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OBJECTIVEdMetabolic syndrome (MetS) is a cluster of abdominal obesity, hyperglycemia,
hypertension, and dyslipidemia, which increases the risk for type 2 diabetes and cardiovascular
diseases (CVDs). Some argue that MetS is not a single disorder because the traditional MetS
features do not represent one entity, and they would like to exclude features from MetS. Others
would like to add additional features in order to increase predictive ability of MetS. The aim of
this studywas to identify aMetSmodel that optimally predicts type 2 diabetes andCVDwhile still
representing a single entity.

RESEARCH DESIGN AND METHODSdIn a random sample (n = 1,928) of the EPIC-
NL cohort and a subset of the EPIC-NL MORGEN study (n = 1,333), we tested the model fit of
several one-factor MetS models using confirmatory factor analysis. We compared predictive
ability for type 2 diabetes and CVD of these models within the EPIC-NL case-cohort study of
545 incident type 2 diabetic subjects, 1,312 incident CVD case subjects, and the random sample,
using survival analyses and reclassification.

RESULTSdThe standard model, representing the current MetS definition (EPIC-NL compar-
ative fit index [CFI] = 0.95; MORGENCFI = 0.98); the standard model excluding blood pressure
(EPIC-NL CFI = 0.95; MORGEN CFI = 1.00); and the standard model extended with hsCRP
(EPIC-NL CFI = 0.95) had an acceptable model fit. The model extended with hsCRP predicted
type 2 diabetes (integral discrimination index [IDI]: 0.34) and CVD (IDI: 0.07) slightly better
than did the standard model.

CONCLUSIONSdIt seems valid to represent the traditional MetS features by a single entity.
Extension of this entity with hsCRP slightly improves predictive ability for type 2 diabetes and
CVD.
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M etabolic syndrome (MetS) is a
cluster of multiple correlatedmet-
abolic features that is associated

with a fivefold increased risk of type 2
diabetes and a twofold increased risk of
cardiovascular disease (CVD) (1). Ac-
cording to the joint interim statement of
International Diabetes Federation and
American Heart Association/National
Heart, Lung, and Blood Institute, MetS
is defined as the presence of three or

more of the following five features: ab-
dominal obesity, hyperglycemia, hyper-
tension, hypertriglyceridemia, and low
HDL cholesterol levels (1).

Nevertheless, the debate around the
definition of MetS is still ongoing. First,
several expert groups including the World
Health Organization, National Heart,
Lung, and Blood Institute, and Interna-
tional Diabetes Federation are considering
the inclusion of additional features in the

definition of MetS (1,2) such as markers of
subclinical inflammation (2), markers of
liver function (3), uric acid (4), and albu-
min (2). This could increase the predictive
ability ofMetS for type 2 diabetes andCVD.
Second, when MetS is to be regarded as a
single disorder, all features included in the
definition ofMetS should represent a single
entity, i.e., should be captured in a single
factor. Currently, it is unclear whether
MetS can still be considered a single entity
after inclusion of additional features. Some
even argue that under the current defini-
tion, MetS does not represent a single dis-
order and favor exclusion of blood pressure
from MetS (5).

Whether the current MetS definition
or MetS definitions extended with addi-
tional features represent a single entity
can be tested with factor analysis. Factor
analysis is a data reduction technique that
can be used to amalgamate data. Two-
factor analysis techniques exist: explanatory
factor analysis (EFA), which is a data-driven
technique, and confirmatory factor analysis
(CFA), which is hypothesis driven. In most
studies, EFA has been used (6). However,
owing to the explorative and subjective na-
ture of EFA, results of EFA studies on MetS
are inconsistent (7). In contrast, conclu-
sions of CFA studies have thus far been
quite consistent, suggesting that the MetS
features included in the current definition
represent one entity (4,7–12). However, as
CFAMetS models including additional fea-
tures, such as hsCRP (8), uric acid (4), al-
bumin, and liver enzymes, have rarely been
studied, it is unknown whether they repre-
sent one entity. Furthermore, to the best of
our knowledge, the different one-factor
CFA MetS models have never been com-
pared with respect to their ability to predict
development of type 2 diabetes and CVD.
Once a MetS model that optimally predicts
type 2 diabetes and CVD, while still repre-
senting one disorder, has been identified,
future research could focus on the patho-
physiology behind this single MetS entity.
A deeper understanding of this pathophys-
iology may eventually lead to development
of treatment strategies targeting the mecha-
nism responsible for the co-occurrence of
MetS features.
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The first aim of this paper was to test
whether the traditional MetS features
represent a single entity and if so, whether
this was still the case after inclusion of
novel MetS features. The second aim was
to identify a MetS model that best predicts
type 2 diabetes and CVD while still
representing a single entity.

RESEARCH DESIGN AND
METHODS

EPIC-NL: study design
The European Investigation into Cancer
and Nutrition (EPIC)-NL cohort consists
of the two Dutch contributions to the
EPIC project: the Prospect cohort and the
Monitoring Project on Risk Factors for
Chronic Diseases (MORGEN) cohorts.
Both cohorts were initiated in 1993 and
combined into the EPIC-NL study. The
study design of this combined cohort has
previously been described in detail (13).
In brief, Prospect is a prospective cohort
study among 17,357 women aged 49–70
years who participated in the breast can-
cer screening between 1993 and 1997.
The MORGEN cohort consists of 22,654
men and women aged 20–59 years re-
cruited from three Dutch towns (Amster-
dam, Doetinchem, andMaastricht). From
1993 to 1997, each year a new random
sample of ~5,000 individuals was exam-
ined for the MORGEN cohort. Both stud-
ies complied with the Declaration of
Helsinki. The Prospect-EPIC study was
approved by the institutional review
board of the University Medical Center
Utrecht, and the MORGEN project was
approved by the medical ethics commit-
tee of TNO, the Netherlands (13).

Study population
Analyses were performed in two subsets
composed of EPIC-NL participants, in
whom all MetS features were measured:
the EPIC-NL case-cohort study (13) and a
subset of EPIC-NLMORGENparticipants
(14).

The EPIC-NL case-cohort study con-
sists of a subcohort, i.e., 6.5% baseline
random sample of the total EPIC-NL
study (n = 2,604), all incident diabetes
cases (n = 924), and all incident CVD ca-
ses (n = 2,030). By virtue of the random
selection of a subcohort and use of the
appropriated statistics for this type of re-
search design, the results are expected to
be generalizable to the entire cohort (15).
In the EPIC-NL case-cohort study, blood
status was nonfasting and glucose status
was assessed with HbA1c. In addition to

information on traditional MetS features,
information on nontraditional MetS fea-
tures, such as high-sensitivity C-reactive
protein (hsCRP), was available.

The EPIC-NL MORGEN subset was
used as a replication sample for the
analysis on model fit. This subset consists
of 1,379 nondiabetic participants, who
indicated that their last meal was on the
day before blood sampling. In contrast to
the EPIC-NL case-cohort study, plasma
glucose was measured instead of HbA1c,
while information on nontraditionalMetS
features was not available.

Participants with missing blood sam-
ples (157 participants in the random
sample, 174 incident CVD case subjects,
and 66 incident type 2 diabetes case
subjects), participants who were taking
glucose-lowering or blood pressure–
lowering medication (282 participants in
the random sample, 409 incident CVD
case subjects, and 279 incident type 2 di-
abetes case subjects and 46 participants of
theMORGEN subset) or participants with
missing values for one of the MetS or
MetS-related features (237 participants
in the random sample, 34 incident diabe-
tes case subjects, and 135 incident CVD
case subjects) were excluded (Supple-
mentary Fig. 1). Subjects with missing
blood samples were on average 2.4 years
older and had a 1.1 kg/m2 higher BMI
than those without missing blood sam-
ples. Age and BMI were similar between
subjects with and without missing values
for one of the MetS or MetS-related fea-
tures. Finally, the EPIC-NL case-cohort
study consisted of 545 incident diabetes
case subjects, 1,312 incident CVD case
subjects, and 1,928 participants in the
random sample. Of the random-sample
participants, 53 were incident type 2 di-
abetes case subjects and 88 were incident
CVD case subjects. An overlap between
the case set and the random sample is a
design feature of a case-cohort study. For
the risk prediction analyses, prevalent
type 2 diabetes and CVD case subjects
were excluded from the random sample.
The EPIC-NL MORGEN subset consisted
of 1,333 participants, including 133 par-
ticipants who were also included in the
EPIC-NL case-cohort study.

Ascertainment of diabetes in EPIC-NL
The ascertainment and verification of di-
abetes cases has previously been de-
scribed in detail (16). In short, diabetes
was ascertained via self-report, a urinary
glucose strip test, and linkage to regis-
ters of hospital discharge diagnoses.

Self-reported diabetes status was assessed
in the baseline questionnaire and in two
follow-up questionnaires, which were
sent out at regular intervals of 3–5 years.
For Prospect participants only, a urinary
glucose strip was sent out with the first
follow-up questionnaire. Follow-up by
linkage to registers of hospital discharge
diagnoses was completed on 1 January
2006. Potential cases were verified against
participants’ general practitioner or phar-
macist information. Only verified type 2
diabetes cases were included.

Ascertainment of CVD in EPIC-NL
Data on CVD morbidity were obtained
through linkage with the national medical
registry. Vital status was obtained
through linkage with the municipal pop-
ulation registries. Subsequently, primary
and secondary causes of death were ob-
tained through linkage with Statistics
Netherlands. Follow-up was completed
on 1 January 2006. Coronary heart dis-
ease (CHD) was coded with ICD-9 codes
(410–414) or with ICD-10 codes (I20–
I25), and cerebrovascular accident
(CVA) was coded with ICD-9 codes
(430–434 and 436) or with ICD-10 codes
(I60–I66). CVD was defined as the pres-
ence of CHD, CVA, or both (17).

Baseline measurements in EPIC-NL
The study protocol of the EPIC-NL
MORGEN study and the study protocol
of the EPIC-NL Prospect study were essen-
tially similar. At baseline, a physical exam-
ination was performed and nonfasting
blood samples were drawn. Furthermore,
a general questionnaire and a Food Fre-
quencyQuestionnaire (FFQ)werefilled out
by each participant (13).

The protocol for the anthropometric
measurements and the blood sampling
protocol were identical for the EPIC-NL
Prospect and the EPIC-NL MORGEN
studies. Waist circumference and height
were measured to the nearest 0.5 cm.
Body weight was measured with light
indoor clothing without shoes on to the
nearest 100 g. During the physical exam-
ination, systolic and diastolic blood pres-
sure measurements were performed
twice in the supine position on the right
arm using a Boso Oscillomat (Bosch &
Son, Jungingen, Germany) (Prospect) or
twice on the left arm using a random
zero sphygmomanometer (MORGEN).
The mean of the two measurements was
taken. Blood levels of established biochem-
ical parameters were measured in EDTA
or citrate plasma. HbA1c was measured in
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erythrocytes using an immunoturbidimetric
latex test. HDL was measured with a homo-
geneous assay with enzymatic end point.
Triglycerides, alanine aminotransferase
(ALT), aspartate aminotransferase (AST), g
glutamyltransferase (GGT), uric acid, and
glucose were measured using enzymatic
methods, whereas hsCRP was measured
with a turbidimetric method. Albumin was
measuredusing a colorimetricmethod (Jaffe
method). These assays were all performed
on an autoanalyzer (LX20; Beckman Coul-
ter, Mijdrecht, the Netherlands) (13,14).

Data on smoking habits, educational
level, self-reported medication use, phys-
ical activity, and alcohol intake were
obtained by general questionnaires and
an FFQ. Physical activity was categorized
by calculating the Cambridge physical
activity score (18).

Statistics
Triglycerides, hsCRP, ALT, AST, and
GGT were log transformed to improve
normality. Using CFA, we designed sev-
eral second-order one-factorMetSmodels
based on the MetS model of Shen et al. (9)
consisting of three levels: a single MetS
factor; several first-order factors (e.g., lip-
ids), which defined the single MetS factor;
and some second-order factors (e.g.,

triglycerides andHDL cholesterol), which
defined the first-order factors. We de-
signed the following one-factor MetS
models: model 1, a standard MetS model,
based on the current definition of MetS
(1), including the traditional MetS fea-
tures, i.e., waist circumference, triglycer-
ides, HDL cholesterol, systolic blood
pressure, diastolic blood pressure, and
as marker of glucose status, either HbA1c

or glucose (Fig. 1A and B); model 2, a
standardMetSmodel excluding the blood
pressure factor; and model 3, a standard
MetS model extended with an hsCRP fac-
tor (Fig. 1C), an albumin factor, a uric
acid factor, or a liver enzymes factor.
The liver enzymes factor was a first-order
factor defined by the second-order factors
ALT, AST, and GGT. In all models, the
factor variance of the MetS factor, the fac-
tor loading of triglycerides, and the factor
loading of systolic blood pressure were
fixed to 1. For model 3, the MetS model
excluding blood pressure, not enough df
were available to calculate model fit.
Therefore, the error variance of the factor
with the highest factor loading (waist cir-
cumference) was fixed to 1 for the model
fit calculations of this model.

Model fit of MetS models composed
of traditionalMetS features was calculated

in the random sample of EPIC-NL and in
the EPIC-NL MORGEN subset. Model fit
of MetS models including nontraditional
features was calculated only in the ran-
dom sample of EPIC-NL. We compared
the model fit of all alternative MetS
models with the model fit of the standard
one-factor MetS model (model 1). Factor
loadings and SEs were obtained using the
maximum likelihood method. The x2

test, the comparative fit index (CFI), the
standardized root means square residual
(SRMR), and the root mean square error
of approximation (RMSEA) were used to
assess model fit. Models with RMSEA
.0.10, CFI ,0.95, or SRMR .0.08
were rejected (19). The x2 difference test
was used to compare model fit across dif-
ferent models.

For MetS models with an acceptable
model fit, we compared the predictive
ability of the factor scores for incidence of
type 2 diabetes, CVD, CHD, and CVA in
the EPIC-NL case-cohort study. We cal-
culated the factor scores using the factor
score coefficients of the different MetS
features extracted by the regression
method from the random sample. All
factor score coefficients were standard-
ized to the means and SEs of the MetS
features in the random sample. For all

A B

C

Figure 1dA: The standard second-order one-factor MetS model in the random sample of EPIC-NL. B: The standard second-order one-factor MetS
model in the subset of theMORGEN study.C: The standard second-order one-factorMetSmodel extended with hsCRP in the random sample of EPIC-
NL. Data are presented as factor loading (SE). All factor loadings are significant (P, 0.05). The first-order factors are waist circumference (WC),
lipids, HbA1c, FPG, and blood pressure. The second-order factors are triglyceride (TG), HDL, systolic blood pressure (SBP), and diastolic blood
pressure (DBP).
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factor scores, we calculated Cox propor-
tional hazard ratios (HRs), C statistics,
and integral discrimination indices
(IDIs) for incidence of type 2 diabetes,
CVD, CHD, and CVA.

HRs were adjusted for the overrepre-
sentation of cases in the case-cohort study
with a pseudolikelihood method (20),
whereas IDIs and C statistics were adjusted
for this overrepresentation by inverse prob-
ability weighing. HRs were calculated per
SD of the factor score and adjusted for age,
sex, cohort, smoking (current, former, and
never), educational level, Cambridge phys-
ical activity index, and alcohol intake. The
change in C statistics and the IDIs were
used to compare predictive ability of the
standard MetS model, model 1, with the
alternative models. The C statistic is equiv-
alent to the probability that the predicted
risk is higher for a case than for a noncase
subject (21). The IDI can be viewed as the
difference in the proportion of variance ex-
plained by twomodels (22). Model calibra-
tion was tested by the Hosmer-Lemeshow
x2 test.

CFA analyses were performed in
MPLUS, sixth edition (Muthén & Muthén,

Los Angeles, CA). HRs, C statistics, and
IDIs were calculated in SAS version 9.2
(SAS Institute, Cary, NC).

RESULTSdBaseline characteristics
of the study population are provided in
Table 1. Participants in the EPIC-NL case-
cohort study were on average 51.8 years
old, and 28.5% was male. MetS preva-
lence was higher in incident diabetes
case subjects (70.5%) and incident CVD
case subjects (38.6%) than in the random
sample (21.2%). In the MORGEN subset,
participants were on average 39.1 years
old, and 50.5% was male. MetS preva-
lence was somewhat lower (14.9%) than
in the random sample of EPIC-NL
(21.2%).

The standard one-factor MetS model
(model 1) (Fig. 1A and B), which is based
on the current definition of MetS, had an
acceptable model fit with a CFI of 0.95
(Table 2). Other one-factor MetS models
with a good model fit were the MetS
model excluding blood pressure (model
2) and the MetS model extended with
hsCRP (model 3) (Fig. 1C). The CFIs of
one-factor MetS models extended with

uric acid, liver enzymes, or albumin
were ,0.95, indicating that their model
fit was unacceptable. These extended
MetS models also did not fit well after
the exclusion of the blood pressure factor
(data not shown). Compared with the
standard MetS model (model 1), the stan-
dard MetS model excluding blood pres-
sure (model 2) fitted better, whereas the
model extended with hsCRP (model 3)
fitted worse.

HRs for type 2 diabetes (HR 2.71
[95% CI 2.30–3.18]) and CVD (1.25
[1.13–1.39]) were lowest in the MetS
model excluding blood pressure (model
2), whereas they were highest in the MetS
model extended with hsCRP (type 2 di-
abetes HR 3.94 [3.28–4.74]; CVD 1.28
[1.16–1.42]) (Table 3). HRs were essen-
tially similar after additional adjustment
for fiber and energy intake (data not
shown). Of all MetS models, the model
extended with hsCRP (model 3) predic-
ted type 2 diabetes, CHD, CVA, and CVD
the best (type 2 diabetes C index 0.8013;
CVD C index 0.6352). For all models, the
Hosmer-Lemeshow test was not signifi-
cant, indicating a good calibration.

Table 1dBaseline characteristics of the EPIC-NL study

EPIC-NL case cohort Subset of
EPIC-MORGENRandom sample Type 2 diabetes CVD

n 1,928 545 1,312 1,333
Sex, % men (n) 25.9 (500) 27.2 (148) 33.5 (440) 50.5 (673)
Age (years) 48.9 (11.7) 55.7 (7.3) 55.0 (8.9) 39.1 (10.6)
Waist circumference (cm) 85.5 (11.4) 96.7 (11.5) 89.6 (12.0) 86.5 (12.6)
BMI (kg/m2) 25.8 (3.9) 29.5 (4.5) 26.6 (4.0) 25.2 (4.0)
HbA1c (%) 5.40 (0.61) 6.33 (1.30) 5.64 (0.83) d
Plasma glucose (mmol/L) d d d 5.31 (0.97)
HDL cholesterol (mmol/L) 1.28 (0.34) 1.05 (0.26) 1.18 (0.32) 1.32 (0.36)
Triglyceride (mmol/L) 1.31 (0.92–1.94)a 2.01 (1.40–2.74)a 1.54 (1.12–2.27)a 0.94 (0.69–1.40)
Systolic blood pressure (mmHg) 124.8 (17.7) 137.3 (22.0) 134.8 (21.1) 118.7 (15.6)
Diastolic blood pressure (mmHg) 77.3 (10.2) 82.9 (10.9) 81.4 (11.3) 77.5 (10.3)
MetS prevalence, % (n)a,b 21.2 (409) 70.5 (384) 38.6 (506) 14.9 (199)
hsCRP (mg/L) 1.22 (0.57–2.67) 2.50 (1.15–4.75) 1.74 (0.81–3.53)
ALT (IU/L) 14.5 (11.9–18.4) 16.8 (13.2–22.7) 14.6 (11.9–18.8)
AST (IU/L) 20.0 (17.4–23.5) 20.9 (17.5–25.5) 20.1 (17.5–24.1)
GGT (IU/L) 20.7 (16.5–28.1) 28.5 (22.6–40.2) 24.4 (19.2–33.1)
Albumin (g/L) 38.9 (4.9) 37.7 (4.8) 38.2 (4.9)
Uric acid (mmol/L) 258.5 (67.7) 284.9 (70.4) 269.0 (70.9)
Camebridge physical activity index 2.8 (1.0) 2.7 (1.1) 2.7 (1.1) 2.6 (1.1)
Current smokers, % (n) 32.2 (620) 29.3 (158) 42.7 (556) 51.9 (686)
Alcohol abstainers, % (n) 9.5 (176) 11.2 (59) 6.5 (83) 13.9 (184)
Alcohol (g/day)c 12.3 (15.5) 9.5 (13.8) 12.6 (16.5) 17.9 (23.0)
Highly educated, % (n)d 21.6 (412) 9.5 (51) 14.5 (189) 18.6 (248)

Data are presented as means (SD) or median (25th–75th percentile) unless otherwise indicated. Subjects with blood pressure–lowering or glucose-lowering med-
ication are excluded. aNonfasting values. bMetS is defined as having three or more of the following features: hyperglycemia, HbA1c $5.7% (33) or fasting plasma
glucose $5.6 mmol/L; abdominal obesity, men $102 cm, women $88 cm; low HDL cholesterol, men ,1.0 mmol/L, women ,1.3 mmol/L; nonfasting hyper-
triglyceridemia$2.5mmol/L (34) or fasting hypertriglyceridemia,$1.7mmol/L; and hypertension,$130/85mmHg. cAmong alcohol users. dPeople who completed
higher vocational education or university.
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CONCLUSIONSdWe have examined
the factor structure of MetS using CFA in
two population-based study samples. The
good model fit of the standard one-factor

MetS model, representing the current def-
inition, indicated that it is valid to compose
one entity out of the traditional MetS
features. When the standard MetS model

was extendedwith hsCRP, predictive ability
for type 2 diabetes and CVD increased
slightly,whilemodelfit was still acceptable.
In line with the results of previous CFA

Table 2dModel fit indices of several MetS models in the random sample of the EPIC-NL study and in a subset with participants of the
MORGEN study

Random sample EPIC-NL (n = 1,928) Subset of MORGEN (n = 1,333)

x2 df P RMSEA SRMR CFI x2 df P RMSEA SRMR CFI

Standard one-factor model (model 1) 150.2 7 ,0.001 0.10 0.045 0.95 56.0 7 ,0.001 0.07 0.039 0.98
Model 1 2 blood pressure (model 2) 43.1 2 ,0.001 0.10 0.040 0.95 2.2 2 0.34 0.01 0.01 1.00
Model 1 + hsCRP (model 3) 163.3 12 ,0.001 0.08 0.040 0.95
Model 1 + uric acid (model 4) 289.4 12 ,0.001 0.11 0.059 0.92
Model 1 + liver enzymes (model 5) 440.5 24 ,0.001 0.10 0.056 0.92
Model 1 + albumin (model 6) 665.2 12 ,0.001 0.09 0.168 0.80
Difference (model 2 2 model 1) 2107.1a 5 ,0.001 253.8a 5 ,0.001
Difference (model 3 2 model 1) 13.1 5 0.03
Difference (model 4 2 model 1) 139.2 5 ,0.001
Difference (model 5 2 model 1) 290.3 17 ,0.001
Difference (model 6 2 model 1) 515.0 5 ,0.001
aAbsolute values are used to calculate significance of x2.

Table 3dPredictive ability of several MetS models for type 2 diabetes and CVD

Standard MetS model
(reference), included features:

TG, HDL, HbA1c, WC, SBP, and DBP

Standard MetS model minus
blood pressure, included
features: TG, HDL, HbA1c,

and WC

Standard MetS model extended
with hsCRP, included features:

TG, HDL, HbA1c, WC, SBP, DBP,
and hsCRP

Diabetes (n = 545)
HR (95% CI)a 3.58 (3.05–4.20) 2.70 (2.37–3.11) 3.77 (3.21–4.42)
HR (95% CI)b 3.70 (3.09–4.42) 2.71 (2.30–3.18) 3.94 (3.28–4.74)
C index 0.7949 0.7539 0.8013
C index change (P) d 20.0411 (,0.0001) 0.0064 (0.0001)
IDI (95% CI) d 21.58 (21.89 to 21.28) 0.34 (0.25–0.44)
P value Hosmer-Lemeshow 0.36 0.21 0.87

CVD (n = 1,312)
HR (95% CI)a 1.31 (1.20–1.43) 1.28 (1.17–1.39) 1.33 (1.22–1.46)
HR (95% CI)b 1.26 (1.14–1.40) 1.25 (1.13–1.39) 1.28 (1.16–1.42)
C index 0.6315 0.6153 0.6352
C index change (P) d 20.0162 (,0.0001) 0.0037 (0.01)
IDI (95% CI) d 20.22 (20.28 to 20.20) 0.07 (0.04–0.09)
P Hosmer-Lemeshow 0.76 0.94 0.95

CHD (n = 956)
HR (95% CI)a 1.40 (1.27–1.55) 1.37 (1.24–1.52) 1.42 (1.29–1.57)
HR (95% CI)b 1.35 (1.20–1.51) 1.30 (1.16–1.47) 1.36 (1.21–1.53)
C index 0.6496 0.6336 0.6519
C index change (P) d 20.0161 (,0.0001) 0.0022 (0.16)
IDI (95% CI) d 20.19 (20.23 to 20.15) 0.04 (0.02–0.06)
P Hosmer-Lemeshow 0.88 0.95 0.96

CVA (n = 375)
HR (95% CI)a 1.11 (0.98 –1.25) 1.07 (0.95–1.21) 1.13 (1.00–1.29)
HR (95% CI)b 1.08 (0.93–1.25) 1.04 (0.90–1.19) 1.10 (0.95–1.28)
C index 0.5760 0.5603 0.5828
C index change (P) d 20.0157 (,0.0001) 0.0068 (0.004)
IDI (95% CI) d 20.04 (20.05 to 20.02) 0.02 (0.01–0.03)
P Hosmer-Lemeshow 0.68 0.83 0.90

HRsarepresentedper SD; IDIs arepresentedas% improvement.DBP,diastolic bloodpressure; SBP, systolic bloodpressure;TG, triglyceride;WC,waist circumference. aAdjusted
for age, sex, and cohort. bAdjusted for age, sex, cohort, smoking (current, former, or none), education level, Cambridge physical activity index, and alcohol intake.
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studies (7–9), we found that it is valid to
compose one entity, i.e., one factor out of
the five traditional MetS features.

The model fit of a one-factor MetS
model, composed of the traditional MetS
features, was even better after exclusion of
the blood pressure factor. This is consistent
with other studies indicating that blood
pressure is distinct from the other tradi-
tional MetS features, both from a physio-
logical (23) and a statistical point of view.
For example, blood pressure generally has
the lowest factor loading in CFA MetS
models (7–11). Furthermore, blood pres-
sure is identified as a separate factor inmost
EFA studies (6). Although omitting the
blood pressure factor improved model fit,
it also considerably decreased the predic-
tive ability for type 2 diabetes, CVA, and
CHD. Since this predictive ability is of clin-
ical relevance, removal of blood pressure
from the MetS definition is questionable.

Of the one-factor MetS models ex-
tended with nontraditional MetS features,
only the MetS model extended with hsCRP
had an acceptable model fit. In 645 non-
Hispanic whites or African Americans, an
essentially similar MetS model also had a
good model fit (8). In our data, the MetS
model extended with hsCRP predicted type
2 diabetes, CVA, and CHD slightly better
than the standard MetS model. In contrast
to type 2 diabetes and CVA, the improve-
ment in C index was not significant for
CHD. This suggests that in our data, the
improvement inC index for CVDs is mainly
driven by the improvement for CVA. In two
large prospective cohort studies, hsCRP
added substantial prognostic information
to MetS (24,25). Though our findings are
in line with these previous studies, the ad-
dition of hsCRP to MetS was clinically rele-
vant in the earlier reports but not in our
study. The reason for this discrepancymight
be explained by a difference in study pop-
ulation; e.g., in our study compared with
the previous studies, hsCRP levels were
lower. Part of the added predictive power
of hsCRP may be explained by the associa-
tion of hsCRP with insulin resistance and
fibrinolysis. Both increase the risk of type
2 diabetes and CVD but are not included
in the current definition of MetS (26).

In our study, the model fit of other
one-factor MetS models extended with
additional features, i.e., albumin, liver
enzymes, or uric acid, was not acceptable.
To the best of our knowledge, models
extended with albumin or liver enzymes
have not previously been studied. Our
results are, however, in line with several
EFA studies (24–27). Contrary to our

results, among 410 Spanish
participants a one-factor MetS model ex-
tended with uric acid had a very good
model fit (CFI 0.99) (4). The relatively
low factor loading of MetS features
strongly associated with uric acid, such
as glucose (28), may explain the bad
model fit of the model extended with
uric acid in our data.

The strength of our study was the
hypothesis-driven CFA approach, which
we used to compare the model fit of a
standard MetS model with several mod-
ified MetS models. Results of CFA studies
are generally much more reproducible
than results of EFA studies. Furthermore,
we tested themodel fit of theMetSmodels
in two relatively large study samples, and
results were very similar. We have ad-
justed the HRs for several lifestyle factors.
As the HRs were similar before and after
adjustment, the confounding effect of
these lifestyle factors was probably small.
The use of nonfasting triglycerides and
HbA1c instead of the conventional MetS
features, i.e., fasting triglycerides and glu-
cose, in the EPIC-NL case-cohort study
may have affected model fit. As postpran-
dial triglyceride levels are more strongly
correlated with the other MetS features
than fasting triglyceride levels (29), the
use of postprandial triglycerides levels
may have improved model fit and in-
creased the factor loadings of the lipid fac-
tor in the EPIC-NL case-cohort. In
contrast, for most MetS features the cor-
relations with HbA1c and fasting plasma
glucose were similar in 160 EPIC-NL
participants with both measurements
available. Only the correlation of waist
circumference and HbA1c was weaker
than the correlation of waist circumfer-
ence and fasting plasma glucose. This
weak correlation resulted in a relative
low factor loading for the glucose factor
(based on HbA1c) and perhaps in some-
what lower model fit. However, although
nonfasting triglycerides and HbA1c were
used in the EPIC-NL case-cohort study,
conclusions regarding model fit in the
EPIC-NL case-cohort study were similar
to the MORGEN subset in which fasting
plasma glucose and triglycerides were
used. Compared with fasting plasma glu-
cose, HbA1c predicts type 2 diabetes and
possibly also CVD better (30,31). There-
fore, inclusion of HbA1c instead of fasting
glucose in the EPIC-NL MetS models has
most likely increased predictive ability.
However, as this applies to all MetS mod-
els, the comparisons between the differ-
ent MetS models would probably have

yielded similar conclusions if fasting
plasma glucose had been included. More-
over, as fasting plasma glucose levels were
not available, we may have missed some
undiagnosed type 2 diabetes cases. Un-
derestimation of diabetic cases may have
weakened the associations with diabetes
we found in EPIC-NL. The participants
(;7%) we excluded from the EPIC-NL
case-cohort owing to missing blood sam-
ples had on average a 1.1 kg/m2 higher
BMI. As the correlations between waist
circumference and other MetS features
were slightly higher in the group with
missing blood samples, exclusion of these
participants may have resulted in some-
what lower factor loadings for the waist
circumference factor. Additionally, the
two datasets we used were not completely
independent, as 133 subjects were pres-
ent both in the EPIC-NL case-cohort
study and in the MORGEN subset. How-
ever, when we excluded these 133 partic-
ipants from the MORGEN subset, results
were essentially similar. Finally, in order
to be able to estimatemodel fit of theMetS
model excluding blood pressure, we fixed
the error variance of waist circumference
in this model to one. This fixation has
probably worsened the model fit. There-
fore, we may have underestimated the im-
provement in model fit obtained by
deleting the blood pressure factor.

In conclusion, it is valid to compose
out of the traditional MetS features one
entity and consequently to view MetS as a
single disorder. A model additionally in-
cluding hsCRP still represented a single
entity and predicted type 2 diabetes,
CVA, and CHD somewhat better than a
MetS model with only the traditional
features. CFA MetS models, like ours,
including the traditional MetS features
and possibly hsCRP may be used as the
basis to develop a new continuous MetS
definition with differential weights for the
different MetS features, using an ap-
proach described by Hillier et al. (32).
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