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Antigenic Patterns and Evolution 
of the Human Influenza A (H1N1) 
Virus
Mi Liu1,2,*, Xiang Zhao3,*, Sha Hua2,4,*, Xiangjun Du5, Yousong Peng6, Xiyan Li3, Yu Lan3, 
Dayan Wang3, Aiping Wu1,2, Yuelong Shu3 & Taijiao Jiang1,2

The influenza A (H1N1) virus causes seasonal epidemics that result in severe illnesses and deaths 
almost every year. A deep understanding of the antigenic patterns and evolution of human influenza 
A (H1N1) virus is extremely important for its effective surveillance and prevention. Through 
development of antigenicity inference method for human influenza A (H1N1), named PREDAC-H1, 
we systematically mapped the antigenic patterns and evolution of the human influenza A (H1N1) 
virus. Eight dominant antigenic clusters have been inferred for seasonal H1N1 viruses since 1977, 
which demonstrated sequential replacements over time with a similar pattern in Asia, Europe and 
North America. Among them, six clusters emerged first in Asia. As for China, three of the eight 
antigenic clusters were detected in South China earlier than in North China, indicating the leading 
role of South China in H1N1 transmission. The comprehensive view of the antigenic evolution of 
human influenza A (H1N1) virus can help formulate better strategy for its prevention and control.

Seasonal influenza is a long-term threat to human health that causes significant morbidity and mortality 
every year. Studying the antigenic evolution and seasonal antigenic patterns of human influenza is crucial 
to formulating effective vaccine strategies.

History of human influenza A (H1N1) can date back to the “Spanish flu” in 1918, which infected 
almost 500 million1,2 people around the world and killed about 50 million of them3. After being in cir-
culation for nearly 40 years, human influenza A (H1N1) virus disappeared in 1957 after the emergence 
of human influenza A (H2N2) virus4. In 1977, the virus reappeared and has been co-circulating with 
human influenza A (H3N2) virus ever since5. In 2009, a triple reassortant strain of the human influenza 
A (H1N1) subtype caused severe outbreaks around the world and gradually replaced old lineages6.

The long-term epidemic of human influenza A (H1N1) virus is benefited from its fast genetic muta-
tion. To escape the host immune protection, the viral surface antigens underwent frequent mutations 
and thus antigenic changes. Therefore characterization of the genetic and antigenic evolution of human 
influenza A (H1N1) is very important for its prevention and control. Masoodi et al.7, Bragstad et al.8 
and McDonald et al.9 explored the antigenic and genetic evolution of 2009 pandemic H1N1 virus and 
some periodical seasonal H1N1 viruses. By using a method named BMDS which combines antigenic 
maps with genetic information, Bedford et al. also assessed the antigenic cartography of H1N110. But 
its antigenic data were limited, particularly for the viruses in the early years. More recently, by mainly 
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focusing on phylogeny analysis coupled with epidemiological modeling, Trevor et al. mapped the global 
circulation patterns of seasonal H1N1 viruses11. Despite the previous efforts, a global view of the anti-
genic patterns of H1N1 remains unclear.

Here we systematically investigate the antigenic patterns and evolution of the human influenza A 
(H1N1) virus from 1918 through 2014. We first develop the sequence-based antigenic inference method 
named PREDAC-H1 based on the PREDAC that we previously developed for modeling the antigenic 
clusters of human H3N2 viruses. Then we apply PREDAC-H1 to infer the antigenic clusters from a 
large-scale sequence data covering the whole epidemic history of H1N1. By tracking and comparing the 
antigenic clusters across different regions, we provide a comprehensive view of the antigenic evolution 
of the human influenza A (H1N1) virus.

Results
Modeling the Antigenic Patterns of the Human Influenza A (H1N1) Virus with PREDAC-H1.  In 
order to model the antigenic patterns of the human influenza A (H1N1) virus, we developed the 
PREDAC-H1 method. This method was derived from our previous PREDAC method for H3N212, and 
the workflow is shown in Fig. 1a. There are three key steps in the PREDAC-H1 method. First, the anti-
genic relationships between pairs of viruses were postulated as being either antigenic variant or similar 
with a Naïve Bayes model (see Methods and Materials). Then, antigenic similar viruses were used to 
construct an antigen correlation network (see Methods and Materials). Finally, based on this network, 
antigenic clusters were identified using the Markov Cluster Algorithm (MCL) method13.

In order to test the performance of the PREDAC-H1 method, we collected hemagglutination inhibi-
tion (HI) assay data from the Weekly Epidemiological Record (WER) of the WHO. A total of 161 anti-
genic relationships between 47 viruses were used for further retrospective testing. The results showed a 

Figure 1.  Methodology and validation of the PREDAC-H1 method. (a) Workflow of the PREDAC-H1 
method, antigenic correlation network was illustrated using Cytoscape software31. (b) Retrospective testing to 
infer the antigenic relationships between influenza A (H1N1) viruses. (c) Comparison of inferred antigenic 
clusters and predominant clusters in the US from the 1994–1995 to 2013–2014 epidemic seasons as reported 
by US CDC. Five dominant clusters are colored and labeled.
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fairly good performance of the PREDAC-H1 method with the average accuracy, sensitivity and specificity 
reaching 72.6%, 74.1% and 71.2%, respectively (Fig. 1b).

To test whether PREDAC-H1 was able to capture antigenic patterns of H1N1, we defined the pre-
dominant cluster of one season as the major antigenic cluster in the given season and further inferred 
seasonal predominant clusters for the human influenza A (H1N1) viruses surveyed by US CDC (The 
Centers for Disease Control and Prevention). By comparing actual predominant clusters reported by US 
CDC (Fig. 1c)14, we found that almost all antigenically different vaccine strains were separated into the 
different antigenic clusters we inferred. Also, these predominant antigenic clusters were consistent with 
those reported by US CDC. Of the 15 seasons with sufficient sequence data, we accurately inferred 14 
of them (Fig. 1c).

Antigenic Evolution of the Human Influenza A (H1N1) Virus Since 1918.  Using the PREDAC-H1 
method, we constructed comprehensive antigenic patterns of the seasonal human influenza A (H1N1) 
virus from 1918 to 2014 (Fig. 2). Two significantly different lineages were observed in the phylogenetic 
tree (Fig.  2a). One lineage consists of the seasonal human influenza A (H1N1) viruses from 1918 to 
2008 and the other was the swine-origin human-infecting influenza A (H1N1) virus, which included 
the pandemic H1N1 virus in 2009. The first lineage can be divided into 16 antigenic clusters (Fig. 2b). 
There were nine antigenic clusters from 1918 to 1957 and seven from 1977 to 2008. During the period 
of 1918–1957, several antigenic clusters co-circulated with each other. For example, there was a main 
cluster in circulation for 11 years from 1947 to 1957 accompanied by two smaller clusters with duration 
of 1947–1950 and 1951–1954 respectively. The small cluster of viruses sampled from 1948 to 1950 was 
antigenically similar to the CH83 cluster, which was consistent with previous studies15,16.

The seven antigenic clusters between 1977 and 2008 were named according to the vaccine strains they 
contained. The circulation time of these antigenic clusters ranged from 1 to 10 years (Fig. 2b). The dura-
tion of an antigenic cluster was also reflected in the period of vaccine use recommended by WHO. For 
example, A/New Caledonia/22/1999 was recommended as a vaccine strain from the 2000–2001 season to 

Figure 2.  Antigenic and genetic evolution of human influenza A (H1N1) viruses. (a) Phylogenetic tree 
of the HA1 region of the H1N1 HA protein. The tree was rooted using A/Brevig Mission/1/1918 strain as 
outgroup. (b) Inferred antigenic correlation network and antigenic clusters of human influenza A (H1N1) 
viruses. Clusters are colored and named as the abbreviation of vaccine strains. The circulation periods 
of each cluster are provided in parenthesis. (c) Genetic distance (calculated as amino acid substitutions) 
on HA1 of human influenza A (H1N1) strains to the A/Brevig Mission/1/1918 (H1N1) virus, each dot 
represents a virus strain. The strains were colored as antigenic clusters in Fig. 2b. The strains from 1918 to 
1957, strains from 1977 to 2008, the swine-origin human-infecting strains were separated by gray lines.  
(d) Genetic distance (calculated as amino acid substitutions) on HA1 of human influenza A (H3N2) strains 
to the A/Hong Kong/1/1968 (H3N2) virus. Strains were colored as the antigenic clusters they belonged to.
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the 2006–2007 season. CH83 was the main cluster circulating from 1977 to 1985, but this was replaced 
by SI86 in 1986. SI86 was only dominant for about three years before being replaced by TE91 in 1989. 
TE91 was the main cluster circulating around the world in the 1990s. In 1994, the BE95 cluster emerged 
in some regions and circulated for several years. The NE99 cluster emerged in 1998 and was the dom-
inant cluster around the world from 2000 to 2006. Interestingly, the antigenic clusters SO06 and BR07 
were two branches that evolved from the NE99 cluster. They co-circulated with each other during 2007 
and 2008. After 2009, all previous antigenic clusters died away after the emergence of the CA09 cluster.

We observed that swine-origin human-infecting influenza viruses were sporadic before 2009 and 
could be divided into several distinct antigenic clusters, which were consistent with previous reports17,18 
(Fig. 2a,b). Notably, the viruses in the same cluster could be collected from different regions and at dif-
ferent time. For example, a small cluster consisted of four viruses from both Switzerland and China that 
were sampled in 2002, 2009 and 2011, suggestive of sporadic swine to human transmission before 2009. 
From 2009 to 2014, H1N1pdm formed only one antigenic cluster named as the WHO-recommended 
vaccine strain CA09, which replaced the anterior seasonal H1N1. Based on the antigenicity inference 
and phylogenetic analysis, the CA09 was closest to the swine-origin viruses isolated in the US from 1995 
to 2012.

As we observed three distinct stages in the antigenic evolution of H1N1, we further analyzed the 
genetic evolution rates of these stages by comparing to that of human H3N2 (Fig.  2c,d). The genetic 
evolution of H3N2 was approximately linear while that of human H1N1 was much more complicated 
and differed significantly among the three stages. From 1918 to 1957, the genetic variation of strains 
presented approximately linear relationships. As for the genetic evolution of strains from 1977 to 2008, 
they did not evolved linearly from strains in 1918 since strains in 1977 were antigenically and genetically 
similar to those around 1950. In terms of swine-origin human-infecting influenza viruses, though the 
number of strains was quite limited before 2009, we still observed that those strains were approximately 
linear, with a slope lower than seasonal influenza from 1918 to 1957 and higher than that from 1977 to 
2008. We also compared the evolutionary rates in antigen region and non-antigenic region for H1N1 and 
H3N2 (see Supplementary Fig. S4 online). We found that for both H1N1 and H3N2, the evolutionary 
rate in antigenic region was much higher than that in non-antigenic region.

Antigenic Patterns of the Human Influenza A (H1N1) Virus in Different Regions.  In order to 
study detailed antigenic patterns in different regions, we mapped antigenic clusters of human influenza 
A (H1N1) viruses in Asia, Europe and North America. Detailed predominant clusters during each year 
are shown in Fig. 3. The earliest emergence of each antigenic cluster is marked by a colored bar. Here, 
we defined the emergence of a new antigenic cluster if the new antigenic cluster emerged with cluster 
percentage above 5%. Most clusters after 1990 first emerged in Asia. The BE95, NE99 and BR07 antigenic 
clusters were first detected in Asia and the SO06 cluster was first detected in Asia and North America. 
The SO06 cluster circulated in conjunction with the BR07 cluster in Asia from 2007 to 2009. The BE95 
cluster caused a long-term epidemic in Asia (including China), but was only dominant in Europe for 
one year (1998) and was not detected in North America during any year, according to sequence data. 
This showed the low activity of the BE95 cluster in both Europe and North America. The SO06 cluster 
was not predominant in Europe or North America during any year. The early appearance of most new 

Figure 3.  Comparison of antigenic patterns in different regions from 1980 to 2013. Dynamic changes in 
the percentage of antigenic clusters in Asia, Europe and North America were recorded yearly. The earliest 
appearance of a new antigenic cluster is marked by a colored bar.
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antigenic variants and the diversity of antigenic clusters in Asia reinforce the origin of influenza variants 
in this region.

After further analysis of detailed antigenic patterns in Asia, we found that China played an important 
role in transmission of the human influenza A (H1N1) virus. The CH83 cluster first appeared in China 
a year before it appeared in other regions of Asia. The SO06 cluster was the dominant antigenic cluster 
from 2006 to 2008 while the BR07 cluster was dominant in other regions of Asia, Europe and North 
America. The SO06 cluster also appeared in China earlier than it appeared in other regions of Asia (see 
Supplementary Fig. S2 online). According to our previous work, most antigenic clusters of the human 
influenza A (H3N2) virus also first appeared in China, and some were only dominant in this country12.

Circulation of the Human Influenza A (H1N1) Virus in Different Regions of China.  As we have 
demonstrated, China played a leading role in the circulation of the human influenza A (H1N1) virus. To 
gain a deep understanding of the antigenic evolution of human H1N1 inside China, the Chinese Center 
for Disease Control and Prevention (China CDC) has conducted large-scale sequencing of HA segments 
from representative regions of China during influenza surveillance. By combining these data with those 
collected from a public database (see Materials and Methods), we further mapped the antigenic evolu-
tion of influenza H1N1 in different regions of China (see Supplementary Fig. S1 online). China can be 
divided into two regions, South and North China with different climates and geographical traits, by the 
Huai River-Qin Mountains line (Fig. 4a).

We mapped the antigenic evolution of H1N1 in South and North China (Fig. 4b). From 1981 to 2011, 
there were seven antigenic clusters including CA09 in circulation in both regions of the country. Of these 
seven antigenic clusters, SO06 and CA09 were detected in the same year in both South and North China, 
and the exact time of the BE95 and NE99 clusters in North China could not be located due to missing 
data. While for the other three antigenic clusters (SI86, TE91 and BR07), they emerged earlier in South 
China than in North China.

It was also observed the circulation patterns were much more complex in South China. The 
co-circulation of two different antigenic clusters (either with a percentage above 30%) was discovered in 
both South and North China. We defined the complexity of co-circulation as co-circulation entropy (see 
Methods and Materials) and plotted the entropy value for each year in South and North China (Fig. 4c). 
In 1985, 1989 and 2006, there observed co-circulation of both newly emerged antigenic clusters and old 
antigenic clusters in South China. Although the new antigenic cluster BE95 emerged and became domi-
nant since 1994, the old TE91 cluster re-appeared and reclaimed the predominance in 1995 and 1996 in 
South China and North China respectively. In 2007, there emerged two new antigenic clusters (namely 
BR07 and SO06) in co-circulation in South China. In North China, there also observed co-circulation 
of two antigenic clusters in 1992, 1996 and 2004.

Discussion
By developing and using the sequence-based antigenicity inference approach PREDAC-H1, we systemat-
ically identified the antigenic clusters of human influenza A (H1N1) and analyzed its antigenic evolution. 
With large scale HA sequencing of H1N1 in China, we further mapped the detailed antigenic patterns 
in China.

Given that there exists some bias distribution of the sequence data, the antigenic patterns inferred 
based on sequence data available could not reflect perfectly the actual epidemics. But nevertheless our 
method provides a preferable way to correlate sequence data with influenza circulation and the expected 
results correlated well with the US CDC reports. Due to the rapid development of sequencing technology 
and improved surveillance strategies, sequence samples will become more reliable and the inferred anti-
genic clusters will reflect the actual epidemics more accurately. Recently, some methods were developed 
to predict the predominant H3N2 strains in the next season19,20. Similarly, our sequence-based antigenic-
ity inference method could be further developed into a prediction method with proper modification.

The average replacement cycle of antigenic clusters of H1N1 and H3N2 was 4.6 years and 3.3 years21, 
respectively, which shows that H1N1 experienced much slower antigenic evolution. Asia (including 
China) is thought to be an important region for the transmission of influenza, and some previous stud-
ies22,23 have demonstrated the leading role Asia plays in the transmission of H3N2. Our results indicated 
that the antigenic pattern of human influenza A (H1N1) was more complex in Asia and most new anti-
genic clusters first appeared in this region. Some clusters are predominant in Asia, only causing small 
epidemics in Europe and North America. The southern region of China may play an important role in 
the seeding and transmission of influenza due to the earlier emergence of most antigenic clusters. Those 
findings were consistent with Trevor et al.’s work11 which showed that most lineages of H1N1 eventually 
coalesced with viruses from East and Southeast Asia and India with the geographic segregation.

Quite different from H3N2, H1N1 demonstrated extensive co-circulation of different antigenic clus-
ters. Intriguingly, the resurgence of some old clusters was also observed even after a new antigenic cluster 
had become predominant for a while (Fig. 3). For example, in Asia, SI86 cluster reappeared in 1991 after 
being replaced by TE91 cluster in 1989. The co-circulation was even more complicated in Asia since 
H1N1 was much more active here than in other regions.

Our work also highlights the necessity of region-specific H1N1 vaccine recommendations. Our anal-
yses showed that two of the seven H1N1 antigenic clusters during 1977–2008 mainly dominated in Asia. 
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For example, the BE95 cluster dominated in Asia from 1994 to 1997, dominated in Europe in 1998 and 
never dominated in North America. The similar phenomenon was also discovered in the evolution of 
H3N212. The JX06 antigenic cluster of H3N2 was dominant in China in the 2006–2007 season, but it 
didn’t dominate in the United States or Europe. No doubt, characterization of the antigenic patterns of 
H1N1 in different regions and the further study of the co-circulation patterns of H1N1 and H3N2 are 
helpful to formulating better surveillance strategies.

Methods and Materials
HA Sequence Data.  Sequence data was obtained from the Influenza Virus Sequence Database of 
the NCBI24. Chinese data was too limited to be able to obtain a more detailed description of antigenic 

Figure 4.  Antigenic patterns in South and North China. (a) Geographic distribution of H1N1 HA 
sequences provided by the China CDC and obtained from a public database from 1977 to 2008. The map 
was reconstructed using OpenStreetMap (http://www.openstreetmap.org/) with further modification,  
and is for illustrative purposes only. (b) Dynamic changes in the percentage of antigenic clusters in South 
and North China. The underlying bar represents the circulation period of each antigenic cluster in South 
and North China and the earliest appearance of a new antigenic cluster is marked with a star. (c) Co-
circulation of antigenic clusters in South and North China. Co-circulation was measured as the entropy of 
co-circulating antigenic clusters.

http://www.openstreetmap.org/
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evolution in China, so we obtained more sequence data from the China CDC and the Global Initiative 
on Sharing All Influenza Data (GISAID). For sequences with same name, we only selected one of them. 
All HA1 sequences were aligned with ClustalW25. A phylogenetic tree was constructed using PhyML26 
and displayed using Dendroscope27.

Hemagglutination Inhibition (HI) Data for the Human Influenza A (H1N1) Virus.  We collected 
a dataset of HI measurements from the Weekly Epidemiological Record (Supplementary Table S1 online 
for detailed information) of the WHO. We then used Archetti-Horsfall distance (dAH)28 to define the 
antigenic relations between viruses, which is defined as follows:

=
( )

dAH
H H
H H 1

ii jj

ji ij

Where Hij refers to the HI titer of strain i relative to antisera raised against strain j. A pair of viruses were 
considered antigenic similar if dAH <  4 (as in Liao’s work29), otherwise they were considered antigenic 
different. For pairs with multiple HI test results, we used the median of our dataset. In total, we obtained 
70 antigenic variant pairs and 91 antigenic similar pairs.

Naïve Bayesian Model to Infer the Antigenicity of the Human Influenza A (H1N1) Virus.  The 
first step in modeling the antigenic evolution of the human influenza H1N1 virus was accurately infer-
ring the antigenic relationship between two viruses. We developed a feature-based model of human 
influenza H3N212 that took into account the structural and physicochemical features that underline 
antigen-antibody interaction. We adapted it to the human influenza H1N1 virus by making two modi-
fications, using the epitopes of H1N130 and the HI dataset described above as a training dataset. Based 
on the training dataset, we calculated a threshold cut-off for each feature, and then built a Naïve Bayes 
classifier to infer antigenic relationships, as we performed in the earlier work12. In 5-fold validations, the 
accuracy rate of the model was 82%. The viruses in the HI dataset were sampled from 1977 to 2007, but 
the number of virus pairs before 1995 and after 2005 were quite limited so we only conducted retrospec-
tive testing for the period from 1995 to 2005. For 1995, we used pairs in which both viruses were col-
lected before 1995 (including 1995) as the training dataset and the remaining pairs as the testing dataset.

Mapping the Antigenic Clusters of the Human Influenza A (H1N1) Virus.  We used the compu-
tational PREDAC-H1 method to model antigenic clusters of H1N1 viruses. The antigenic relationship 
between each pair of viruses in a group of H1N1 viruses was inferred based on their HA sequences. 
Then, we constructed an antigenic correlation network (ACnet)12 by connecting pairs of viruses inferred 
to be similar in their antigenicity. Groups of viruses with similar antigenicity, denoted as expected anti-
genic clusters, could then be identified from the ACnet using MCL (see Supplementary Fig. S3 online 
for detailed selection of inflation parameters).

Co-circulation Entropy.  Co-circulation entropy is defined as:

∑= − ( )⁎H p log p 2
n

i i1 2

Where pi refers to the percentage of an antigenic cluster in one year. The value of this parameter reflects 
the degree of co-circulation of antigenic clusters.
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