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Abstract
The host- associated microbiome is an important player in the ecology and evolu-
tion of species. Despite growing interest in the medical, veterinary, and conservation 
communities, there remain numerous questions about the primary factors underly-
ing microbiota, particularly in wildlife. We bridged this knowledge gap by leveraging 
microbial, genetic, and observational data collected in a wild, pedigreed population 
of gray wolves (Canis lupus) inhabiting Yellowstone National Park. We characterized 
body site- specific microbes across six haired and mucosal body sites (and two fecal 
samples) using 16S rRNA amplicon sequencing. At the phylum level, we found that 
the microbiome of gray wolves primarily consists of Actinobacteria, Bacteroidetes, 
Firmicutes, Fusobacteria, and Proteobacteria, consistent with previous studies within 
Mammalia and Canidae. At the genus level, we documented body site- specific micro-
biota with functions relevant to microenvironment and local physiological processes. 
We additionally employed observational and RAD sequencing data to examine ge-
netic, demographic, and environmental correlates of skin and gut microbiota. We 
surveyed individuals across several levels of pedigree relationships, generations, and 
social groups, and found that social environment (i.e., pack) and genetic relatedness 
were two primary factors associated with microbial community composition to dif-
fering degrees between body sites. We additionally reported body condition and 
coat color as secondary factors underlying gut and skin microbiomes, respectively. 
We concluded that gray wolf microbiota resemble similar host species, differ be-
tween body sites, and are shaped by numerous endogenous and exogenous factors. 
These results provide baseline information for this long- term study population and 
yield important insights into the evolutionary history, ecology, and conservation of 
wild wolves and their associated microbes.
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1  | INTRODUC TION

Widespread interest in host- associated microbiomes has led to criti-
cal insights about their form and function. Far from idle passengers, 
commensal microbes affect host development (Dominguez- Bello 
et al., 2019), metabolism (Martin et al., 2019), immunity (Honda 
& Littman, 2012; Thaiss et al., 2016), reproduction (Al- Nasiry 
et al., 2020), stress tolerance (Stothart et al., 2016), and behavior 
(Ezenwa et al., 2012), among other processes. Although originally 
limited to human and model systems, there has been a recent surge 
of studies characterizing microbiota in diverse host taxa. These 
studies traverse medical (Gupta et al., 2020), veterinary (Rodrigues 
Hoffmann et al., 2014), and conservation (Trevelline et al., 2019) 
communities, and include host systems ranging from invertebrates 
(Petersen & Osvatic, 2018) through humans (Peterson et al., 2009). 
Examples within Mammalia include carnivorans (Guo et al., 2018; He 
et al., 2018) cetaceans (Hooper et al., 2019; Sanders et al., 2015), chi-
ropterans (Avena et al., 2016; Ingala et al., 2019), marsupials (Alfano 
et al., 2015; Cheng et al., 2015), primates (Clayton et al., 2016; Gomez 
et al., 2015), rodents (Lavrinienko et al., 2018; Suzuki et al., 2019), 
and ungulates (Gibson et al., 2019; Sun et al., 2019) sampled in cap-
tivity and the wild.

Despite increased study, there remain numerous questions about 
the primary factors underlying microbial species presence and abun-
dance. Of particular interest is the contribution of host genetics, 
demography, and environment (Bonder et al., 2016; Ceja- Navarro 
et al., 2015; Goodrich et al., 2014; Kurilshikov et al., 2017; Rothschild 
et al., 2018; Spor et al., 2011). As microbiota function in diverse 
physiological processes, elucidating these factors can have import-
ant implications for the evolutionary history, ecology, and conser-
vation of species (DeCandia et al., 2018; Hauffe & Barelli, 2019; 
Trevelline et al., 2019).

Within wildlife systems, studies often consider broad- scale pat-
terns of phylosymbiosis or the eco- evolutionary scenario where host 
phylogenetic relationships are mirrored by dissimilarity between 
host- associated microbiomes (Brooks et al., 2016). This pattern has 
been observed within numerous host lineages, including inverte-
brates, rodents, and primates (Brooks et al., 2016). However, the 
taxonomic scale of comparison can strongly influence the degree of 
congruence between host phylogenies and microbial dendrograms, 
as these patterns break down within speciose host genera (Greene 
et al., 2019; Grond et al., 2020). Further, environmental and behav-
ioral variables often explain significant portions of variance alongside 
phylogenetics. Metagenomic analyses of gut microbiomes across 
Mammalia, Aves, Reptilia, Osteichthyes, and others found evidence 
that host taxonomy, diet, lifespan, and behavior (i.e., activity and so-
cial structure) influenced microbial composition to varying degrees 
(Levin et al., 2021). Similar analyses of 16S rRNA across Mammalia, 
Aves, Reptilia, Amphibia, and Actinopterygii revealed that diet pri-
marily predicted functional guilds and host phylogeny predicted the 
specific microbes present (Youngblut et al., 2019). The same pattern 
emerged within Mammalia, where diet was predictive of gut micro-
biome convergence at higher taxonomic rankings (such as microbial 

phylum) and host phylogeny was predictive of gut and skin microbial 
communities at lower taxonomic rankings (such as microbial family; 
Nishida & Ochman, 2018; Ross et al., 2018).

These broad- scale studies provide valuable insights into the evo-
lutionary history of hosts and their associated microbes. However, 
they lack details that may be relevant to the ecology and conserva-
tion of lower host clades. In order to obtain finer- scale information, 
researchers have turned to species- specific studies. Within captive 
management settings, microbiome analyses have yielded important 
information about the reproductive (Southern white rhinoceros, 
Ceratotherium simum simum; Williams et al., 2019) and gastrointesti-
nal (red wolf, Canis rufus; Bragg et al., 2020) health of captive- housed 
wildlife. Across host species, artificial diet and housing conditions 
significantly influence microbiota, as seen in primate microbes “hu-
manized” by captivity (red- shanked douc, Pygathrix nemaeus, and 
mantled howler monkey, Alouatta palliata; Clayton et al., 2016). While 
critical for ex situ conservation management, captive studies fail to 
capture wild microbes that colonize hosts in their natural habitat. 
Consequently, in situ studies are required to disentangle the evolu-
tionary and ecological factors shaping wild microbiomes. These fac-
tors may include disease (Santa Catalina Island fox, Urocyon littoralis 
catalinae; DeCandia et al., 2020), habitat fragmentation (common 
vampire bat, Desmodus rotundus; Ingala et al., 2019) and geography, 
diet, and anthropogenic pressure (western lowland gorilla, Gorilla go-
rilla; Gomez et al., 2015), with increasing interest in the contribution 
of within- species host genetics (house mouse, Mus musculus; Suzuki 
et al., 2019).

The majority of in situ microbiome studies focus on gut micro-
biota (Gomez et al., 2015; Ingala et al., 2019; Sanders et al., 2015; 
Suzuki et al., 2019), with a few studies targeting skin sites (Avena 
et al., 2016; Hooper et al., 2019). While informative, narrow focus on 
one or two sample types provides an incomplete characterization of 
commensal microbes. Body sites exhibit distinct microbial communi-
ties, due to differences in oxygen exposure, nutrient availability, sub-
strate, and environmental factors (The Human Microbiome Project 
Consortium, 2012). For example, human guts harbor far more anaer-
obic species than human skin, due to low oxygen availability in the 
gastrointestinal tract (Coates et al., 2019). Further differences exist 
between skin microenvironments, where dry sites (such as the fore-
arm) exhibit higher species richness than sebaceous sites (such as the 
forehead; Byrd et al., 2018; Grice & Segre, 2011). Similar patterns are 
observed in domestic dogs (Canis familiaris), where microbial species 
richness is highest at haired body sites (such as the axilla) and lowest 
at specialized mucosal sites (such as the nostril; Rodrigues Hoffmann 
et al., 2014). Considered together, this evidence suggests that dif-
ferent factors may influence microbiota at each body site, as seen in 
wild bank voles (Myodes glareolus; Lavrinienko et al., 2018). This ne-
cessitates study of body site- specific microbiota in the wild to more 
holistically characterize host- associated microbiomes.

The present study bridges these knowledge gaps by charac-
terizing in situ wildlife microbiomes across multiple body sites. 
Specifically, we sequenced host- associated bacterial communities 
across six haired and mucosal body sites (and two fecal samples) in 
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a wild pedigreed population of gray wolves (Canis lupus) inhabiting 
Yellowstone National Park (YNP) in Wyoming, USA (Figure 1). We 
hypothesized that body sites would harbor distinct microbial com-
munities, with haired sites exhibiting higher alpha diversity than 
mucosal sites, and fecal sites hosting higher proportions of anaer-
obic bacteria than nonfecal sites. We further leveraged observa-
tional data, biobanked blood and tissue, and the highly resolved 
YNP wolf pedigree (vonHoldt et al., 2020) to examine genetic, de-
mographic, and environmental factors underlying body site- specific 
microbiota in this wild mammalian system. Given that wolves live 
in kin- structured family groups comprised of close relatives (Stahler 
et al., 2020; vonHoldt et al., 2008), we predicted that genetic relat-
edness would positively correlate with microbial similarity, as seen 
in studies of humans and model systems (Bonder et al., 2016; Spor 
et al., 2011). However, as many wolves disperse from their natal 
groups, we also predicted that unrelated wolves sharing the same 
social environment (here termed “sampling pack”) would exhibit 
more similar microbiota than unrelated wolves sampled in different 
packs, as seen in cohabitating humans (Dill- McFarland et al., 2019; 
Song et al., 2013). Pack mates cooperatively share social contacts, 
resources, and prey items, including elk and (to a more variable de-
gree) bison, deer, moose, or beaver (Metz et al., 2020)— it therefore 
follows that they share microbes, as well. The social structure of 
wolves, coupled with the availability of host genetic, microbial, de-
mographic, environmental, and pedigree information provided the 
unique opportunity to examine body site- specific microbiota and 
their underlying factors in a wild mammalian system. Results yielded 
system- specific insights, while also contributing to the larger- scale 
effort of characterizing wildlife microbiomes in situ.

2  | MATERIAL S AND METHODS

2.1 | Sample and data collection

Gray wolves have been monitored annually by the National Park 
Service (NPS) since their reintroduction to YNP in 1995 and 1996. 
Static (e.g., sex) and dynamic (e.g., pack membership) life history 
variables were collected from aerial and ground surveys conducted 
during the winter monitoring season. In addition, biological samples 
were collected between December and February during helicop-
ter captures (whole blood sampled through venipuncture) and field 
necropsies (tissue sampled from deceased individuals). At the time 
of microbiome sample collection, body condition was qualitatively 
scored by two handlers based on sex-  and age- specific patterns of 
weight, muscle/fat condition, coat condition, and injuries/illness de-
tected. All capture and handling protocols were conducted in accord-
ance with the NPS (IACUC permit IMR_YELL_Smith_wolves_2012) 
and Princeton University (Princeton IACUC #2009A- 17) Institutional 
Animal Care and Use Committees.

We generated genomic data using whole blood and microbi-
ome data using skin swabs and fresh scat. We used sterile BD BBL™ 
CultureSwab™ swabs to sample commensal bacteria at six body 

sites, including ear canal, nostril, lip commissure, axilla, dorsal flank, 
and perianal area (Figure S1). At each body site, we rubbed the swab 
tip on the skin roughly 100 times, rotating by 90° every 25 times. 
We also collected fresh scat if the individual released feces during 
or immediately prior to sampling. Across three field seasons, we col-
lected 151 microbiome samples from 25 unique individuals. We col-
lected 56 samples from nine wolves during the 2017– 2018 season, 
35 samples from eight wolves during the 2018– 2019 season, and 60 
samples from 10 wolves during the 2019– 2020 season. Two wolves 
were resampled in different field seasons, with wolf 1106M sampled 
in 2017– 2018 and 2018– 2019, and wolf 907F sampled in 2017– 2018 
and 2019– 2020. One wolf (949M) was sampled after death following 
complications due to canine distemper virus (Canine morbillivirus). In 
total, we collected 25 ear canal swabs, 25 nostril swabs, 26 lip com-
missure swabs, 24 axilla swabs, 24 dorsal flank swabs, 25 perianal 
swabs, and 2 fresh scat samples. Upon collection, all samples were 
stored at −80°C until DNA extraction.

2.2 | Genomic DNA extraction, RAD 
sequencing, and data analysis

We extracted DNA from whole blood following the Qiagen DNeasy 
Blood and Tissue Kit manufacturer protocol (Qiagen Inc.), quantified 
DNA using Quant- iT™ PicoGreen™ dsDNA assays or high- sensitivity 
Qubit™ fluorometry (Thermo Fisher Scientific), visualized extracts 
on 1% agarose gels to assess molecular weight, and standardized 
concentrations to 5 ng/μl. We then generated genomic data using 
a modified restriction site- associated DNA sequencing protocol de-
signed by (Ali et al., 2016) and described in (DeCandia et al., 2021; 
vonHoldt et al., 2020). Briefly, we digested DNA with the restric-
tion enzyme sbfI and ligated uniquely barcoded, biotinylated 
adaptors. We pooled barcoded samples, sheared DNA to 400 bp 
using a Covaris LE220, and enriched for fragments containing the 

F I G U R E  1   Gray wolves were reintroduced to Yellowstone 
National Park in 1995– 1996 and have been closely monitored ever 
since. 
P H O T O 
Credit: NPS/Jacob W. Frank
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ligated adaptor using a streptavidin bead- binding assay (Invitrogen 
Dynabeads M- 280). We prepared libraries for sequencing using the 
NEBNext Ultra II DNA Library Preparation Kit (New England Biolabs) 
manufacturer protocol and performed size selection for fragments 
300– 400 bp in length using Agencourt AMPure XP magnetic beads 
(Beckman Coulter). We standardized final libraries to 10 nM and per-
formed paired- end sequencing (2 × 150nt) on an Illumina HiSeq2500 
or NovaSeq6000 at the Princeton University Lewis Sigler Genomics 
Core Facility.

After sequencing, we aligned all forward and reverse reads with 
the restriction enzyme cut site using a custom perl script (Data S1). 
We then used STACKS v1.42 (Catchen et al., 2013) to demultiplex 
reads, remove reads with >2 bp barcode mismatches or quality 
scores <90% (using a sliding window of 15% read length), and fil-
ter out PCR duplicates using default parameters in clone_filter. We 
manually removed samples with <500,000 reads and performed 
paired- end alignment to the reference domestic dog CanFam3.1 
genome (Lindblad- Toh et al., 2005) with STAMPY v1.0.21 (Lunter & 
Goodson, 2011). We used Samtools v0.1.18 (Li et al., 2009) to sort 
and filter mapped reads for quality scores (MAPQ ≥ 96) and convert 
files to BAM format.

We then implemented the gstacks and populations modules in 
STACKS v2.2 (Rochette et al., 2019) to genotype and filter genome- 
wide single nucleotide polymorphisms (SNPs) from paired- end data 
using the Marukilow model (Maruki & Lynch, 2017). We ran gstacks 
using a dataset of 32 samples representing 24 unique individuals 
(N.B., we excluded wolf 949M from these analyses due to microbial 
sampling after death). We manually determined which duplicate 
samples exhibited higher read counts and implemented populations 
using 24 unique samples and the filtering parameters - - write_sin-
gle_snp (which only retains one SNP per read) and – r 0.9 (which only 
retains loci genotyped in >90% of wolves). This yielded a dataset 
of 116,953 variant sites genotyped in 24 wolves. We subsequently 
removed singletons, doubletons, and X- chromosome sites (due to 
our mixed- sex sample set; Clayton, 2009) using VCFtools v0.1.12b 
(Danecek et al., 2011). This produced a dataset of 86,545 high- 
confidence autosomal SNPs found throughout the genome.

We additionally created a heavily filtered, pedigree- informative 
dataset using PLINK (Purcell et al., 2007) to enable pairwise related-
ness estimation. This dataset only included biallelic SNPs in Hardy– 
Weinberg equilibrium (- - hwe 0.001) with minor allele frequency >0.45 
(- - maf 0.45), following recommended guidelines (Huisman, 2017). It 
further excluded loci exhibiting statistical linkage disequilibrium as 
evidenced by genotypic correlation (- - indep- pairwise 50 5 0.2). After 
filtering, the pedigree- informative dataset retained 517 highly infor-
mative SNPs genotyped in 24 wolves. As results obtained using the 
86,545 SNP and 517 SNP datasets were largely congruent, we pri-
marily present results using the 517 SNP data (see Appendix S1 for 
86,545 SNP results).

To consider familial relationships, we calculated pairwise relat-
edness coefficients in the R package related (Pew et al., 2015). We 
used the coancestry function and implemented the dyadic likelihood 
estimator (dyadml = 1; Milligan, 2003) with allowance for inbreeding 

(allow.inbreeding = TRUE). We additionally identified putative par-
ents and grandparents of wolves with microbiome data by referenc-
ing the full YNP wolf pedigree, which included 871 parent– offspring 
pairs as of October 2020 (vonHoldt et al., 2020).

2.3 | Microbial DNA extraction and 
amplicon sequencing

We used a modified Qiagen DNeasy PowerSoil Kit protocol (Qiagen 
Inc.) to extract DNA from each sample, as described in (DeCandia 
et al., 2019, 2020). Briefly, we placed swab tips or fecal material 
into PowerBead tubes that were shaken for two cycles on a Qiagen 
TissueLyserII. Each cycle lasted for 12 min at 20 shakes/s, with the 
addition of 60 μl of C1 solution occurring between cycles. We then 
followed the standard manufacturer protocol until the final elu-
tion, when we incubated samples for 10– 15 min at room tempera-
ture with 60 μl C6 buffer preheated to 70°C. We used sterile swab 
tips as negative controls during extraction and subsequent library 
preparation and sequencing. We concentrated extracts to 20 μl in a 
Vacufuge if needed, quantified DNA using a high- sensitivity Qubit™ 
fluorometer, standardized high- yield samples to 2.5 ng/μl, and in-
cluded low- yield samples with concentrations as low as 0.062 ng/μl.

We used barcoded forward (GTGCCAGCMGCCGCGGTAA) 
and reverse (TAATCTWTGGGVHCATCAGG) primers described 
in (Caporaso et al., 2011) to amplify and tag the 16S ribosomal 
RNA (rRNA) V4 region. PCR reactions included 5 μl HiFi HotStart 
ReadyMix (KAPA Biosystems), 3.2 μl primer mix (1.25 μM), and 
1.8 μl template DNA and cycling conditions included: initial de-
naturation of 94°C/3 min, touchdown cycling for 30 cycles of 
(94°C/45 s, 80– 50°C/60 s, 72°C/90 s) decreasing 1°C each cycle, 
12 cycles of (94°C/45 s, 50°C/60 s, 72°C/90 s), and final exten-
sion of 72°C/10 min. We quantified PCR product using Quant- iT™ 
PicoGreen™ dsDNA assays, pooled equal nanograms of uniquely 
barcoded libraries, and completed a size selection for fragments 
between 300 and 400nt using Agencourt AMPure XP magnetic 
beads. We performed paired- end sequencing (2 × 150nt) on an 
Illumina MiSeq in the Princeton University Lewis Sigler Genomics 
Core Facility.

We sequenced 133 samples (axilla, n = 15; dorsal flank, n = 20; 
ear canal, n = 21; lip commissure, n = 24; nostril, n = 21; perianal 
area, n = 25; feces, n = 2; negative controls, n = 5) collected from 
25 wolves (1– 11 samples/wolf, with median = 5 and mode = 6). We 
used a barcode splitter for paired- end, dual- indexed data in the 
online platform Galaxy (Afgan et al., 2018) to demultiplex raw se-
quencing reads with allowance for a single nucleotide mismatch in 
sequence tags. We filtered 4,998,642 demultiplexed reads in QIIME 
2 v2020.8 (Bolyen et al., 2019; https://qiime2.org) using the dada2 
denoise- paired plugin (Callahan et al., 2016), which corrects proba-
ble sequencing errors, trims low- quality bases, merges paired- end 
reads, and removes chimeric sequences. We retained 4,272,465 
sequences containing 8,944 amplicon sequence variants (ASVs; 
Table S1).

https://qiime2.org
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We found that negative controls on average contained two or-
ders of magnitude fewer reads (mean ± SE, 625.60 ± 338.25) than 
microbiome samples (33,354.20 ± 1,393.65). Negative control reads 
included 131 ASVs, 127 of which only appeared in one control sam-
ple (Table S2). Since frequencies ranged from 2 to 255, we removed 
ASVs with frequencies lower than 260 from our denoised dataset. 
This enabled us to mitigate possible contamination while retain-
ing biologically meaningful features (Eisenhofer et al., 2019; Salter 
et al., 2014). We subsequently removed repeat samples (n = 11), 
samples collected after death (n = 6), and negative controls (n = 5) 
for a final dataset of 3,592,905 sequences and 955 ASVs. This in-
cluded 113 samples (axilla, n = 13; dorsal flank, n = 17; ear canal, 
n = 19; lip commissure, n = 22; nostril, n = 18; perianal area, n = 22; 
feces, n = 2; Table 1) collected from 24 wolves (1– 6 samples/wolf, 
with median = 5 and mode = 6; Table S4).

2.4 | Characterizing the host- associated microbiome 
across multiple body sites

We characterized microbial communities inhabiting each body site 
using QIIME 2 (Bolyen et al., 2019; https://qiime2.org). For these 
analyses, we employed four measures of bacterial diversity to con-
sider different aspects of microbial community composition (Knight 
et al., 2018). For alpha (or within sample) diversity, we measured mi-
crobial species richness using observed amplicon sequence variants 
(ASVs; Hagerty et al., 2020) and species equitability using Pielou's 
evenness (Pielou, 1966). For beta (or between sample) diversity, we 
used qualitative (unweighted UniFrac) and quantitative (Bray– Curtis 
dissimilarity) measures to consider differences in species presence 
and abundance (Lozupone et al., 2007). Unweighted UniFrac is a 
qualitative measure that calculates the amount of branch length in a 
phylogenetic tree of ASVs leading to unique members of each micro-
bial community (Lozupone & Knight, 2005). This measure primarily 
considers species presence and ignores the relative abundance of 
ASVs. In contrast, Bray– Curtis dissimilarity is a quantitative meas-
ure that directly incorporates abundance into its calculations (Bray 
& Curtis, 1957). By concurrently examining observed ASVs, Pielou's 
evenness, unweighted UniFrac distances, and Bray– Curtis dissimi-
larity, we were able to compare microbial species richness, evenness, 
presence, and abundance across body sites.

We calculated these measures using the core- metrics- phylogenetic 
and alpha- rarefaction functions in QIIME 2. We employed rarefac-
tion to control for different sequencing depths and calculated un-
weighted UniFrac distances using a midpoint- rooted phylogeny 
constructed using the alignment and phylogeny functions. We used 
Kruskal– Wallis tests (Kruskal & Wallis, 1952) implemented through 
the alpha- group- significance function to compare observed ASVs and 
Pielou's evenness across body sites. To assess differences in beta 
diversity, we implemented PERMANOVA (Anderson, 2001) through 
the diversity adonis function (Oksanen et al., 2019) and performed 
principal coordinate analysis (PCoA) using the EMPeror plugin in 
QIIME 2 (Vázquez- Baeza et al., 2013).

In order to assign taxonomy to ASVs, we used reference se-
quences from the Greengenes 13_8 database to train a Naive Bayes 
classifier (Bokulich et al., 2018; DeSantis et al., 2006). Reference 
sequences were trimmed to match our target amplicon sequence, 
clustered at 99% similarity, and compared against representative 
sequences in our dataset using the classify- sklearn function in the 
feature- classifier plugin for QIIME 2. We subsequently clustered 
body sites hierarchically using Euclidean distances and the average 
linkage method. We reported the most abundant orders colonizing 
each body site to characterize high- level taxonomy and visualize 
broad- scale patterns of taxonomic diversity. We additionally consid-
ered lower- level taxonomy by implementing the linear discriminant 
analysis (LDA) effect size (LEfSe) method in Galaxy with sequences 
grouped at the genus level (Segata et al., 2011). This method identi-
fies microbial clades (e.g., genera) that underlie differences between 
two or more biological groups (e.g., body sites). We used default 
parameter settings and the one- against- all strategy for multigroup 
analysis. Following LEfSe guidelines, we excluded the two fecal sam-
ples due to small within- group sample size (Segata et al., 2011).

2.5 | Assessing environmental, demographic, and 
genetic drivers of microbiome composition

We created two subsets of the microbiome data to perform body 
site- specific analyses. The first subset included perianal samples 
(n = 22) to represent the gut microbiome (Bassis et al., 2017) and the 
second subset included dorsal flank samples (n = 17) to represent the 
skin microbiome (Kong et al., 2017). We then considered potential 

TA B L E  1   Samples included in the microbiome dataset

Sampling pack Wolves Axilla Flank Ear Canal Lip Nostril Anus Feces Total

1108M group 2 0 0 1 2 2 2 1 8

8 Mile 5 4 5 5 5 3 5 0 27

Alone 1 0 0 1 1 1 1 0 4

Cougar Creek 2 0 1 1 1 1 2 0 6

Junction Butte 6 6 6 5 6 4 6 0 33

Wapiti Lake 8 3 5 6 7 7 6 1 35

Total 24 13 17 19 22 18 22 2 113

https://qiime2.org
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environmental, demographic, and genetic drivers of microbial com-
munity composition. We tested for significant associations with age 
class, body condition, coat color, field season, sampling pack, and 
sex using single-  and multifactor PERMANOVA implemented through 
the diversity adonis function in QIIME 2 (Anderson, 2001; Oksanen 
et al., 2019). We note that the variable field season was confounded 
with sequencing plate; thus, any observed differences may repre-
sent true signal of temporal change or artificial signal of technical 
batch effect.

We additionally tested for correlations between host genetic dis-
tance and microbial dissimilarity using full and partial Mantel tests im-
plemented in the R package vegan with 999 permutations (Oksanen 
et al., 2019). Host genetic distances (Euclidean) were calculated 
using the dist function in the R package adegenet (Jombart, 2008; 
Jombart & Ahmed, 2011), and microbial distances were calculated 
in QIIME 2 using Bray– Curtis dissimilarity and unweighted UniFrac 
distances. We additionally constructed a dissimilarity matrix for pack 
membership (where 0 = same pack, 1 = different pack) to implement 
partial Mantel tests that controlled for shared sampling pack. The 
test statistic r was based on Spearman's rank correlation rho, and 
statistical significance was assessed using a threshold of p < .05.

3  | RESULTS

3.1 | Genomic analyses support multiple pedigree 
relationships across sampling packs

Pairwise relatedness estimates ranged from 0 between putatively 
unrelated wolves to 0.484 between first- order relatives (such as 
parent- offspring and full sibling pairs). Although relatedness within 
packs was significantly higher than between packs (t test, t = 5.95, 
p < .001; Table S3), numerous outliers represent relatives with differ-
ent pack membership (Figure S2). Contextualizing these 24 wolves 
within the larger- scale YNP wolf pedigree (vonHoldt et al., 2020) 
further supported the presence of parent- offspring, full sibling, half 
sibling, avuncular, and other familial relationships in the dataset 
(Figure 2; Figure S3), leading to a range of genetic relatedness values 
across shared and unshared environments. These results matched 
observational data of wolf dispersal. For example, wolves 1108M 
and 1107M dispersed from their natal pack (8 Mile) 6– 8 weeks be-
fore being sampled in their newly formed group (1108M Group), 
whereas wolf 1047M dispersed from his natal pack (8 Mile) four 
years prior to being sampled in the Junction Butte pack. In further 
contrast, wolves 1154F, 1231M, 1232M, and 1233M remained in 
their natal pack (8 Mile) for the duration of this study.

3.2 | Different body sites exhibit distinct microbial 
communities

Alpha and beta diversity significantly differed between body sites 
using multiple diversity metrics. Examination of observed ASVs 

(Kruskal– Wallis test; H = 33.83, df = 6, p < .001) revealed higher 
species richness at heavily haired body sites and lower species 
richness at mucosal and fecal sites (Figure 3a). This pattern was 
largely driven by significantly lower diversity in mucosal nostril and 
perianal swabs when compared to haired dorsal flank and axilla 
swabs (Benjamini– Hochberg corrected q- values < 0.05; Table S5). 
We also observed significant differences in species equitability 
between body sites using Pielou's evenness (H = 48.144, df = 6, 
p < .001), with high equitability observed in fecal and lip communi-
ties, moderate equitability at haired sites, and low equitability in 
the nostril (Figure 3b). Pairwise comparisons returned significant 
differences between perianal swabs and other body sites (except 
feces and lip), and nostril swabs and other body sites (except feces; 
q- values < 0.05; Table S6).

Regarding beta diversity, we observed significant differ-
ences in bacterial species abundance (Bray– Curtis dissimilarity; 
PERMANOVA, R2 = .281, df = 6, p = .001) and presence (unweighted 
UniFrac distances; R2 = .403, df = 6, p = .001) between body sites. 
Principal coordinate analysis revealed sample clustering by body 
site, with differences in centroid position and dispersion evident 
(Figure 3c; Figure S4). These patterns were supported by hierarchi-
cal clustering of body sites using Euclidean distances, where perianal 
and fecal samples formed one group, mucosal lip and nostril samples 
formed another, and haired axilla, dorsal flank, and ear canal samples 
formed the third (Figure S5). This evidence suggests that microbial 
species richness, evenness, presence, and abundance all contribute 
to the body site- specific patterns of diversity observed in YNP wolf 
microbiomes.

The taxonomic composition of each body site mirrored these 
patterns (Figure 4). Heavily and moderately haired axilla, dor-
sal flank, and ear canal samples had high relative abundances of 
orders Bacteroidales (phylum Bacteroidetes; mean ± SE ranged 
from 18.1 ± 6.3% to 27.6 ± 4.9%), Actinomycetales (phylum 
Actinobacteria; ranged from 8.3 ± 2.5% to 18.3 ± 7.7%), Clostridiales 
(phylum Firmicutes; ranged from 9.0 ± 1.9% to 15.3 ± 3.1%), and 
Pseudomonadales (phylum Proteobacteria; ranged from 6.5 ± 2.2% 
to 14.1 ± 5.0%). While these taxa were present at mucosal sites and 
mucocutaneous junctions, microbial communities inhabiting non-
haired sites proved to be more specialized. Lip commissure samples 
exhibited high relative abundance of Actinomycetales (18.9 ± 3.5%) 
and Pseudomonadales (16.0 ± 2.3%), but also had high relative abun-
dances of Flavobacteriales (phylum Bacteroidetes; 13.5 ± 1.6%) 
and Pasteurellales (phylum Proteobacteria; 12.3 ± 2.5%). In con-
trast to these fairly even relative abundances, nostril, perianal, and 
fecal samples exhibited taxonomic skews toward one or more mi-
crobial taxa. Nostril samples exhibited high relative abundance of 
Pseudomonadales (44.9 ± 6.0%), whereas perianal (PA) and fecal (F) 
communities were dominated by Bacteroidales (PA=34.6 ± 4.2%; 
F = 50.4 ± 15.9), Clostridiales (PA = 35.4 ± 3.5%; F = 24.7 ± 11.7%), 
and Fusobacteria (phylum Fusobacteria; PA = 16.2 ± 1.5%; 
F = 14.9 ± 5.2%).

Analyses at the genus level (when known) provided finer- scale 
insights into the taxonomic composition of each body site. While 
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the overall pattern remained the same (Figure S6), LEfSe revealed 
which bacterial players most likely drive differentiation between 
body sites (Figure 5). This analysis returned 7– 14 clades abundant 
in each of the heavily and moderately haired body sites, with 27 
clades abundant in perianal samples, 39 abundant in lip commis-
sure samples, and six abundant in nostril samples (all logarithmic 
LDA scores >3.290, all p < .006). We annotated each clade as 
predominantly aerobic or anaerobic to consider the influence on 
microenvironment on bacterial communities. This revealed a con-
tinuum across body sites, where nostril samples hosted exclusively 
aerobic clades (with one unknown) and an increasing proportion 
of anaerobic clades were observed in dorsal flank (25.0%), axilla 
(42.9%), lip commissure (48.7%), ear canal (57.1%), and perianal 
(100.0%) samples (N.B., the seven clades annotated as “unknown” 
were combined with aerobic bacteria for these calculations). 
Dominant clades within the two extremes included aerobic fam-
ilies Moraxellaceae (phylum Proteobacteria), Mycoplasmataceae 
(phylum Firmicutes), and Neisseriaceae (phylum Proteobacteria) 
in nostril samples and anaerobic genera Bacteroides (phylum 
Bacteroidetes), Clostridium (phylum Firmicutes), Prevotella (phylum 
Bacteroidetes), Phascolarctobacterium (phylum Firmicutes), and 
Fusobacterium (phylum Fusobacteria) in perianal samples.

3.3 | Sampling pack and genetic relatedness are 
consistently associated with gut and skin microbial 
communities

Single- factor PERMANOVA of perianal samples (Table S7) consist-
ently returned sampling pack as the variable explaining the most 
variance within gut microbial communities. This result was statis-
tically significant using both Bray– Curtis dissimilarity (R2 = .423, 
df = 5, p = .001) and unweighted UniFrac distances (R2 = .317, df = 5, 
p = .015). Body condition (Bray– Curtis, R2 = .304, df = 4, p = .008) 
and field season (unweighted UniFrac, R2 = .154, df = 2, p = .018) 
similarly explained large proportions of variance, but these results 
were only significant using one diversity measure each. Multifactor 
PERMANOVA containing all six explanatory variables (Table 2; 
Table S8) supported sampling pack as the only variable significantly 
predictive of gut microbial community composition using either di-
versity measure (Bray– Curtis, R2 = .423, df = 5, p = .004; unweighted 
UniFrac, R2 = .317, df = 5, p = .030; Figure S7).

Single- factor PERMANOVA of dorsal flank samples (Table S7) 
similarly returned sampling pack as the variable explaining the 
most variance within skin microbial communities, although this 
result was only statistically significant using unweighted UniFrac 

F I G U R E  2   Pedigree relationships for the 24 wolves included in this study (shaded) and their parents. Colors correspond to sampling pack, 
and dashed lines connect the same wolf in disparate parts of the pedigree
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distances (R2 = .256, df = 3, p = .007). Field season was also sig-
nificantly associated with species presence (unweighted UniFrac, 
R2 = .202, df = 2, p = .001) in single- factor analyses. Multifactor 
PERMANOVA containing all six explanatory variables (Table 2; 

Table S8) returned sampling pack (Bray– Curtis, R2 = .208, df = 3, 
p = .039; unweighted UniFrac, R2 = .256, df = 3, p = .002), field sea-
son (unweighted UniFrac, df = 2, R2 = .195, p = .002), and coat color 
(Bray– Curtis, R2 = .072, df = 1, p = .046) as significant predictors 

F I G U R E  3   Alpha and beta diversity significantly differed by body site. Mean and standard error for (a) observed ASVs and (b) Pielou's 
evenness rarefied to 4,600 sequences. (c) The first two PCs calculated using Bray– Curtis dissimilarity. Asterisks indicate heavily and 
moderately haired body sites
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underlying skin microbial communities. As with gut microbiota, 
sampling pack consistently and significantly explained the great-
est proportion of variance in skin microbiota using both distance 
measures (Figure S7).

We additionally observed significant relationships between 
host genetic and microbial distance. Perianal swabs exhibited a 
significantly positive correlation between genetic (517 SNP) and 
microbial community distance (Mantel test; Bray– Curtis, r = .25, 
p = .004; unweighted UniFrac, r = .17, p = .018; Figure 6a,b), even 
when controlling for sampling pack (partial Mantel test; Bray– 
Curtis, r = .19, p = .010; unweighted UniFrac, r = .12, p = .052; 
Table S9). In contrast, dorsal flank samples exhibited significant 
and near- significant correlations in full Mantel tests (Bray– 
Curtis, r = .20, p = .062; unweighted UniFrac, r = .25, p = .026; 
Figure 6c,d), but not in partial Mantel tests that controlled 
for sampling pack (Bray– Curtis, r = .17, p = .108; unweighted 
UniFrac, r = .17, p =.091; Table S9). Similar results were obtained 
with the 86,545 SNP dataset for perianal samples, and no statis-
tically significant results were obtained for dorsal flank samples 
(Table S9).

4  | DISCUSSION

In the present study, we characterized host- associated bacterial 
communities inhabiting haired and mucosal body sites of gray wolves 
sampled in situ at Yellowstone National Park. Consistent with our 
hypotheses, we reported distinct microbial communities colonizing 
each body site, with haired sites hosting high alpha diversity and gut 
samples harboring the largest proportion of anaerobic bacteria. We 
additionally contextualized skin and gut microbiota within genetic, 
demographic, and environmental variables to identify the primary 
factors underlying microbial community presence and abundance. 
We found that social environment and host genetics were most con-
sistently associated with microbial composition at both body sites. 
We additionally reported evidence of body condition influencing gut 
microbiota, and coat color influencing skin microbiota. These results 
advance the field of microbial natural history and contribute to our 
understanding of the evolutionary history, ecology, and conserva-
tion of gray wolves and their associated microbes.

Examination of resident phyla enabled high- level contextual-
ization of wolf- associated microbiomes within Canidae (Table 3). 

F I G U R E  5   Linear discriminant analysis effect sizes for taxa underlying body site differences, where k = kingdom, p = phylum, c = class, 
o = order, f = family, and g = genus. Asterisks indicate heavily and moderately haired body sites. Open circles denote predominantly 
anaerobic clades
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Across wild and captive gray wolves (Wu et al., 2017), red wolves 
(Bragg et al., 2020), coyotes (Canis latrans; Colborn et al., 2020; 
DeCandia et al., 2019; Sugden et al., 2020), red foxes (Vulpes vul-
pes; DeCandia et al., 2019), gray foxes (Urocyon cinereoargenteus; 

DeCandia et al., 2019), island foxes (DeCandia et al., 2020), and 
domestic dogs (Rodrigues Hoffmann et al., 2014), we found the 
same dominant phyla: Actinobacteria, Bacteroidetes, Firmicutes, 
Proteobacteria, and Fusobacteria. The first four phyla are consid-
ered the core mammalian microbiome and have been documented 
in humans (Grice & Segre, 2011) and nonhuman mammals (Nishida & 
Ochman, 2018). Additionally, Fusobacteria has been associated with 
predatory mammals (Nishida & Ochman, 2018), including marine 
carnivores and domestic dogs (Nelson et al., 2013). These broad- 
scale patterns within Canidae may consequently result from shared 
evolutionary history or ecology (such as dietary niche; Nishida & 
Ochman, 2018; Ross et al., 2018).

In addition to high- level taxonomy, examination of microbial 
diversity and genera unique to each body site provides finer- scale 
insights into the form and function of commensal microbes. As seen 
in humans (Grice & Segre, 2011; The Human Microbiome Project 
Consortium, 2012), gray wolves harbor distinct microbiota at dif-
ferent body sites, consistent with differences in microenvironment 
and local physiological processes. Increased alpha diversity in haired 
versus mucosal skin mirrored previous studies conducted in domes-
tic cats (Felis catus; Older et al., 2017), domestic dogs (Rodrigues 
Hoffmann et al., 2014), and Santa Catalina Island foxes (DeCandia 

TA B L E  2   Results from multifactor PERMANOVA implemented 
with Bray– Curtis (BC) dissimilarity and unweighted UniFrac (UU) 
distance matrices for gut and skin microbiota

Variable

Gut microbiota Skin microbiota

df BC UU df BC UU

Sampling pack 5 .423* .317* 3 .208* .256*

Body condition 4 .133 .172 2 .123 .089

Field season 2 .092 .118 2 .139 .195*

Age class 2 .075 .076 2 .116 .087

Coat color 1 .028 .031 1 .072* .063

Sex 1 .013 .026 1 .058 .062

Residuals 6 .237 .259 5 .284 .247

Total 21 1.000 1.000 16 1.000 1.000

Note: Degrees of freedom (df) and R2 values are provided, with asterisks 
indicating statistical significance (p < .05).

F I G U R E  6   Scatter plots and regression lines of pairwise genetic (Euclidean) and microbial (Bray– Curtis and unweighted UniFrac) 
distances calculated for (a, b) gut and (c, d) skin microbiota

(a) (b)

(c) (d)



9482  |     DECANDIA Et Al.

et al., 2020), and may result from increased exposure to exogenous 
environmental factors. In contrast, lower species richness in mucosal 
sites suggests colonization by microbes specifically adapted to local 
conditions, as seen in sebaceous human skin (Grice & Segre, 2011). 
At the genus and family levels, high proportions of aerobic bacteria in 
wolf nostrils and anaerobic bacteria in wolf guts suggest that oxygen 
exposure may contribute to differences between respiratory and 
gastrointestinal microbiota (Dickson & Huffnagle, 2015; Huffnagle 
et al., 2017; Jalili- Firoozinezhad et al., 2019; Thursby & Juge, 2017).

These microbes may further function in body site- specific 
processes. For example, dominant nostril families Moraxellaceae, 
Mycoplasmataceae, and Neisseriaceae have been isolated from 

the noses of domestic dogs and cats, with imbalances associated 
with nasal disease (Dorn et al., 2017; Tress et al., 2017). Similarly, 
dominant perianal genera exhibit numerous digestive and health- 
promoting properties. For example, Bacteroides and Clostridium 
spp. function in bile acid metabolism and digestion of animal pro-
teins and saturated fats (Deng & Swanson, 2015). Although associ-
ated with gastrointestinal disease in humans (Hussan et al., 2017), 
Fusobacterium spp. likely contribute to the breakdown of amino 
acids in healthy dogs and other mammalian carnivores (Pilla & 
Suchodolski, 2020; Vázquez- Baeza et al., 2016; Vital et al., 2015). 
In addition, Prevotella spp. function in glucose metabolism and gly-
cogen storage (Tomova et al., 2019), and Phascolarctobacterium spp. 

TA B L E  3   Dominant phyla (ranked 1– 5 from highest to lowest relative abundance) inhabiting Canidae species include Actinobacteria 
(Act.), Bacteroidetes (Bact.), Firmicutes (Firm.), Fusobacteria (Fuso.), and Proteobacteria (Prot.)

Study Species Location Statusa  Siteb  N Act. Bact. Firm. Fuso. Prot.

Present study Canis lupus USA W A 13 4 1 3 — 2

— — — — DF 17 4 1 3 — 2

— — — — EC 19 4 1 2 — 3

— — — — LC 22 2 3 4 5 1

— — — — N 18 3 5 4 — 1

— — — — PA 22 5 2 1 3 4

— — — — Scat 2 5 1 2 3 4

Wu et al. (2017) Canis lupus China CM Scat 14 4 2 1 5 3

Bragg et al. (2020) Canis rufus USA W Scat 2 5 3 1 2 4

— — — CM Scat 3 5 2 3 1 4

— — — CM,K Scat 10 4 3 1 2 5

— — — CK Scat 34 5 2 1 3 4

Rodrigues Hoffmann 
et al. (2014)

Canis familiaris USA CU A 12 3 2 4 — 1

— — — — PA 12 5 3 2 4 1

Colborn et al. (2020)c  Canis latrans USA W Scat 58 — 1 — 2 — 

Sugden et al. (2020) Canis latrans Canada W IN 10 5 4 1 2 3

DeCandia 
et al. (2019)

Canis latrans USA R Skin 4 2 3 4 — 1

— Vulpes vulpes — — Skin 5 3 4 1 5 2

— Urocyon 
cinereoargenteus

— — Skin 1 2 1 — 4 3

DeCandia 
et al. (2020)

Urocyon littoralis USA W A 9 4 2 1 5 3

— — — — EC 43 2 4 1 — 3

— — — — EE 31 4 3 1 — 2

— — — — LC 29 5 2 3 4 1

— — — — N 15 5 3 1 — 2

— — — — PA 30 4 1 2 5 3

The different gray shades serve as a simplified heat map— the lower the rank (indicating higher abundance), the darker the shade of gray.
aStatus indicates whether samples were collected in the wild (W), at rehabilitation centers (R), or in captivity with meat (CM), kibble (CK), or unknown 
(CU) diet.
bBody sites include axilla (A), dorsal flank (DF), ear canal (EC), external ear (EE), intestines (IN), lip commissure (LC), nostril (N), perianal area (PA), scat, 
or skin.
cTaxonomic composition provided at genus level.
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function in lipid metabolism (Yang et al., 2020). The short- chain 
fatty acids produced by these genera (e.g., butyrate) further possess 
anti- inflammatory properties that may promote overall gut health 
(Tomova et al., 2019).

Given significant differences between body sites, we inde-
pendently identified factors underlying skin and gut microbiota, re-
spectively. Sampling pack emerged as the variable most consistently 
associated with microbial presence and abundance at both body 
sites, explaining 31.7%– 42.3% of the variance in gut samples and 
20.8%– 25.6% of the variance in skin samples. This result is consis-
tent with social microbiome theory (Grieneisen et al., 2017; Sarkar 
et al., 2020) and gray wolf social ecology (Mech & Boitani, 2003; 
Stahler et al., 2020), as pack members cooperatively share territory, 
prey, social contacts, and microbes. Similar patterns have been ob-
served in cohabitating humans (Dill- McFarland et al., 2019; Song 
et al., 2013) and nonhuman mammals (Goodfellow et al., 2019; 
Leclaire et al., 2014; Wikberg et al., 2020) with varying degrees of 
relatedness.

To disentangle the role of relatedness in these patterns, we lev-
eraged biobanked samples and the highly resolved YNP wolf pedi-
gree (vonHoldt et al., 2020) to evaluate microbial similarity between 
first- order relatives, distant relatives, and unrelated dispersers with 
short (e.g., 1108M and 1107M) and long (e.g., 1047M) histories of 
dispersal from their natal packs. We found significantly positive cor-
relations between host genetic and microbial distances at both body 
sites. However, after controlling for shared sampling pack, this result 
only remained significant for gut samples. This suggests that host 
genetics influence gut microbes more than skin microbes, perhaps 
due to differences in environmental exposure or maintenance of 
specialized microbiota (Grice & Segre, 2011; Thursby & Juge, 2017). 
Similar patterns have been observed in humans, where cohabitation 
exerted a stronger effect on the skin microbiome compared to fecal 
microbiota (Song et al., 2013), as well as in great spotted cuckoos 
(Clamator glandarius) and magpies (Pica pica), where shared diet and 
environment were predictive of esophageal but not cloacal microbi-
ota (Lee et al., 2020).

We observed further differences in the secondary factors un-
derlying gut and skin microbial communities. For example, body 
condition significantly explained 30.4% of variance in gut microbial 
species abundance (N.B., this value reduced to 13.3% when con-
trolling for sampling pack). This follows previous studies linking body 
condition, health, and disease to microbial composition in a variety of 
contexts, including clinical medicine (Gupta et al., 2020), veterinary 
medicine (Bradley et al., 2016; Rodrigues Hoffmann et al., 2014), 
and wildlife rehabilitation and conservation (DeCandia et al., 2019, 
2020). We additionally found that coat color significantly explained 
7.20% of variance in skin microbial species abundance when con-
trolling for sampling pack. This presented a compelling preliminary 
result, as the mutation underlying melanism in gray wolves encodes 
for a beta defensin protein known to regulate microbiota and im-
mune processes at the skin barrier (Anderson et al., 2009; Candille 
et al., 2007; Meade & O'Farrelly, 2019). Consequently, this mutation 

may lead to characteristic differences in the skin microbiota of black 
and gray wolves: an exciting frontier for further study.

Characterizing body site- specific microbiota and the factors un-
derlying them is an important objective within evolution and ecol-
ogy. While sampling wildlife populations in situ present logistical 
challenges, these analyses are critical for informing our understand-
ing of the evolutionary history, ecology, and conservation of hosts 
and their associated microbes. Regarding evolution and ecology, we 
found that the core microbiota of YNP wolves mirrors numerous 
species within Canidae, likely due to shared phylogenetic history 
and characteristics such as carnivory. We additionally found that 
different body sites host distinct microbiota, with functions and 
products directly related to physiological processes (e.g., aiding di-
gestion) and host health (e.g., regulating inflammation). We further 
found that social environment and host genetics influence skin and 
gut microbiota, with evidence supporting body condition and coat 
color as secondary factors influencing body site- specific microbiota.

Considered together, these results provide important baseline 
information for the long- term conservation of gray wolves and re-
lated species (Trevelline et al., 2019; West et al., 2019). We can 
now monitor in situ populations for the emergence of novel patho-
gens or microbial imbalances that may contribute to morbidity and 
mortality on the landscape (DeCandia et al., 2018). We can fur-
ther adjust the diet (e.g., increase meat consumption) and social 
environment (e.g., enable group living) of captive- managed gray 
wolves to promote more natural microbiota. This study represents 
an important step toward these conservation goals and calls for 
similar studies to be conducted in additional host– microbe sys-
tems in captivity and the wild. Host characteristics such as evolu-
tionary history, genetics, ecology, demography, and environment 
shape microbiota in innumerable, nuanced ways— and microbiota, 
in turn, shape their hosts. By characterizing the microbiota inhab-
iting diverse wildlife systems across body sites and environmental 
contexts, we can elucidate common patterns and processes that 
deepen our understanding of these relationships and contribute to 
successful wildlife conservation efforts.
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