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Introduction
Environmental pollution is the current challenge to sustainable 
development in the world. The challenge arises from the natu­
ral and anthropogenic activities of humankind. Pollution has 
become a global concern requiring rigorous efforts from all 
sectors of society to monitor, control, and remediate. As indus­
trialization and urbanization have accelerated over the past 
century, pollution has become a major problem for both devel­
oping and developed countries. The use of pesticides and her­
bicides in modern agricultural practices also contributes to 
environmental pollution.1 Unmanaged industrial waste can 
leak into soil and groundwater, contaminating the environment 
with heavy metals. Pollution caused by mining is also one of 
the main causes of environmental degradation.2 Heavy metal 
effluents from wastewater and agricultural inputs also contrib­
ute to major environmental pollution due to their extreme poi­
soning. Heavy metals are also dissolved in water bodies 
contaminating ground water, lakes, rivers, and oceans. This 
causes damage to the food chain and web systems. Environ­
mental pollution threatens humans, animals, and marine life by 
affecting ecosystem services that support life.1

Microorganisms have developed specific adaptation capabili­
ties to thrive in harsh environmental conditions.3 Bacteria have a 

variety of coping mechanisms despite challenging environmen­
tal conditions such as food scarcity, metabolic and biological 
alterations, and extreme temperatures.3 The mechanisms include 
extracellular barrier, metal ions transporting actively, extracellu­
lar, bioaccumulation, intracellular sequestration, and reduction of 
heavy metals.3,4 C gilardii CR3 is a strain of bacteria belonging 
to the genus Cupriavidus, which is known for its ability to 
metabolize a variety of substances including heavy metals. It is 
often studied for its potential for bioremediation particularly in 
contaminated environments where heavy metals are present. 
This bacterium has been shown to utilize various carbon sources 
anaerobically and aerobically through pathways. Therefore, it is 
used in cleansing up contaminated sites and its role in nutrient 
cycling in various ecosystems. Cupriavidus spp., Pseudomonas 
putida, Pseudomonas aeruginosa, Pseudomonas nitroreducens, and 
Pseudomonas alcaligenes,5 Klebsiella species,6 and recombinant 
Escherichia coli are few bacteria that have mechanisms to resist 
cadmium heavy metal.7 C gilardii CR3 (see Figures 1–4) encodes 
all heavy metal resistance genes such as arsenate, cadmium, chro­
mate, copper, mercury, and nickel among Cupriavidus spp. On 
the contrary, C gilardii CR3 encodes for genes on conjugative 
elements, which are chromosomally integrated. For efficient uses 
of bacteria in HMR, temperature is one of the utmost essential 
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factors for microbes to succumb to extreme environmental con­
ditions.8 It affects protein expression levels and gene regulation 
in microorganisms.

Bioinformatics focuses on manipulating biological and 
genomic data using computational tools. It provides an explor­
atory view of bioremediation in environmental conservation by 
addressing proteomic and genomic perspectives.9 Biological 
data are important for information collected, stored, analyzed, 
and disseminated through computer technology, in the domain 
of omics and bioinformatics. Sequences of DNA and amino 
acids, or annotations of those sequences, are widely used in dif­
ferent areas of study such as health, agriculture, industry, and 
environment proposed for disease identification, gene predic­
tion that increases productivity, strain improvement, and envi­
ronmental bioremediation, respectively.

To understand how the genome works, it is crucial to iden­
tify DNA sequences that have been preserved in a wide range 
of organisms over millions of years. It pinpoints genes essential 
to life and highlights genomic signals that control gene func­
tion across many species. It helps us to gain a deeper under­
standing of how genes relate to various biological systems. 
Comparative genomics is also a powerful tool for studying evo­
lution.10 The appearance, behavior, and biology of living things 
have changed over time. This can be done by using and analyz­
ing evolutionary relationships between species in their DNA.11 
Comparative genomics identifies real genes based on nucleo­
tide conservation patterns during evolutionary time. The dis­
covery of regulatory elements help decide whether a gene turns 
on or off based on nucleotide conservation patterns.12 It is 
widely used in agriculture, the environment and biotechnology 
as model organism identification for various functions. C gilar-
dii CR3 genomes were compared with related species of 
Cupriavidus, which have various genes associated with heavy 
metal bioremediation.

Bioremediation is an attractive technology for cleaning pol­
luted environments. Microorganisms, especially bacteria, have 
developed specific adaptation abilities to a wide range of 
extreme conditions to flourish in such habitats. These condi­
tions include food deprivation, biochemical, biological changes, 
and extreme temperatures. It is common for bacteria to accu­
mulate metal ions in their extracellular and intracellular cell 
walls.13 The ability of bacteria to absorb and convert energy is 
essential for their survival and performance in harsh environ­
ments. A better understanding of the gene regulation of HMR 
bacteria could be powerful in biological waste management.14 
Numerous studies have been conducted on bacterial resistance 
to heavy metals in the last two decades. However, the 

mechanism by which a bacterium resists heavy metals, its gene 
regulation mechanisms, and gene function is not fully reported. 
This study was aimed at the identification of regulatory ele­
ment analysis and comparative genome investigation of genes 
in the complete genomes of C gilardii CR3 through compre­
hensive understanding by using omics and bioinformatics tools. 
Therefore, bioinformatics and comparative genome analyses 
will lay a solid foundation for understanding gene regulatory 
mechanisms. This study identified genes associated with HMR 
as a means of heavy metal bioremediation approach.

Materials and Methods
Prediction for transcriptional start site and 
promoter regions

The exact sequences of HMR genes were obtained from the 
National Center for Biotechnology Institute genome search 
engine at https://www.ncbi.nlm.nih.gov/gene. For this study, 
15 protein-coding gene sequences were retrieved after check­
ing the search results in the sequence databases in Table 1. We 
predicted whether starting codons were found on positive and 
negative strands or on both strands for further analysis. The 
transcriptional start site (TSS) was studied by collecting 1 kb 
sequences from genome coordinates areas and acquiring them 
in a FASTA format. The search query sequences’ FASTA file 
format was used for an additional promoter prediction investi­
gation via Neural Network Promoter Prediction (NNPP). For 
NNPP prediction, about 1 kb upstream sequences from the 
start codons were prepared in the FASTA file format and for­
warded to NNPP version 2.2 (https://www.fruitfly.org/seq_
tools/promoter.html) tools to obtain a possible TSS.15 The 
NNPP version 2.2 program was used with an appropriate min­
imum predictive activator score with a default cut-off threshold 
of 0.8 for prokaryotic cells and projected to reduce zero counts 
by 80% from the query sequences before transformation.15 The 
output of NNPP, activator prediction sequences region, for 
those having more than one TSS, the highest prediction score 
value was evaluated for consistency and accuracy cut-off values. 
The remaining TSS regions were utilized solely for simple 
comparative gene analysis.16-18

Common motifs and transcriptional factor 
determination

The promoter sequence segments that met the required stand­
ards were imported and investigated with the MEME Suite, a 
motif-based sequence analysis tool (5.5.2 version) via the web­
site provided by the National Biomedical Computational 

Figure 1.  The sequence logos for HMR predicted common motifs. MEME suite version 5.5.2 was utilized for the prediction.

https://www.ncbi.nlm.nih.gov/gene
https://www.fruitfly.org/seq_tools/promoter.html
https://www.fruitfly.org/seq_tools/promoter.html


Dibbisa et al	 3

Resource (https://meme-suite.org/meme/tools/meme).19 The 
common candidate motifs were identified as binding sites of 
transcriptional factors (TFs) to regulate HMR gene expres­
sions. The MEME-Suite was utilized for motif identification 
and exploration, motif alignment investigation, motif scanning, 
and motif comparisons.20 Statistically, significant candidate 
motifs predicted by MEME-Suit in the sequence were picked 
and used for further comparison. The MEME-suit predicted 
and discovered gene sequences that fit the best motifs (fixed-
length repetitive patterns with the lowest e-values) were sub­
mitted to TOMTOM online database to obtain TFs. This 
technique was utilized to discover common motifs that served 
as binding spots for TFs believed to influence HMR gene 
expression stages. However, before beginning the search for the 
selected sequences, the motif distribution menu’s basic criteria 
for searching were defined. These included motif distribution, 
motif positions, zero or one incidence per sequence, or multiple 
incidences per sequence.

Furthermore, the number of motifs and persistent motif 
width (6–50 bps) were set to default. Following the completion 
of the MEME searches, a search results page was linked to the 
MEME output in HTML. This stage is an important prelimi­
nary point of view for the expected value (e-value). The smaller 
the e-value, the better result was expected as reported in earlier 
studies.20 At the bottom of the MEME HTML output, one or 
more potential motifs were provided for additional investiga­
tion. TOMTOM Web server database tool was used to iden­
tify common TFs. The sequences matching with the best 
candidate motifs in their respective TF were identified for the 

imported gene sequences. As part of TOMTOM output, 
LOGOSS represents the alignment of the candidate motif and 
TF with the P-value and q-value (a measure of false discovery 
rate) and links back to the parent transcription database for 
more detailed information on the matches in TOMTOM 
output.20,21

Comparative genome analysis of C gilardii  
CR3 genome by Prokka and Rapid Annotation 
utilizing Subsystem Technology

The sequences responsible for the HMR were obtained from 
the NCBI database, which is freely available at https://www.
ncbi.nlm.nih.gov/. Heavy metals such as arsenate, cadmium, 
mercury, chromium, zinc, and cobalt resistance of DNA 
sequences were used in the study. Comparative genome analy­
sis of C gilardii CR3 (CP010516.1), Cupriavidus metallidurans 
CH34 (NC_007973.1), Cupriavidus nantongensis X1 
(CP014844.1), Cupriavidus ISTL7 (CP066227.1), Cupriavidus 
MP-37 (NZ_CP085344.1), and Cupriavidus gilardii WM02 
(CP104386.1) for the HMR was performed by using Rapid 
Annotation utilizing Subsystem Technology (RAST) online 
engine accessed through (https://rast.nmpdr.org/rast.cgi). The 
RAST is a prokaryotic genome annotation service used to re-
annotate for gene prediction.18 Similarly, a C gilardii CR3 cir­
cular genome analysis was performed using CGView (Circular 
Genome Viewer) a Java application and library for generating 
high-quality and zoomable maps of circular genomes.17 Finally, 
gene expression, gene sequences, location, and function are 

Figure 2.  (A) Czc ABC family, (B) mercury operon families, and Cobalt-Resistant and Copper-Zinc- and Cadmium-Resistant gene families predicted by 

RAST. RAST indicates Rapid Annotation utilizing Subsystem Technology.

https://meme-suite.org/meme/tools/meme
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://rast.nmpdr.org/rast.cgi
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Figure 3.  (A) Graphic circular genome mapping for C gilardii CR3 and a sequence obtained from the NCBI database with accession number CP010516.1. 

(B) Zoomed circular genome map for C gilardii CR3 obtained from NCBI. (C) Zoomed circular genome map with the location of sequence length and/or 

contig, stop, start, ORF, GC skew+ and GC skew–. ORF indicates open reading frame; RAST, Rapid Annotation utilizing Subsystem Technology.
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Figure 4.  (A) Sequence similarity of OrthoANI and the other closely related strains, (B) phylogenetic tree and evolutionary relationships of taxa for 

Cupriavidus gilardii CR3, and (C) a circular phylogenetic analysis of the complete genomes of C. gilardii CR3. The phylogenetic tree shows heavy metal 

resistance gene locations.
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used to identify genes. Similarly, SEED Subsystem category 
distribution approach technology was used to characterize 
functional genes from the C gilardii CR3 genome and other 
related strains.19

Comparative genome analysis of C gilardii  
CR3 by using OAT software

In this study, we used Orthologous Average Nucleotide 
Identity Software Tool (OAT) online to figure out the 

Orthologous average nucleotide identity (OrthoANI) of 16S 
rRNA from closely related species acquired from EziBio 
Cloud (www.ezi.biocloud.net/sw/oat).22,23 Genomic seque­
nces of C gilardii CR3 CP010516.1 and related strains such 
as Cupriavidus gilardii WM02, C metallidurans CH34, C 
nantongensis X1, Cupriavidus ISTL7, and Cupriavidus 
MP-37 were investigated for comparative genomic analysis 
of HMR genes for heavy metal bioremediation. P putida 
PD584 (CP115665.1) was exploited as an out-group for the 
comparisons.22

Table 1.  TSS, its promoter predictive score values, and distance from 5′-UTR region of the corresponding gene predicted and function.

S. No. Gene ID Gene symbol No. of TSS 
identified

Predictive score cut-off value 
of 0.80

L. of TSS from 
the start 
codon

Gene function

1 66323649 ChrA 5 0.97,0.90,0.81,0.98,0.81 –45 Chromate efflux

2 66323648 ChrB 3 0.81,0.98,0.97 –550 Chromate 
transporter

3 60820444 CzcA 1 0.88 2994 Zinc efflux pump

4 60820445 CzcB 1 0.88 1415 Zinc efflux pump

5 50136911 CzcD 19 1.00,0.94,0.99,0.85,0.83,0.99,0.98,0.8
9,0.83,0.87,0.98,1.00,0.99,1.00,0.99,1.
00,0.99,0.90,0.96

–323 Zinc transporter

6 72447367 CadA 19 0.92,0.95,0.97,0.83,0.97,0.87,0.94, 
0.99,0.94,0.99,0.93,0.93,1.00,0.87,0.8
3,0.96,0.97,0.98,0.90

303 Cadmium 
translocating

7 69569638 CadC 16 0.95,0.84,0.97,0.98,0.88,0.92,0.95, 
0.87,0.83,0.97,0.87,0.94,0.99,0.94, 
0.99,0.99

30 Sensing 
metalloregulator 
transcriptional 
repressor

8 66840924 cadD 38 0.88,0.91,0.99,0.95,0.91,0.91,0.95,0.9
8,0.99,0.97,0.87,0.86,0.99,1.00,0.96, 
0.96,0.82,1.00,0.91,0.99,100,1.00,0.97,
1.00,0.89,0.92,0.93,0.81,0.99,0.85, 
0.90

379 Cadmium 
resistance and 
transporter

9 67467524 CutC 20 0.93,0.98,0.82.0.93,0.90,0.86,0.94, 
0.93,0.98,0.84,0.85,0.96,0.99,0.87,0.8
1,1.00,0.97,0.92,0.98,1.00 0.94,0.99, 
0.97,0.95,0.99,0.97

–38 Copper resistance

10 67451619 CopC/D 4 0.83,0.99,0.89,0.90 688 Copper resistance

11 75085266 ZnuA 12 0.99,0.98,0.85,0.86,0.93,0.95, 
0.92.0.81,0.86,0.89,1.00,0.98

99 Zinc transporter 
substrate binding

12 75088734 ArsA 10 0.95,0.90,0.84,0.90,0.95,0.84,0.95, 
0.81,0.82,0.83

423 Arsenate pump

13 68608930 ArsB 21 0.90,0.83,0.93,0.96,0.81,0.88,0.97, 
0.82,0.95,0.83,0.91,0.85,0.92,0.81, 
0.92,0.99,1.00,0.86,0.98,0.95,0.84

440 Arsenate efflux 
transporter

14 68608929 ArsC 17 0.85,1.00,0.92,0.90,0.98,0.83,1.00, 
0.94,0.99,0.81,0.90,0.92,0.89,0.87, 
0.96,0.95,0.95

607 Arsenate 
reduction

15 68610477 ArsR 24 1.00,0.89,0.92,0.99,0.85,0.99,0.98, 
0.93,0.92,0.99,0.99,1.00,0.99,0.97, 
0.92,0.96.0.82,0.93,0.94,0.82,0.94, 
0.83,0.93,0.97

537 Arsenate 
regulation

TSS, transcriptional start site; UTR, untranslated region.
The NNPP (Neural Network Promoter Prediction) tool prediction findings are considered reliable at 0.8 cut-off values for the prokaryotic organism.

www.ezi.biocloud.net/sw/oat
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Results
TSS and promoter determination

Identifying the transcription start point is critical for under­
standing gene expression. In a conceptual sense, where an RNA 
polymerase enzyme interacts before the initiation spot. With 
primer extensions, TSSs can be pinpointed to the exact nucleo­
tide. This approach involves binding an oligonucleotide primer 
to mRNA to start initiations. To accurately predict promoter 
regions and interpret patterns of gene expression, as well as 
build and understand genetic regulatory networks, a correct 
prediction of promoter sites has become a necessary element.24 
Nowadays, bioinformatics tools can also be used to determine 
the exact sites of TSS. The NNPP version 2.20 databases were 
utilized to work out the TSS, which is often used in HMR. 
The promoter region located upstream of 1 kb of the TSS was 
characterized with the assumption that the promoter’s func­
tional gene elements could be discovered within the region. 
Table 1 summarizes and provides the TSS predicted values for 
each of the HMR gene’s coding sequences. Consequently, the 
gene variety has several TSS values ranging from 1 to 38. 
Interestingly, the minimum and maximum of the TSS values 
identified correspond to genes CzcA/CzcB and CadD, respec­
tively, as shown in Table 1. Similarity genes symbolized by 
CzcD and CadA had the same TSS values on the different 
strands with −323 and 303 far away from codons, respectively.

A start codon’s location has a great deal to do with tran­
scriptional initiation and gene regulation. There can be an 
enhancement or hindrance to gene regulation based on the 
location of the start codon. Accordingly, about 36.67% and 
73.33% of TSS was found on the negative strands and the posi­
tive strands, respectively, as summarized in Table 1. The mini­
mum and maximum TSS values were 38 and 550 for genes 
found on negative strands. These values were linked to the 
CutC and ChrB genes. In contrast, the minimum and maxi­
mum TSS values were 30 and 2994 for those located on the 
positive strand that corresponds to CadC and CzcA, respec­
tively, as found in Table 1. The CzcA and CzcB genes showed 
2994 and 1415 the highest location of the best TSS predicted 
by NNPP at the fourth and second rounds, respectively. The 

CadC gene had the lowest location of the best TSS values of 30 
values.

Prediction of common motif and TFs

There is evidence that a wide range of factors affect gene 
expression. One of the most significant things was the motif. 
Thus, the five common candidate motifs were predicted and 
searched by the MEME suite algorithm version 5.5.2 available 
https://meme-suite.org/meme/. For this study, data show that 
the CMFs_3 by e-values of 1.3e_009 having seven numbers of 
promoters with motive width of 50 was the best candidate 
motif as mentioned in Table 2 compared to 84 in the databases 
of MEME. Thus, CMFs_3 had the lowest e-values having 
63.64% binding sites. Table 2 also showed that the highest and 
lowest numbers of promoter binding sites had been eight and 
six, respectively with 3.0e_010 and 3.8e_010/3.0e_009 e-val­
ues. As presented in Table 2, the CMFs_4 candidate motif 
shares with that of the best candidate motifs of the number of 
binding sites.

The prospective common motif with the lowest e values 
(1.3e-009) indicates a significantly different and functionally 
important motif, which was successfully imported into 
TOMTOM a motif comparison tool version 5.5.2 for further 
comparison, a database that is freely available for transcription 
element predictions that may be matching to known regulatory 
elements.25,26 TOMTOM includes LOGOSS, which stands 
for the matching of observed motifs with probable TFs. The 
database’s TOMTOM output includes interactions with a par­
ent TFs database for more information. This includes the 
matched motif ’s activation, repression, and dual regulatory 
functions. Furthermore, conformational information con­
nected to the TF databases of monomers, dimers, tetramers, 
unpredicted, and other factors is anticipated (see Tables 3 and 
4). The data showed that CMFs_3 had the lowest e-value 
(1.3e-009) and was statistically significant with nine matching 
TFs from the databases obtained with matched e-value criteria 
of 14 or below, as tested and seen in the TOMTOM database. 
Figure 1 describes a forward and reverse strand of statistically 
significant strands.

Table 2. L ist of predicted motifs and the number and proportion of promoter-containing motifs.

S. No. Searched candidates 
motifs

No. of promoter % 
for each motif

e-valuea Motifs width No. of binding 
sites

1 CMFs_1 8 (72.73%) 3.0e-010 40 8

2 CMFs_2 6 (54.55%) 3.8e-010 50 6

3 CMFs_3 7 (63.64%) 1.3e-009 50 7

4 CMFs_4 7 (63.64%) 1.6e-010 50 7

5 CMFs_5 6 (54.55%) 3.0e-009 50 6

aPossibility of discovery of a similarly well-conserved motif in random sequences.

https://meme-suite.org/meme/
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Transcription factors regulate gene transcription, that is, 
their copying into RNA, on the way to protein making. A TF 
is a sequence-specific DNA-binding protein that controls the 
transcription of a set of genes, and thus regulates gene expres­
sion in a cell.27 Thus, for this study, about nine TFs were identi­
fied from TOMTOM databases that handle the regulation of 
gene expression in the bacterium of HMR. AmrZ, ArgR, CcpA, 
Fur, HexR, HrpX, IhfA, Lrp, PhhR, PvdS, RpoN, and VqsM are 
TFs with diverse functions in gene regulation and expression. 
The primary functions of these TFs were activation and repres­
sion as seen in Table 3. P aeruginosa PAO1, Streptococcus pneu-
moniae, P putida KT2440, Xanthomonas oryzae, Vibrio cholerae, 
Shewanella oneidensis, Salmonella enterica, Helicobacter pylori, 
Lactococcus lactis, and E coli as revealed in Table 3. The sequences 
of all motif-binding sites were obtained from prokaryotic 
organisms.

Table 3 shows that HrpX, AmrZ, RpoN, HexR, PvdS, Lrp, 
CcpA, ArgR, PhhR, and IhfA were predicted TFs that activate 
transcription by 100%. The rest of the TFs that act as activa­
tors, repressors, and others have yet to be identified. As shown 
in Table 3 above, none of the identified TFs was used in dual. 
It was found that several TFs exist, but their functions have not 

yet been revealed, as in the case of Lrp and VqsM. Additional 
research using various tools and wet labs may be needed for 
further investigation. Only Fur and HexR TFs had the highest 
functions of repression on 78% and 69% transcriptional gene 
expressions, in Table 3. This shows that these TFs take part in 
greater transcription repression than activation. In general, the 
data show that most identified TFs are used in activation rather 
than repression. From an environmental perspective, the PhhR 
TF has been exploited in a variety of biotechnological applica­
tions. It was employed in different technological areas in addi­
tion to agriculture, biocatalysts, bioremediation potential 
applications, and bioplastic production.10

Table 4 also shows the TF conformational mode of applica­
tion of the identified TFs as monomers, dimers, tetramers. For 
instance, about 35.71% of the identified TFs’ conformational 
mode were not known while 7.14% and 21.43% were identified 
as monomer and dimer TF conformation mode applications. 
As shown in Table 4, no TFs were associated with the tetramer 
TF conformational mode.

Figure 2 revealed the open reading frame (ORF) in which 
the predicted genes were located. It is usually located at the 
5′-UTR region of the upstream of the transcripts. It was known 

Table 3. L ists of matching candidates from EXPREG transcription factor (TF).

S. No. Candidate 
of TF

Strains that show 
motif sequence 
binding

GC (%) Regulatory elements Statistical 
significance

Activation 
(%)

Repression 
(%)

Dual (%) Not 
specified (%)

1 HrpX Xanthomonas oryzae 53.20 100 00 0 0 6.42e-02

2 AmrZ Pseudomonas 
aeruginosa PAO1

60.21 16 31 0 51 4.11e-01

3 RpoN Vibrio cholerae 47.75 10 0 0 0 9.60e-01

4 HexR Shewanella 
oneidensis

21.72 30 69 0 0 1.69e + 00

5 VqsM P aeruginosa PAO1 59.33 7 0 0 92 2.02e + 00

6 PvdS P aeruginosa PAO1 48.33 100 0 0 0 2.23e + 00

7 Lrp Escherichia coli 40.00 1 1 0 97 5.34e + 00

8 IhfA Pseudomonas putida 10.00 100 0 0 0 5.82e + 00

9 Fur Helicobacter pylori 14.52 13 78 0 8 7.33e + 00

10 ArgR P aeruginosa PAO1 50.20 61 27 0 11 7.57e + 00

11 Fur Salmonella enterica 28.33 26 73 0 0 8.08e + 00

12 CcpA Lactococcus lactis 33.46 69 30 0 0 8.20e + 00

13 PhhR P putida 44.67 90 10 0 0 8.27e + 00

14 CcpA Streptococcus 
pneumoniae

32.21 68 31 0 0 9.28e + 00

Abbreviations: AmrZ, transcriptional activation and biofilm formation; ArgR, arginine biosynthesis; CcpA, catabolite control protein A; Fur, ferric uptake regulation protein; 
HexR, regulation glucose metabolism; HrpX, transcriptional regulator; IhfA, integration host factor subunit alpha; Lrp, leucine-responsive regulatory protein; PhhR, 
phenylalanine hydroxylase regulator; PvdS, encode putative sigma factor; RpoN, gene expression; VqsM, virulence and QS modulator.
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that six ORFs are found in molecular biology, three on the 
positive, and three on the negative strands. This refers to read­
ing frames in the RNA code used by ribosomes in protein syn­
thesis. As a result, it may serve as a repository for genes with 
functional elements that could be targeted by heavy metal 
bioremediation in current studies. In Figure 2, the red color 
indicates that genes with similar sequences are grouped 
together in the same number and color. Genes whose relative 
position is conserved in other species are functionally coupled 
and share gray background boxes. The focus gene always points 
to the right, even if it is located on the minus strand. For 
instance, the czcA and merR genes were pinpointed out of the 
reading frame in red color in the same direction. The same 
reading frame varied in size, sequence, and location within the 
genome.

Genome re-annotation and genome mapping  
of C gilardii CR3 genome

Circular genome mapping for C gilardii CR3 genomic DNA 
was performed using a Prokka online server that can be accessed 
at https://proksee.ca/, which replaced CGView. The GC con­
tent, ORF, GC skew (+/-), rRNA, starting codon, stop codon, 

regulatory elements and CDS were predicted on the genome 
mapping (see Figure 3A to C). The sequence of C gilardii CR3 
was obtained via the NCBI database and re-annotated utiliz­
ing subsystems category distribution technology. An analysis 
was performed on the circular genome for C gilardii CR3, 
which showed the position of GC content, sequence length 
and/or contigs, stop, start, ORF, GC skew+ and GC skew– (see 
Figure 3A to C). Several genes have been thought to be associ­
ated with HMR mechanisms in environments with contami­
nation, following this investigation. Genes such as chrA, chrB, 
chrR, arsA, arsB, copC/D, czcA, czcB, czcD, czc ABC, cadiC, 
and cadiC play a significant role in the polluted environment to 
clean or decrease pollutant levels after it had been expressed 
(see Figure 3A to C). Similar investigation of circular genome 
analysis for the trehalase gene from the complete genome of 
Shigella sp. PAMC28760 from Antartica were predicted with 
CDS, GC contents, rRNA, tRNA, GC skew+ and GC skew– 
and ORFs have been predicted.8 The RAST server identified 
genes with their functions, locations, and levels of protein 
expression for C gilardii CR3 (CP010516.1) and other related 
associated strains were shown in Figure 3A. For this study, the 
number of coding sequences (3399), GC contents (67.7), con­
tigs (1), shortest contig size (3539530), media sequence sizes 

Table 4. L ists of matching candidates from EXPREG transcription confirmation factor (TCF).

S. No. Candidate 
of TF

Strains that show 
motif sequence 
binding

GC (%) TF confirmation mode Not 
specified 
(%)

Statistical 
significance

Monomer 
(%)

Dimer 
(%)

Tetramer 
(%)

Other 
(%)

1 HrpX Xanthomonas oryzae 53.20 80 20 0 0 0 6.42e-02

2 AmrZ Pseudomonas 
aeruginosa PAO1

60.21 0 0 0 0 99 4.11e-01

3 RpoN Vibrio cholerae 47.75 100 0 0 0 0 9.60e-01

4 HexR Shewanella oneidensis 21.72 0 0 0 0 100 1.69e + 00

5 VqsM P aeruginosa PAO1 59.33 0 0 0 0 100 2.02e + 00

6 PvdS P aeruginosa PAO1 48.33 0 0 0 0 100 2.23e + 00

7 Lrp Escherichia coli 40.00 0 96 0 0 3 5.34e + 00

8 IhfA Pseudomonas putida 10.00 0 50 0 0 50 5.82e + 00

9 Fur Helicobacter pylori 14.52 0 82 0 0 17 7.33e + 00

10 ArgR P aeruginosa PAO1 50.20 0 16 0 0 83 7.57e + 00

11 Fur Salmonella enterica 28.33 0 100 0 0 0 8.08e + 00

12 CcpA Lactococcus lactis 33.46 0 0 0 0 100 8.20e + 00

13 PhhR P putida 44.67 0 100 0 0 0 8.27e + 00

14 CcpA Streptococcus 
pneumoniae

32.21 0 100 0 0 0 9.28e + 00

Abbreviations: AmrZ, Transcriptional activation and biofilm formation; ArgR, arginine biosynthesis; CcpA, Catabolite control protein A; Fur, Ferric uptake regulation 
protein; HexR, regulation glucose metabolism; HrpX, transcriptional regulator; IhfA, Integration host factor subunit alpha; Lrp, Leucine-responsive regulatory protein; 
PhhR, phenylalanine hydroxylase regulator and VqsM is virulence and QS modulator; PvdS, encode putative sigma factor; RpoN, gene expression.

https://proksee.ca/
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(3539530), mean sequence sizes (3539530.0), longest contig 
sizes (3539530), the sequence length in base pairs (N50 values; 
not predicted) and the smallest number of contigs (L50) (1) 
whose length sum makes up half of genome size were 
predicted.

The prediction revealed that the genome contains multiple 
genes involved in co-factor production, chromosomal replica­
tion initiator protein DnaA, vitamin biosynthesis, protein 
metabolism, nitrogen metabolism, RNA metabolism, nucleo­
sides and nucleotide biosynthesis, stress response and aromatic 
compound metabolism, copper-sensing two-component sys­
tem response regulator, mercuric resistance operon regulatory 
protein, lead, cadmium, zinc and mercury transporting ATPase, 
and chromate transport protein in Figure 3A.

Comparative genome analysis by using  
OAT software tools

The 16S rRNA sequences were obtained from WGS C gilardii 
CR3 (CP010516.1) and related other strains such as C metal-
lidurans CH34 (NC_007973.1), C nantongensis X1 
(CP014844.1), Cupriavidus sp. ISTL7 (CP066227.10156), 
Cupriavidus sp. MP-37 (NZ_CP085344. The phylogenetic 
tree was performed using the OAT offline server. The sequences 
were aligned with ClustalW. P putida PD584 (CP115665.1) 
was used as an out-group in Figure 4A and B.

The neighbor-joining method was used to infer evolution­
ary history.28 The best tree was shown with branch lengths. 
Based on 1000 bootstrap replications through confidence 
points, evolutionary distances were calculated using neighbor-
joining. A bar, 0.01 substitutions per nucleotide location.29 The 
evolutionary distance was calculated by p-distance tech­
niques.30 The investigation connected eight nucleotide 
sequences as one nucleotide sequence was used as an out-group. 
All locations having gaps and missing data were eliminated. 
Finally, the evolutionary relationship investigation was per­
formed with OAT offline server.22 P putida PD584 
(CP115665.1) was selected and used as an out-group in the 
evaluation; other related sequences were obtained from the 
EzTaxon-e server and annotated with the RAST server before 
tree construction (b) UPGMA dendrogram Heatmap for 
OrthoANI.22 The OrthoANI values of ⩾ 96% show grouped 
genomes originating from strains of the same species together 
(see Figure 4A and B).

A circular phylogenetic analysis of the complete genome of 
C gilardii CR3(CP010516.1) was studied. The phylogenetic 
tree shows heavy metal resistance genes location in the com­
plete genome of the organism in Figure 4C. The data also show 
that C gilardii CR3 is 99.41% related to Cupriavidus sp. ISTL7. 
Figure 4A and B shows C gilardii CR3 (CP010516.1) has a 
close relationship to Cupriavidus sp. ISTL7 (CP066227.10156) 
and C gilardii MW02 (CP104386.1) and less related to that of 
C nantongensis X1 (CP014844.1) and C metallidurans CH34 
(NC_007973.1). The 16S rRNA gene sequence results of  

C gilardii CR3 (CP010516.1) were highly evolutionary related 
to Cupriavidus sp. ISTL7 (CP066227.10156), C gilardii, C 
gilardii WM02 (CP104386.1), and Cupriavidus sp MP-37 
(NZ_CP085344.1) as seen in Table 5. The data also revealed 
that it was less evolutionary related to that of C metallidurans 
CH34 (NC_007973.1). Thus, the evolutionary relationship 
between the organisms was 99.41%, 98.85%, 98.41%, and 
94.39%, respectively (see Table 5). The OrthoANI again 
revealed a weak correlation among C metallidurans CH34 
(NC_007973.1) compared with C gilardii CR3 (see Figure 4A 
and B). As shown in Figure 4A and B, the sequence similarity 
of OrthoANI between C gilardii CR3 (CP010516.1) and 
Cupriavidus sp. ISTL7 (CP066227.10156), C gilardii CR3 
(CP010516.1) C gilardii, C gilardii CR3 (CP010516.1) and C 
gilardii WM02 (CP104386.1), C gilardii CR3 (CP010516.1) 
and C nantongensis X1 (CP014844.1), C gilardii CR3 
(CP010516.1) and Cupriavidus sp. MP-37 (NZ_CP0 85344.1) 
C gilardii CR3 (CP010516.1) and C metallidurans CH34 
(NC_007973.1) were 99.41%, 98.85%, 98.41%, 84.10%, 
84.21%, and 80.85% (see Figure 4A and B). The larger sequence 
similarities among the current genome annotated sequences of 
our strains were calculated between C gilardii CR3 
(CP010516.1) and Cupriavidus sp. ISTL7 (CP066227.10156), 
OrthoANI is a genomic similarity measuring technique. It was 
utilized to evaluate the same species of organism with a demar­
cation cut-off value of 95% to 96%, and massive comparison 
tests showed that both algorithms produced identical recipro­
cal similarities (see Figure 4A and B) which confirms our phy­
logenic tree. Accordingly, the OrthoANI obtained between C 
metallidurans CH34 (NC_007973.1) and P putida PD584 
(CP115665.1) as well as other related genera in the present 
investigation were lower of the demarcation cut-off values.

Discussions
The objective of this work was regulatory elements analysis 
and comparative genome analysis of HMR bacteria extracted 
from C gilardii CR3 as a means of bioremediation. Sequence-
specific DNA-binding TFs are usually revealed as “main regu­
lators” because they bind to DNA and either activate or 
suppress gene expression. The identification of a gene’s TSS 
precedes the pointing out of the upstream promoter region, 
making gene expression analysis easier. Most of the sequences 
in this study showed multiple TSSs, which accounted for about 
86.67% in Table 1. As a result, the gene sequence in considera­
tion may have alternate transcription possibilities. However, 
TSS with a higher threshold value were evaluated for better 
prediction that related to earlier studies.31 Genes that have 
multiple TSS enhance transcription initiation and are more 
likely to respond to environmental changes, which agreed with 
the findings of Dai et al.32

Common motif identification was a core element of TF 
identification processes. Motifs recruit TFs, or regulatory ele­
ments to properly target genes in gene expression processes.33 
The MEME tools were utilized to identify a conserved 
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candidate motif where these 14 TFs bind and motif sites were 
discovered (see Figure 5). In this study, common candidate 
motifs with different information content were identified. The 
densely populated motifs with their locations were found 
upstream between −100 and −600 (see Figure 5). These motifs 
might take part in the regulation of recognized promoters with 
contributors in gene expression. In this investigation, several 
binding sites were discovered in the promoter region of candi­
date motifs. These locations might enhance binding interac­
tions and produce different regulatory effects.34,35

The data also show that the gene arsB at locus_tag =  
CR3_1877 with CDS located at complement (2282267. .  . 
2283709) was a membrane product protein extracted from  
C gilardii CR3. In addition, the arsC and arsH genes at  
locus_tag = CR3_2746 and locus_tag = CR3_1262 were used as 
arsenate reductase and arsenical resistance functions, respec­
tively. Moreover, the arsR gene with CDS complement 
(1487862. .  .1488218) is located in the genome of C gilardii 
CR3, a family transcriptional regulator protein widely used for 
arsenate bioremediation capacities. Similar studies were 

performed in the complete genome of C metallidurans CH34 
as a model bacterium of HMR. Resisting heavy metals by tri-
component efflux systems were identified in pMOL30, with 
czcCBA present with resistance to Cd2+, Zn2+, and Co2+.36 
Environmental components such as soil and water contami­
nated areas with heavy metals are potential sources of HMR 
bacteria. These microbes could reduce, oxidize bio-accumulate, 
and efflux heavy metals through cell membranes and are widely 
used in bioremediation processes.37 According to the compara­
tive analysis, the genome of Cupriavidus sp. ISTL37 is 99.41% 
identical to the genomes of C gilardii CR3 as shown in Figure 
5. A similar finding was observed on the C metallidurans 
MSR33;38 however, it was less related to C gilardii CR3 as seen 
in Figure 5.

The MerR families include merP, MerT protein that is widely 
distributed in the bacterium of C gilardii CR3 and mercury 
resistance has also been investigated in this study (see Figure 
3A). The finding is similar to the studied identified genes from 
Eubacteria.39 The C gilardii CR3 regulates heavy metals through 
TFs controlled by the MerR, CopR, CadR, and ChrR protein 

Table 5.  Features of re-annotated genomic DNA for Cupriavidus gilardii CR3 genome, its allied reference strains, and out-group.

S. No. Part of 
genomic 
information

As uploaded and after splitting into scaffolds

Cupriavidus 
gilardii CR3

Cupriavidus 
metallidurans 
CH34

Cupriavidus 
nantongensis 
X1

Cupriavidus 
sp. ISTL7

Cupriavidus 
sp. MP-37

Cupriavidus 
gilardii 
WM02

Pseudomonas 
putida PD584

1 Accession No CP010516.1 NC_007973.1 CP014844.1 CP066227.1 NZ_
CP085344.1

CP104386.1 NZ_CP115665.1

2 Taxonomy ID 1267562 266264 1796606 2771360 2884455 82541 303

3 Sequence size 3539530 6913352 4619400 3314946 3615976 3511514 5913415

4 No. of coding 
sequences

3399 6603 4525 3221 3354 3323 5375

5 Number of 
contigs

1 4 3 207 1 1 1

6 GC content (%) 67.4 63.5 66.2 67.7 67.5 67.4 61.6

7 Shortest contig 
size

3539530 171459 1150655 19 3615976 3511514 5913415

8 Media 
sequence size

3539530 2580084 1728946 564 3615976 3411514 5913415

9 Mean sequence 
size

3539530 172833.0 1539800.0 16014.2 3615976.0 3511514.0 5913415.0

10 Longest contig 
size

3539530 3928089 1739799 169580 3615976 3511514 5913415

11 N50 values Not predicted 3928089 17289946 71905 Not predicted Not predicted Not predicted

12 L50 values 1 1 1 16 1 1 1

13 Number of RNA 61 74 63 60 67 61 96

14 No. of 
subsystems

285 366 316 275 302 289 364

The data were predicted and generated by RAST (Rapid Annotation utilizing Subsystem Technology) and SEED (The database and infrastructure for comparative 
genomics) technologies.
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families. We also studied the cadmium, copper, arsenate, zinc, 
and chromium resistance genes of CopB, CopC, CopCD, CopR, 
CadA, CadB, CadR, ArsA, ArsB, ArsC, ArsH, ArsR, CzcA, CzcB, 
ChrA, ChrB (see Figure 4C) resistant systems and demonstrated 
that the combined protein sequence analysis and analysis of 
DNA regulatory elements was possible to differentiate the 
genes involved in the metal resistant, in particular, mercury, cop­
per, cadmium, zinc, and arsenate.40-43 Several enzymes contrib­
ute to the efficient functions of the genes, including a 
multicopper oxidase, a cadmium transporter, a zinc transporter, 
and a copper/zinc/cadmium efflux system.44

The RAST server identified gene calls based on their func­
tion, location, and degree of protein expression. In addition, 
sequence size, number of coding sequences, number of con­
tings, GC content percentage, shortest contig sequence, mean 
sequence size, longest contig size, No50 values, L50 values, num­
ber of RNA, and a number of subsystems were predicted by the 
RAST server. The GC content percentage of C gilardii CR3 is 
similar to that of C gilardii WM02, which is 67.4%. However, 
the highest GC% is documented for Cupriavidus sp. ISTL7 
(67.7%) while the lowest GC% is observed for P putida PD584 
(61.6%). Similar findings were found in the study on Bacillus 
sereus.45 Following C gilardii CR3 genomic DNA re-annota­
tion with the RAST online server, subsystem category distri­
bution and subsystem feature counts were anticipated. These 
subsystems are supposed to support cellular activity and 

metabolism. Strengthening our suggestion, it was projected 
that these subsystems would be used to provide broad meta­
bolic information, increase annotation quality, and provide a 
framework for determining the statistical qualities required to 
properly exploit these tendencies. Our results anticipate carbo­
hydrates and other chemical molecules. The OrthoANI, a tool 
that predicts sequence similarity between C gilardii CR3 and 
related strains, is an example of an OAT tool offline server.22 
When tested against OrthoANI, C gilardii CR3 (CP010516.1) 
displayed a genome sequence similarity of 99.16%. The C 
gilardii CR3 genomic DNA was found to be most similar to 
Cupriavidus ISTL7 with 98.85% OrthoANI (see Figure 4A), 
using the OAT tool.22 Followed by C gilardii MW5 (98.80% 
OrthoANI), C gilardii strain WM02 (98.32% OrthoANI), 
Cupriavidus sp. MP,37 (94.39% OrthoANI), C nantongensis 
X1 (CP014844.1; 83.51% OrthoANI) and C metallidurans 
CH4.

Conclusions
In this study, 15 genes from C gilardii CR3 genomes were 
examined for HMR applications. To determine the functional 
conformation of the predicted genes, the promoter region, 
transcriptional regulatory elements, phylogenetic tree analysis 
and comparative genomic by OAT analysis, and RAST and 
SEED tools were utilized. Five common candidate motifs for 
binding sites related to regulatory elements were investigated. 

Figure 5.  Block diagrams illustrate the relative location of potential motif + scanned sites in the promoter region relative to TSSs (transcription start sites). 

The bottom of the graph indicates the locations of nucleotides in the promoter region of heavy metal resistance genes. The locations range from the 

beginning of the TSS (+1) to upward of 1 kb (–1 kb) of the MEME suite outcome.
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UniProtKB data showed additional research for a better under­
standing of the function of the TFs. The overall results revealed 
that identification of the common candidate motifs and their 
regulatory elements such as TFs, comparative genome analysis 
by OAT, and genome re-annotation by RAST with SEED 
technologies were employed for the investigation. The data 
show that 14 TFs were identified. In both positive and negative 
regulations,’ these TFs were widely used to regulate enzymatic 
biosynthesis and metabolism applications. In addition, com­
parative genome analysis, annotation, bioinformatics, and 
omics tools were expected to contribute significantly to our 
understanding of gene expression in prokaryotic. Therefore, 
more studies could be done to identify the screened TFs and 
their common binding sites in gene expression mechanisms in 
microorganisms with the help of a wet lab.
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