ 3sr, where 4mr,sr are mean and s.d. of the
distribution of peaks for the randomized genome, this condition
guaranting the peak to be exceptional.

Symmetrization of distribution diagrams

FFT is realized on symmetrized distance distributions. Symmetriza-
tion of right triangle shapes has two main effects: (1) the suppression
of noise introduced by the artificial right triangular shape into Fourier
analysis, as illustrated in Supplementary Figure 6A and C compared
with Figure 2B and Supplementary Figure 6D, respectively; (2) the
amplification of the signal as shown by the variation of spectral values
in Supplementary Figure 5 when compared with Figure 2B.

Prediction of the replication origin

Prediction of origin and terminus has been done with the program
Oriloc (Frank and Lobry, 2000) accessible at http://pbil.univ-lyon1.fr/
software/SeqinR/SEQINR_CRAN/DOC/html/oriloc.html.

Comparison with Wright’s data

We consider 2247 of the 2255 genes in the Supporting Information of
Wright et al (2007). Missing genes are as follows: three gene names do
not appear in the GenBank file, one is a tRNA, four are synonymous
genes and we count them only once.

Transcriptional data

As in Wright et al (2007), we computed an average of the absolute
transcript level for wild-type standard growth conditions (4-morpho-
linepropanesulfonic acid minimal glucose, doubling time 2–8 h) using
5 Affimetrix (Santa Clara, CA) microarray data sets. The same has been
done for two other data sets: for wild-type growth under heat shock (at
50 degrees, glucose as carbon source) and for wild-type growth under
acid shock (pH adjusted to 2, glucose as carbon source). Microarray
data sets are extracted from the ASAP database at https://asap.
ahabs.wisc.edu/asap/experiment_data.php and refer to (Allen et al,
2003). The Expression* curve in Figure 3A is computed based on 3982
genes, that is a subset of the set defining the SCCI* curve.

Correlation between expression levels and SCCI
curve

Transcriptional data were renormalized by dividing all values by the
maximum (where max¼23 840.88). Then, they were smoothed by
using a Gaussian smoothing window (s¼6 kb). The same smoothing
(following normalization by a max value of 0.83) has been applied to
the SCCI curve. The curves (i.e. SCCI* and Expression*) were
translated to identify the minimal y value to 0. The Pearson correlation

coefficient R between the smoothed transcriptional data and the
smoothed SCCI values has been computed by sampling the E. coli K12
genome once every 12 kb to avoid smoothing artifacts, and by
averaging the Pearson correlation coefficients obtained over all choices
of the sampling phase. The resulting correlation value is assigned to
the entire E. coli K12 genome. P was computed by using Student’s t test
as implemented in the function t test in the R-package.

Pearson correlation curves in Figure 3B and Supplementary Figures
14 and 16 were computed using the same idea. Given the smoothed
SCCI curve and the smoothed expression level curve, the Pearson
correlation curve was computed by sliding windows (from ORI to ORI,
by reading the left arc first) of 100 kb along the E. coli K12 genome with
a step of 1 kb. A Pearson correlation coefficient was computed for each
100 kb long window (by sampling once every 1 kb and by averaging
Pearson correlation coefficients on all sampled values), and the
Pearson correlation curve was defined to be the curve joining all points
determined by the starting position of a 100 kb window (x axis) and the
Pearson correlation coefficient of that window (y axis).

Chromosomal sectors

Chromosomal sectors are maximal intervals [X,Y] where a Pearson
correlation curve P(x) takes positive values. Formally, [X,Y]
should fulfill the following two properties: (1) P(X–1000)o0 and
P(Yþ 1000)o0; (2) P(x)X0 for all xA[X,Y]. Condition 1 follows from
the fact that points defining P(x) are spaced of 1 kb by construction.

Chromosomal strips

Given a chromosomal sector defined by the interval [X,Y], let S be the
set of x coordinates of SCCI* peaks falling in the interval. For each
integer iA[X,Yþ 33 565], we slide a 11189 kb (i.e. a third of 33 566 kb)
long window centered at i and count the number of peaks in S that
overlap the window or its periodic instances centered at Iþ k 33 566,
for kX1, over [X,Y]. The ensemble of the periodically spaced sliding
windows that maximizes the number of peaks in S defines the strip of
the chromosomal sector (see violet strips in Figure 3C and D).

Random genomes for the evaluation of sectors
and strips

In all, 1000 random genomes have been constructed as described
above, based on the set of all genes and intergenic regions in E. coli
K12. For each generated genome, 3982 genes (corresponding to those
used to compute the curve Expression* for E. coli K12) have been
identified to compute a curve Expression* for each randomly
generated genome.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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Allen TE, Herrgård MJ, Liu M, Qiu Y, Glasner JD, Blattner FR, Palsson
BØ (2003) Genome-scale analysis of the uses of the Escherichia coli
genome: model-driven analysis of heterogeneous data sets.
J Bacteriol 185: 6392–6399

Chromosomal periodicity and positional networks
A Mathelier and A Carbone

& 2010 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2010 11

http://pbil.univ-lyon1.fr/software/SeqinR/SEQINR_CRAN/DOC/html/oriloc.html
http://pbil.univ-lyon1.fr/software/SeqinR/SEQINR_CRAN/DOC/html/oriloc.html
https://asap.ahabs.wisc.edu/asap/experiment_data.php
https://asap.ahabs.wisc.edu/asap/experiment_data.php
www.nature.com/msb


Azam TA, Ishihama A (1999) Twelve species of the nucleoid-
associated protein from Escherichia coli. Sequence recognition
specificity and DNA binding affinity. J Biol Chem 274: 33105–33113

Azam TA, Iwata A, Nishimura A, Ueda S, Ishihama A (1999) Growth
phase-dependent variation in protein composition of the
Escherichia coli nucleoid. J Bacteriol 181: 6361–6370

Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko
KA, Tomita M, Wanner BL, Mori H (2006) Construction of
Escherichia coli K-12 in-frame, single-gene knockout mutants: the
Keio collection. Mol Syst Biol 2: 2006.0008

Balke VL, Gralla JD (1987) Changes in the linking number of DNA
accompany growth transitions in Escherichia coli. J Bacteriol 169:
4499–4506

Blot N, Mavathur R, Geertz M, Travers A, Muskhelishvili G (2006)
Homeostatic regulation of supercoiling sensitivity coordinates
transcription of the bacterial genome. EMBO Rep 7: 710–715

Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ (2001)
Universal trees based on large combined protein sequence data
sets. Nat Genet 28: 281–285

Carbone A (2006) Computational prediction of genomic functional
cores specific to different microbes. J Mol Evol 63: 733–746

Cabrera JE, Ding JJ (2003) The distribution of RNA polymerase in
Escherichia coli is dynamic and sensitive to environmental cues.
Mol Microbiol 50: 1493–1505

Carbone A, Madden R (2005) Insights on the evolution of metabolic
networks of unicellular translationally biased organisms
from transcriptomic data and sequence analysis. J Mol Evol 61:
456–469

Carbone A, Zinovyev A, Képès F (2003) Codon Adaptation Index as a
measure of dominating codon bias. Bioinformatics 19: 2005–2015

Charlebois RL, Doolittle WF (2004) Computing prokaryotic
gene ubiquity: rescuing the core from extinction. Genome Res 14:
2469–2477

Cheung KJ, Badarinarayana V, Selinger DW, Janse D, Church GM
(2003) A microarray-based antibiotic screen identifies a regulatory
role for supercoiling in the osmotic stress response of Escherichia
coli. Genome Res 13: 206–215

Cook PR (2002) Predicting three-dimensional genome structure from
transcriptional activity. Nat Genet 32: 347–352

Dorman CJ (1996) Flexible response: DNA supercoiling, transcription
and bacterial adaptation to environmental stress. Trends Microbiol
4: 214–216
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