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Introduction
The rapid adoption of electronic health records (EHRs) as a 
result of the HITECH act of American Recovery and Rein-
vestment Act has ushered significant changes in the quality 
of clinical practice in the United States.1 Besides the use of 
EHR for clinical practice, the EHR data have the potential 
to advance health care by generating and implementing new 
knowledge through informatics and analytics. Informatics-
driven analytics has recently gained national prominence 
and momentum, thereby enabling the evolution of a novel 
field known as the Learning Health-care System (LHS).2 
The Institute of Medicine defines the LHS as a system that 
generates new knowledge and embeds it into the clinical 
practice. This is done by utilizing clinical data and a robust 
technology infrastructure to enable seamless refinement 
and delivery of best practices for continuous improvement 

in health care.3 Secondary use of EHR data has facilitated 
the learning cycles in discovery, implementation, and the 
evaluation of new knowledge toward better health care. 
One prerequisite to implement LHS is an infrastructure, 
which allows access to both longitudinal and near real-time 
patient EHR data in order to facilitate discovery and deliv-
ery of best practices.

EHR data consist of information in both structured data 
elements and unstructured formats. Much clinical informa-
tion is embedded in clinical narratives, which pose significant 
challenges in streamlining the information to be utilized for 
the LHS.4 For example, detailed information about patient 
conditions, interventions, clinical progress, and treatment 
outcomes is often captured in clinical notes. Natural language 
processing (NLP) offers opportunities to tap into clinical  
narratives to extract the information needed for various 
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clinical applications.5–7 Estimates indicate that around 80% of 
the clinical information resides in the unstructured narrative.8 
NLP solutions, which automatically extract discrete, action-
able data from clinical narratives, pave the way to data-driven 
health care, the key development toward outcome-based care 
and payment models.

In general, NLP can be computationally very intensive 
not only due to the sheer volume of the unstructured clinical 
data but also due to the complexity of NLP where traditional 
computing infrastructure does not have the inherent capacity 
for implementing scalable NLP solutions.9,10

In this study, we introduce a big data-empowered NLP 
infrastructure, which delivers high-performance, scalable, and 
real-time NLP solutions at the Mayo Clinic. In the following 
sections, we provide background and related work followed by 
a summary of various NLP initiatives at the Mayo Clinic. We 
then describe the compelling need and the implementation of 
a big data-empowered NLP infrastructure. We finally discuss 
an application MayoExpertAdvisor (MEA) that delivers near 
real-time care recommendation to clinicians at the point of 
care and the significant role played by big data-empowered 
NLP infrastructure in this process.

Background and Related Work
Figure  1 illustrates the learning cycle in an LHS: practice, 
data, research, and knowledge. With the rapid adoption of 
EHRs, clinical practice generates large amounts of clini-
cal data.11 Researchers have been extensively utilizing EHR 
data for secondary purposes including clinical decision sup-
port, outcomes improvement, biomedical research, and epi-
demiologic monitoring of the nation’s health. Knowledge 
discovered through research can then be utilized to improve 
patient care. The most significant initiative related to the LHS 
is The National Patient-Centered Clinical Research Network 
(PCORnet) formed in 2013 by Patient-Centered Outcomes 
Research Institute (PCORI), which consists of 11 clinical data 
research networks (CDRNs) and 18 patient-powered research 
networks. These organizations have made significant progress 
toward analyzing the data within these networks focusing on 
common conditions, rare conditions, and genetic disorders. 
There are nationwide networks other than PCORnet that also 
play positive role in facilitating LHS. For instance the col-
laboration between Kaiser Permanente and Strategic Partners, 
Patient Outcomes Research To Advance Learning,12 Scalable 
Collaborative Infrastructure for a Learning Health-care Sys-
tem,13 PaTH (University of Pittsburgh/UPMC, Penn State, 
College of Medicine, Temple University Hospital, and Johns 
Hopkins University), leading four academic health centers,14 
and PEDSnet, another consortium of eight children’s hospi-
tals, are initiatives involving multiple institutions.15 Large ini-
tiatives such as the PCORnet provide an infrastructure for a 
national LHS.

NLP has been an integral component in the LHS, as 
evidenced by one of the review criteria in the recent CDRN 

phase II request for application, being the demonstration of 
NLP capability for phenotyping.16 Figure 2 provides an over-
view of clinical NLP. At a high level, NLP generally consists 
of the following components: tokenization, syntactic parsing, 
semantic parsing, and pragmatic interpretation. It may also 
include upstream components such as speech recognition or 
optical character recognition or downstream components of 
data mining, text analytics, visualization, and summariza-
tion of the NLP results. In health care, a critical additional 
component is required – terminology mapping. This compo-
nent takes the content that is clinically relevant and produces 
codes for unified semantic representations of clinical concepts. 
These codes are subsequently used in various applications such 
as billing, compliance, quality measurement, clinical decision 
support, and others.

Since the 1980s, NLP has been utilized to harness the 
information embedded in clinical narratives. One of the 
oldest and most studied clinical NLP systems is the Medi-
cal Language Extraction and Encoding System (MedLEE) 
developed by Friedman et  al at the Columbia University in 
the mid-1990s.17 MedLEE was initially developed on chest 
radiology reports18 but further extended to work on any kind 
of clinical notes. An NIH-funded national center, Informatics 
for Integrating Biology, and the Bedside (i2b2), has organized 
both challenges and shared tasks focusing on problems less 
studied in clinical NLP and sharing annotated clinical notes 
that removed some of the barriers to the development of clini-
cal NLP systems.19–25

However, one of the major bottlenecks in integrating 
NLP into clinical workflow has been the lack of computing 
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Figure 1. Learning cycle in an LHS. Analytics experts enable the cycle. 
Domain pragmatics provides the contextual information related to the 
domain, which is needed for discovering knowledge. Users are people 
who consume the knowledge.
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infrastructure to implement real-time NLP solutions. With 
the recent advances in big data, it becomes apparent that the 
streaming and distributed computing capacity in the big data 
technology stack makes the implementation of NLP in the 
LHS possible.

One example of big data-empowered NLP solution is 
IBM Watson, a cognitive system developed by IBM Research 
Center with the capability of analyzing natural language con-
tent.26 Watson incorporates multiple layers of  NLP technolo-
gies including machine learning and a question answering 
system.27–32 Recently, building upon the technologies behind 
Watson, IBM has invested in health-care analytics by improv-
ing clinical NLP capability. For example, Wang et al improved 
the performance of medical relation extraction in Watson.33 
IBM Watson is an independent analytical application that 
needs to be integrated into an EHR workflow for an effective 
use in clinical practice. In the recent past, EHRs do have some 
inbuilt NLP capabilities in their workflow. Cerner corporation 
has developed a sophisticated EHR that is not only safer and 
easier to use but smart enough to decipher the contextual mean-
ing behind the descriptions in clinical text.34 Chart Search, a  
search platform within Cerner has the capabilities to understand 
the intent of a query to perform semantic search.

Besides these big corporation initiatives, there are few 
efforts in academic institutions where big data-empowered 
NLP solutions have significantly advanced the clinical care 
by reducing the processing times of clinical data. Agerri et al 
(2015)10 have demonstrated that the big data infrastructure can 
help scale NLP analytics to provide near real-time solutions.35 
On the other hand, Divita et al (2015)9 explored an alternative 
approach for scaling NLP solutions through multithreading 
and running NLP modules concurrently. They took software 
engineering approach instead of assembling a robust hardware 
infrastructure for scaling the computing performance.

Essentially we have two models for performance scaling, 
as discussed above. One option is to have the right choice of 

robust hardware infrastructure, while the other is to engineer 
a robust software solution. At the Mayo Clinic, we took a mid-
dle path for scaling NLP applications, striking a fine balance 
between engineering a robust software solution and choosing 
a sophisticated big data infrastructure for deploying software. 
While big data-empowered NLP offers the best hardware 
infrastructure, MedTagger is a suite of best-of-breed NLP 
modules developed based on rigorous software engineering 
models. We believe that this combination will help us realize 
the LHS as a possibility in the near future at Mayo Clinic.

NLP Implementation Prior to the Big Data Era at 
Mayo Clinic
Mayo Clinic has a long history of using patient records as an 
organized resource to support research and quality improve-
ment.36 Early efforts to create an EHR for surgical recording 
system associated with ICD coding of diagnosis and proce-
dures began in the late 1980s. The deployment of the first 
EHR project introducing clinical notes launched in the mid-
1990 and introduced semiautomated coding of master sheet 
diagnosis in Medical Index using NLP. These efforts evolved 
into creating a data warehouse, a joint development with IBM 
to create a comprehensive clinical data repository derived from 
EHR.37 The Mayo–IBM collaboration resulted in the first ver-
sion of the Mayo Clinic Life Science System, which provided 
search capability for structured data, unstructured text, and 
NLP annotated text. However, a systematic utilization of the 
data (ie, normalization, extraction, transform, and load) was 
recognized as a critical need for a semantically integrated data 
store at the enterprise level. Hence, in 2007, Mayo initiated 
work on a data repository, the Enterprise Data Trust (EDT), 
built on industry standard and optimized for business intel-
ligence and flexible data utilization.38 This integrated source 
of data across the Mayo enterprise, as shown in Table 1, has 
served as a foundation for many aspects of clinical research 
and practice using NLP.
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Figure 2. Generic clinical NLP process. Clinical NLP involves processing textual data obtained from clinical notes and voice dictated text. The process 
includes both syntactic and semantic processing. While syntactic components identify the grammatical structure of the text, the semantic components 
identify clinical concepts and its context such as experiencer, certainty, and negation.
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Since 2001, Mayo Clinic has invested in NLP for 
processing clinical notes using syntactic and semantic features 
of the language. Mayo has pioneered clinical NLP research in 
multiple aspects. As part of Mayo–IBM collaboration, Mayo 
has released an open-source clinical NLP system: clinical Text 
Analysis and Knowledge Extraction System (cTAKES)39 built 
on the Unstructured Information Management Architecture 
(UIMA). cTAKES has been recognized by many clinical 
informatics communities and has improved its functionality 
and portability through collaborations. cTAKES became an 
Apache project in 2012. Additional NLP pipelines have been 
developed by the Mayo Clinic and released in open source 
through the Open Health Natural Language Processing Con-
sortium.* MedTagger for indexing medical concepts, infor-
mation extraction, and named entity recognition,40 MedXN 
for medication extraction and normalization,41 MedTime for 
clinical temporal information extraction,42 and MedCoref for 
coreference resolution in clinical text43 are some of the tools 
available in open source.

Currently, we provide two main types of NLP ser-
vices in clinical practice. One is concept indexing, and 
the other is high-level information extraction. An NLP 
pipeline identifies the clinical concept mentions and the 
contextual information such as negation, certainty, and 
experiencer mentioned in a document. The concepts were 
also subsequently indexed as a separate field in a database 
to facilitate better cohort retrieval. The NLP program also 
provides a framework for high-level information extraction 
that is very use-case driven. MedTaggerIE, an information 
extraction component in MedTagger, has been used for 
various use-case driven information extraction tasks. It is 
a pattern-based information extraction framework devel-
oped under UIMA. There are three knowledge components 
for an information extraction engine, ie, dictionary, nor-
malization, and regular expression. Dictionary specifies 
the terms or patterns to extract the concept mentioned in 
the text, normalization defines the target concept to which 

*  �http://ohnlp.org/index.php/Main_Page

the textual extractions needs to be mapped, and regular 
expressions define the overall rules based on the other two 
components. These knowledge components are all exter-
nalized in order to maximize customizability and mainte-
nance.40 Given a large collection of clinical narratives, we 
have conducted multiple large-scale research studies yield-
ing NLP processing knowledge that is ready to be part of 
NLP engines used in production.

Implementation of Big Data-Empowered Clinical 
NLP at Mayo Clinic
One of the major reasons for the big data initiative at the Mayo 
Clinic is the ability to extract information from the EHR near 
real time to meet the information needs at the point of care. 
Figure  3  shows a high-level architecture of the Mayo big  
data implementation.

i.	 The bottom layer of Figure 3 represents EHR data sources,  
which generate data during clinical care. The data can 
be in diverse formats including structured fields, problem 
lists, laboratory values, unstructured notes, images, and 
other information.

ii.	 In the middle layer, data from the primary sources are 
streamed to the big data environment via messaging 
queues. The big data layer itself consists of the following 
components:
•	 Data ingestion (messaging system) – accepts data 

from multiple sources, both streaming data as well 
as archived data;

•	 Data analytics (NLP) – enables stream and batch 
processing of data;

•	 Data storage and retrieval – consists of next-genera-
tion approaches for storing and indexing intermedi-
ate or final datasets.

iii.	 The topmost layer represents various applications, which 
consume the semantically enriched data provided by the 
analytical processing layer.

Big Data Technologies Adopted
The big data implementation at Mayo has been designed for 
both analytical processing and new storage methodologies to 
facilitate faster retrieval. We chose Apache Hadoop as the big 
data platform, which includes components such as Apache 
Storm to provide real-time distributed computation environ-
ment, HBase for fast key-based data retrieval, and Elastic-
search for efficient indexing and querying of information. In 
the following, we briefly describe these technologies.

Apache Storm is a programming model agnostic stream-
processing environment, which we used for streaming and 
scalable computing. Storm architecture consists of a cluster, 
where a master node distributes jobs to the slave nodes. The 
underlying structure of Storm is a graph topology, which 
consists of nodes that serve as the processing environment 

Table 1. Unstructured text in EDT.

Document  
Type

Description Volume

Clinical notes Defacto medical description  
for patient interactions.  
Documents not codified.

78M

Pathology  
reports

Confirmed diagnosis,  
partially codified.

5M

Radiology Examination type 5M

Surgery  
notes

Codified using Mayo modified  
ICD9 Procedure Codes. 4M

LAB interpretive  
reports

Detailed interpretive reports  
on lab results (eg, Genetic tests)

,1M
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while the edges serve as the message broker communicating 
between the nodes. Nodes in the Storm topology essentially 
fall into two categories as follows: (i) Spouts to stream data 
from sources and (ii) Bolts to perform processing on data 
stream emitted by a Spout. A Bolt in turn emits a stream that 
can be utilized by other bolts. Apache Storm enables real-time 
analytics environment and data delivery through multiple pro-
cessing streams of data effectively increasing the throughput.

Apache Hadoop is inherently designed for large-scale pro-
cessing, predominantly in batch-processing mode across mul-
tiple, horizontally scaled server nodes built from commodity 
hardware.44 Apache Hadoop allows the data to be processed 
faster and more efficiently than it would be in conventional 
supercomputer architecture. It relies on a parallel file system 
where computation and data are connected via high-speed 
networking. The Hadoop framework relies on map reduce 
formalism to deliver fault-tolerant scaling. In our big data 
implementation, we use MapReduce jobs to quickly search 
across clinical documentation to extract particular subsets 
of information that need to be processed through our Storm 
infrastructure. Currently, we are not using MapReduce jobs 
to scale the processing of any process in the big data imple-
mentation at the Mayo Clinic. We continue to investigate 
and develop more MapReduce and Spark capabilities in  
our infrastructure.

Apache HBase is an open-source distributed, nonrelational 
database modeled after Google’s Big Table.45 HBase does not 
support SQL as a query language, instead HBase provides a 
rich Java API. It is built on HDFS and hence can be deployed 
on commodity hardware. HBase is meant for a large amount 

of data in the range of billions of rows. An instance of HBase 
has a collection of tables. Each table contains rows with row-
keys and arbitrary number of columns. These columns contain 
key–value pairs, which are versioned by timestamp by default. 
HBase was chosen to enable very fast key-based retrieval of 
documents stored in the big data environment.

Elasticsearch is a distributed full-text search engine that 
is built on Apache Lucene. Elasticsearch can handle large-
scale real-time data to perform real-time analytics, which 
will enable the application layers to access the semantically 
enriched data in big data in near real time. Elastic search pro-
vides mechanisms to horizontally scale the retrieval by adding 
additional nodes for processing. It is fairly resilient that it can 
auto detect failure nodes and perform load balancing to ensure 
both data safety and accessibility. It also supports the notion 
of multitenancy where multiple indices can be housed on an 
instance of Elasticsearch.

NLP Implementation in Big Data
The implementation of big data-empowered NLP infrastruc-
ture is a critical component in the Mayo Clinic Unified Data 
Platform (UDP) initiative. The mission of UDP is to provide 
a centralized, yet collaborative and community-oriented data 
services framework that enables and facilitates all data-driven 
projects across the Mayo Clinic enterprise. The big data infra-
structure itself plays a significant role in data enrichment, discov-
ery, and delivery. Prior efforts on clinical data have empowered 
retrospective studies and research. Before the big data initiative, 
the UDP had been limited in its ability to provide real-time 
data analytics and delivery, which had hampered the ability to 
implement decision support systems at the point of care.

The current big data infrastructure at the Mayo Clinic 
has the following configurations: one production cluster, one 
integration cluster, one development cluster, and a discovery 
cluster. The discovery cluster is utilized for research work and 
other analytical purposes.

Figure  4  shows the big data-empowered NLP archi-
tecture that uses Apache Storm to realize real-time NLP 
processing. Specifically, we implement a bolt for NLP pro-
cessing in the Storm topology, which can instantiate the 
required NLP pipeline configurable through a configuration 
file. Clinical documents in HL7 format (input data) are read 
from message queues using the Java Messaging System. We 
implemented multiple bolts related to the NLP processing in 
our Storm Topology. The “Parse-Bolt” parses the HL7 mes-
sages utilizing the open-source HL7-HAPI-based parser.** 
The “NLP-Bolt” initializes the required NLP pipeline to be 
used for processing based on the project-specific configura-
tion. We have two storage-related bolts: “Elastic Search-
Bolt” and “HDFS-Bolt”. While the former is used to index 
the HL7 messages and the NLP results, the latter is used to 
store them in HDFS.

** � http://M7api.sourceforge.net
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Figure 3. A high-level architecture of big data-empowered analytics 
in LHS. Big data architecture at Mayo consists of three layers: (i) data 
ingestion layer that reads data from real-time feeds from the EMR and 
archived data, (ii) big data analytics layer that does stream processing 
for analyzing the data, and (iii) data storage and retrieval that stores 
the information and knowledge that are generated through big data 
analytics and facilitate retrieval at the appropriate time for clinical use.
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Big Data Implementation – a Clinical Use Case
Very recently, we implemented a decision support system, 
namely, MEA, an application that delivers individualized 
care recommendations for clinical practice using the big data 
infrastructure. This section describes the broad goal of MEA 
and the specific big data implementation. We, also describe 
the performance of NLP modules in terms of computa-
tional time in three different server environments including 
the big data. We summarize the performance of each infra-
structure especially on how the reduced processing times of 
big data infrastructure will impact the overall goal of the  
LHS implementation.

Mayo Expert Advisor
To deliver the optimal care to individual patients, Mayo 
Clinic has made a significant investment in developing 
knowledge assets regarding best practice pathways, guide-
lines, and the associated tools to manage these guidelines. 
Currently, Mayo-vetted best practices are being authored 
by Specialty Councils, Centers, or others and are available 
through a web-based application, AskMayoExpert (AME).46 
AME currently has over 115 Care Process Models (CPMs) 
and 40 risk factor scoring tools. These risk factors are taken 
into account when choosing the right intervention as outlined 
in the CPMs. However, the provider has to manually enter 
patient data into scoring tools and then review the protocols 
in AME to see what care recommendation or intervention is 
best suited for the patient. For a given patient, there might 
be many CPMs that are applicable to enable individualized 

knowledge delivery; all applicable recommendations have to 
be taken into account. Thus, to fully realize the value of all 
these knowledge assets in AME, we need to incorporate the 
knowledge into the clinical workflow of the providers in the 
context of individual patient care.

However, there is no consistent mechanism to present rel-
evant knowledge in the context of patient-specific data. There-
fore, knowledge delivery at the point of care requires real-time 
information extraction to populate data elements needed for 
delivering patient-specific screening reminders, follow-up rec-
ommendations, shared decision-making tools, patient-specific 
links to AME, and other resources.

MEA was implemented through a multiunit collaborative 
effort, leveraging the work that was already done in another 
web-based solution (Generic Disease Management System).47 
An NLP pipeline deployed on big data provided unstructured 
text analysis, which was then integrated with the information 
from structured resources such as coded problem list, labo-
ratory tests, procedures, and medications to understand the 
patient context and deliver relevant knowledge for patient care 
at the point of care.

We successfully implemented the knowledge workflow 
outlined in three CPMs namely, atrial fibrillation, hyperlipi-
demia, and congestive heart failure (CHF) during the pilot 
phase of MEA.The domain experts identified nearly 25 data 
elements (refer Table2) to be relevant in order to make a care 
recommendation. According to the New York Heart Associa-
tion Classification, some of the information such as (for CHF 
CPM) implanted cardiac devices, CHF diagnosis, and the 
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Figure 4. Data-empowered NLP architecture. Apache storm topology consists of the following components: (i) Spout: streamlines data from their 
respective data sources; (ii) Bolts: Processing unit often dedicated to a single type of process; (iii) HDFS – currently used for archive; (iv) Elasticsearch – 
retrieve data from archive.
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heart failure stage can only be obtained reliably from clinical 
notes. The NLP pipeline extracts the concepts/data elements 
outlined in Table 2 from the clinical notes. Besides detecting 
the mention level of each concept in a clinical note, the pipe-
line also detects additional metadata of the concept such as its 
certainty/affirmation, negation status, and the context such as 
experiencer to identify whether the concept was mentioned in 
the context of the patient or family. As previously described in 
the NLP Implementation prior to big data era at Mayo Clinic 
section, the whole pipeline was implemented using Apache 
UIMA framework.

One of the main challenges for MEA is the rapid processing 
of historical clinical notes, radiology notes, and other unstruc-
tured data resources in order to deliver real-time, personalized 
clinical care recommendations. For some of the patients, the 
required information may occur in multiple documents at differ-
ent time points. The information extracted from the individual 
documents of a patient needs to be synthesized across documents 
to check if a particular patient disease condition is consistent and 
trust worthy. The information extracted by the NLP pipeline is 
reconciled with the information from structured resources to infer 
at patient level whether the concept/data element is relevant to 
the patient. By combining the information from both the struc-
tured and unstructured sources, the resulting information is fed 
to a decision rule system that generates the care recommendation 
to be delivered to the clinician at the point of care. Figure 5 gives 
the outline of the overall workflow architecture of MEA. In this 
study, we restrict our focus to only the specific role of big data 
infrastructure-empowered NLP system in making care recom-
mendations as outlined in CPMs to the clinicians.

Results and Discussion
In our pilot study, we benchmarked the performance of the 
same NLP pipeline in a fixed number of documents (20,000 

clinical notes) in three different environments, namely,  
a standalone server, a data stage server, and the big data envi-
ronment. Table 3 gives a broad outline on the hardware con-
figuration of the three server environments.

Figure  6  shows the average processing time taken to 
process 20,000 clinical documents in the three server envi-
ronments. The standalone server had an average processing 
time of 23.97  minutes; data stage averaged 85.67  minutes, 
while the big data averaged 20.13 minutes to process 20,000 
clinical notes. The data stage had significantly higher process-
ing times when compared with the other two environments. 
After further investigation, there may be two reasons for this 
low performance of such a very powerful server: (i) the spe-
cific configuration of the data stage server was not optimal 
for high throughput and (ii) the data stage server was config-
ured to run in a shared environment. It was not possible for 
us to schedule a job for MEA processing in a controlled and 
isolated data stage environment at this time. On the big data 
server, all the computations during this run were concentrated 

Table 2. CPMs and data elements.

Care Process  
Model (CPM)

Sample Data Elements

Atrial fibrillation Abdominal aortic aneurysm (AAA), 
alcohol abuse, atrial fibrillation diag-
nosis, biventricular ICD, biventricular 
pacemaker, bleeding disorder, central 
nervous system bleeding, cirrhosis diag-
nosis, congestive heart failure diagnosis, 
diabetes status, hematuria, implantable 
cardioverter defibrillator (ICD), left ven-
tricular assist device (LVAD), myocardial 
infarction diagnosis

Hyperlipidemia Alcohol abuse, congestive heart failure 
diagnosis, diabetes status, hypertension 
diagnosis, pancreatitis, myocardial infarc-
tion diagnosis, peripheral artery disease 
(PAD), stroke, thromboembolism, tran-
sient ischemic attack diagnosis, Statin 
induced myopathy, Eruptive Xanthomata

Heart Failure Heart Failure stage (New York Heart 
Association Functional Classification), 
congestive heart failure diagnosis

ECG text

MedTagger
Data

elements

Decision/Notification Layer

NLP workflow

Structured
data

Rules Data
aggregation

Care
recommendation

Radiology

Patient

Physician

Clinical
note

Figure 5. MEA workflow architecture. MEA workflow consists of three 
components: (i) MedTagger, a clinical NLP pipeline reads data from 
clinical notes, radiology notes, ECG text, and other reports and identifies 
data elements; (ii) Webservices aggregate the information from both the 
NLP pipeline and structured data sources such as laboratory values, 
patient provided information to synthesize concept assertion at patient 
level; and (iii) synthesized information is fed to a decision rule system 
that generates care recommendation for the clinician at the point of care.

Table 3. Hardware configuration of three different server 
environments at Mayo Clinic.

Big Data Data  
Stage

Single Server

Processor 2 of E5–2670  
2.6 GHz

X5672  
3.2 GHz

AMD Opteron (tm)  
Processor 2439 SE  
2793 MHz

# of cores 8 4 6

Memory 256 GB  
(Shared) 
1333 MHz

16 GB  
(Dedicated)

32 GB  
(Shared)

HDD HDFS  
(10 nodes)

NAS  
(Network  
Attached  
Storage)

RAID
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on a single node. There was not any significant difference in 
the performance of the big data (shown in Fig. 6) when com-
pared with the standalone server, while there is a significant 
performance gain over the data stage.

Further experiments were performed with the Storm 
architecture by increasing the number of parallel instances 
to 2, 4, 8, and 16, essentially doubling the parallel instances 
each time. Figure  7 clearly demonstrates the significant 
improvement in the performance due to increased parallelism.  
A substantial drop in the processing time was observed while 
increasing parallel instances. A configuration of 16 parallel 
instances took only 1.01 minutes (approximately 3 milliseconds 
to process a single document) to process 20,000 documents con-
sidered for the earlier experiment. The parallel system was 20 
times faster than the configuration with a single instance (Fig. 6). 
The resilience of parallel processing power is one factor that gave 
big data the edge over other environments. While the drop in 
the processing time was very steep initially, the gain in the time 
tapers with increase in parallelism. This shows that there is a 
threshold to the number of the parallel instances beyond which 
there is no significant gain in the processing times. However, the 
optimal threshold may vary depending on the size of the data.

We also studied the performance behavior of the big data 
with varying data size. We did this in order to ascertain the 
limits of gain in performance due to parallelism with increas-
ing data. In Figure 7, we saw that for a fixed number of docu-
ments (20,000) the system achieved the best performance at 
16 parallel instances. Keeping the parallel instance constant 
(at 16), we computed the time taken by the MEA algorithm 
to process 20,000 (335.08 MB of data), 40,000 (635.22 MB of 
data), 80,000 (1,270 MB of data), and 160,000 (2,792.99 MB 
of data) documents, essentially doubling the number of docu-
ments. Figure  8  shows the performance of the MEA algo-
rithm while increasing the number of documents in big data. 

From Figure 8, we can infer that the processing time increases 
linearly with increasing number of documents. We can infer 
that further optimization of the number of parallel instances 
may be required with increasing amounts of data. At a fixed 
parallel instance (16  in this case), the performance of the 
MEA algorithm in big data may become a rate-limiting one. 
We believe that by adding additional nodes in big data infra-
structure and increased parallelism of the Storm architecture 
the performance of MEA algorithm will ramp up to appre-
ciable levels (as seen in Fig. 7).

For the MEA project, we piloted the implementation on 
14,000 patients, which requires running NLP on 1.6 million 
documents. NLP in big data (empowered by 16 parallel 
instances) allowed the entire set to be processed within 
90 minutes, which would not have been possible in the tradi-
tional Mayo Clinic infrastructure.

In summary, we have shown that the big data implemen-
tation, with the ability to run algorithms in parallel using the 
storm architecture, offers immense potential to realize our goal 
in delivering near real-time information, thereby enabling the 
delivery of optimal care in practice.

Limitations and Future Work
In this work, we explored the scaling performance of NLP through 
big data computing. Some of the technology choices that were 
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made for this work were based on the technology stack available 
at the time of the project and the maturity of the software pack-
ages. Specifically, Apache Storm was chosen over Spark due to its 
more reliable and mature code base compared with the relatively 
new and not fully vetted functionality of Spark streaming. As 
Spark matures, it will be worthwhile to compare the technologies 
and see what benefits can be leveraged from each.

As far as the MedTagger NLP processing, the current 
NLP modules in MedTagger can be redesigned to run asyn-
chronously using UIMA-AS or run in a nonlinear fashion. 
For example, Divita et  al, 20159 explored multithreading to 
scale the performance of NLP. Additionally, we are currently 
exploring the use of Map Reduce/Spark to scale up some NLP 
module processing, which can be another way to improve the 
performance of NLP on a Hadoop environment. We can also 
remove certain overheads in preprocessing by adopting mes-
saging and documentation standards.

More work is needed to fully leverage the potential of 
this infrastructure to deliver NLP solutions. There are some 
challenges identified in the process of our implementation 
that are listed as follows.

Data challenges. The uneven and complex nature of 
clinical documentation is a challenge in analyzing EHR data. 
Detailed patient treatment and outcome information is scat-
tered in heterogeneous formats in various EHR platforms 
and standards in both structured and unstructured formats. 
Although extensive efforts has been dedicated at Mayo Clinic 
and other organizations to develop advanced NLP tech-
nologies, common problems in observational data such as 
confounding variables, bias, and missing data add to the com-
plexity of the analytic problem.

Resource challenges. The investigation, development, 
testing, and deployment of NLP analysis pipelines are not 
trivial tasks. Based on the needs of each project, varying lev-
els of sensitivity and specificity are required. Also, based on 
the clinical project requirements, there can be specific defi-
nitions or context required for NLP extracted concepts. This 
can make the development cycle and production implementa-
tion of NLP an expensive process, both in terms of time and 
money invested. Efforts are underway to build standardized 
processes and development tools to ensure that projects can be 
completed in an efficient and cost-effective manner.

Domain expertise challenges. Often, the end users 
of NLP analytics solutions are not experts themselves in all 
aspects of the health-care domain. It takes partnerships with 
subject-matter experts in various subspecialties of health care 
to build analysis pipelines that provide accurate and relevant 
NLP extracted information. Without the time and effort 
required to foster these collaborations, the level of precision 
required by consumers of NLP data would not be met.

Awareness challenges. Even though NLP has been 
around at Mayo Clinic for many years, the ability to leverage 
its potential in clinical settings is relatively new. The use case 
listed in this study shows the initial investment and success of 

utilizing the big data platform to provide clinically focused NLP 
solutions. There are many opportunities to utilize this type of 
big data-empowered NLP solution. Adoption of big data tech-
nology is still in its infancy at the Mayo Clinic and has not pen-
etrated different practice divisions across the Mayo Clinic. As 
successful projects leverage the information provided by NLP 
solutions, they can serve as models for future endeavors.

Conclusions
In this study, we demonstrated the benefits of a big data-
empowered NLP computing infrastructure, for the process-
ing and delivery of NLP solutions, which enable knowledge 
delivery in an LHS. We have clearly shown that using big data 
architecture significantly reduces the processing time of clini-
cal narratives. It enables real-time NLP processing of clinical 
documents to deliver care recommendations for clinical prac-
tice. This is a significant step toward implementing an LHS. 
Big data computing paves way for building a robust and fault-
tolerant NLP infrastructure.

Acknowledgments
We acknowledge Brian N. Brownlow for making the big data 
and data stage server available for conducting the experiments.

Author Contributions
Involved in designing the experiments and interpretation of 
the results for use case: HL, RKE, VCK, SM, SS, JJP. Per-
formed the big data implementation and experiments: VCK, 
JJP. Participated in the discussion of big data implementation: 
VCK, RKE, SM, JJP, SS, YW, DL, MMR, SPM, JLR, RC, 
JDB, HL. Contributed toward writing the article: VCK, RKE, 
SM, JJP, SS, YW, DL, MMR, SPM, JLR, RC, JDB, HL. 
All authors reviewed and approved of the final manuscript.

References
	 1.	 Health Information Technology (HITECH) Act 2009. Index for Excerpts from 

the American Recovery and Reinvestment Act of 2009.
	 2.	 Friedman C, Rubin J, Brown J, et  al. Toward a science of learning systems:  

a research agenda for the high-functioning Learning Health System. J Am Med 
Inform Assoc. 2015;22:43–50.

	 3.	 The Foundation for Continuous Improvement in Health and Health Care. Digi-
tal Infrastructure for the Learning Health System: Institute of Medicine. 2011.

	 4.	 Fernandes L, O’Connor M, Weaver V. Big data, bigger outcomes: healthcare is 
embracing the big data movement, hoping to revolutionize HIM by distilling vast 
collection of data for specific analysis. J AHIMA. 2012;83(10):38–43; quiz 44.

	 5.	 Demner-Fushman D, Chapman W, McDonald CJ. What can natural language 
processing do for clinical decision support? J Biomed Inform. 2009;42(5):760–72.

	 6.	 Cimino JJ, Bright TJ, Li J. Medication reconciliation using natural language pro-
cessing and controlled terminologies. Stud Health Technol Inform. 2007;129(pt 1): 
679–83.

	 7.	 Uzuner O, Stubbs A. Practical applications for natural language processing 
in clinical research: the 2014 i2b2/UTHealth shared tasks. J Biomed Inform. 
2015;58:S1–5.

	 8.	 Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF. Extracting information 
from textual documents in the electronic health record: a review of recent research. 
Yearb Med Inform. 2008:128–44.

	 9.	 Divita G, Carter M, Redd A, et al. Scaling-up NLP pipelines to process large 
corpora of clinical notes. Methods Inf Med. 2015;54:548–52.

	 10.	 Agerri R, Bermudez J, Rigau G. IXA pipeline: efficient and ready to use multilin-
gual NLP tools. Language Resources and Evaluation Conference (LREC2014); 
2014; Reykjavik, Iceland.

http://www.la-press.com
http://www.la-press.com/journal-biomedical-informatics-insights-j82


Kaggal et al

22 Biomedical Informatics Insights 2016:8(S1)

	 11.	 Ross MK, Wei W, Ohno-Machado L. Big data and the electronic health record. 
Yearb Med Inform. 2014;9(1):97–104.

	 12.	 McGlynn EA, Lieu TA, Durham ML, et al. Developing a data infrastructure 
for a learning health system: the PORTAL network. J Am Med Inform Assoc. 
2014;21:596–601.

	 13.	 Mandl K, Kohane IS, McFadden D, et al. Scalable collaborative infrastructure 
for a learning healthcare system (SCILHS): architecture. J Am Med Inform Assoc. 
2014;21:615–20.

	 14.	 Amin W, Tsui F, Borromeo C, et al; The PaTH Network Team. PaTH: towards 
a learning health system in the Mid-Atlantic region. J Am Med Inform Assoc. 
2014;21:633–6.

	 15.	 Forrest CB, Margolis P, Bailey LC, et al. PEDSnet: a national pediatric learning 
health system. J Am Med Inform Assoc. 2014;21:602–6.

	 16.	 PCORI. PCORI Funding Announcement: Improving Infrastructure for Conduct-
ing Patient-Centered Outcomes Research. Available at: http://www.pcori.org/sites/
default/files/PCORI-PFA-CDRN.pdf. Accessed December 22, 2014.

	 17.	 Friedman C, Hripcsak G, DuMouchel W, Johnson SB, Clayton PD. Natural 
language processing in an operational clinical information system. J Nat Lang 
Eng. 1995;1(1):83–108.

	 18.	 Friedman C, Alderson PO, Austin JH, Cimino JJ, Johnson SB. A general 
natural-language text processor for clinical radiology. J Am Med Inform Assoc. 
1994;1(2):161–74.

	 19.	 Chapman WW, Nadkarni PM, Hirschman L, D’Avolio LW, Savova GK, Uzuner O.  
Overcoming barriers to NLP for clinical text: the role of shared tasks and the 
need for additional creative solutions. J Am Med Inform Assoc. 2011;18(5):540–3.

	 20.	 Uzuner O, Bodnari A, Shen S, Forbush T, Pestian J, South BR. Evaluating the 
state of the art in coreference resolution for electronic medical records. J Am Med 
Inform Assoc. 2012;19(5):786–91.

	 21.	 Uzuner Ö, Solti I, Cadag E. Extracting medication information from clinical 
text. J Am Med Inform Assoc. 2010;17:514–8.

	 22.	 Uzuner Ö, South BR, Shen S, DuVall SL. 2010 i2b2/VA challenge on 
concepts, assertions, and relations in clinical text. J Am Med Inform Assoc. 
2011;18(5):552–6.

	 23.	 Uzuner O. Recognizing obesity and comorbidities in sparse data. J Am Med 
Inform Assoc. 2009;16:561–70.

	 24.	 Uzuner O, Goldstein I, Luo Y, Kohane I. Identifying patient smoking status 
from medical discharge records. J Am Med Inform Assoc. 2008;15(1):14–24.

	 25.	 Sun W, Rumshisky A, Uzuner O. Annotating temporal information in clinical 
narratives. J Biomed Inform. 2013;46:S5–12.

	 26.	 Ferrucci D, Brown E, Chu-Carroll J, et al. Building Watson: an overview of the 
DeepQA project. AI Magazine. 2010;31:59–79.

	 27.	 Moschitti A, Chu-Carroll J, Patwardhan S, Fan J, Riccardi G. Using syntactic 
and semantic structural kernels for classifying definition questions in Jeopardy. 
Emp Met Nat Lang Proc. 2011:712–24.

	 28.	 McCord MC, Murdock JW, Boguraev BK. Deep parsing in Watson. IBM J Res 
Dev. 2012;56(3.4):3:1–3:15.

	 29.	 Gondek D, Lally A, Kalyanpur A, et al. A framework for merging and ranking 
of answers in DeepQA. IBM J Res Dev. 2012;56(3.4):14:1–14:12.

	 30.	 Wang C, Mahadevan S. Multiscale manifold learning. Paper presented at: 
AAAI, July 14–8, 2013; Bellevue, WA.

	 31.	 Ferrucci DA. IBM’s Watson/DeepQA. ACM SIGARCH Computer Architec-
ture News, June, 2011; New York, NY.

	 32.	 Kalyanpur A, Murdock JW, Fan J, Welty C. Leveraging community-built 
knowledge for type coercion in question answering. Semantic Web–ISWC, 
October 23–7, 2011; Berlin, Heidelberg.

	 33.	 Wang C, Fan J. Medical relation extraction with manifold models. ACL. 2014; 
828–38.

	 34.	 Cerner Corporation. Make your Cerner EMR smarter, safer and easier to use; 
2014.

	 35.	 Agerri R, Artola X, Beloki Z, Rigau G, Soroa A. Big data for natural language 
processing: a streaming approach. Knowledge-Based Syst. 2015;79:36–42.

	 36.	 Kurland LT, Molgaard CA. The patient record in epidemiology. Sci Am. 
1981;245(4):54.

	 37.	 Rhodes R. Healthy approach to data: IBM and Mayo Clinic team up to create 
massive patient database. IBM Systems Magazine. 2002.

	 38.	 Chute CG, Beck SA, Fisk TB, Mohr DN. The enterprise data trust at Mayo 
Clinic: a semantically integrated warehouse of biomedical data. J Am Med Inform 
Assoc. 2010;17(2):131–5.

	 39.	 Savova GK, Masanz JJ, Ogren PV, et al. Mayo Clinical text analysis and know
ledge extraction system (cTAKES): architecture, component evaluation and 
applications. J Am Med Inform Assoc. 2010;17(5):507–13.

	 40.	 Liu H, Bielinski SJ, Sohn S, et  al. An information extraction framework for 
cohort identification using electronic health records. AMIA Summits Transl Sci 
Proc. 2013; San Francisco, CA.

	 41.	 Sohn S, Clark C, Halgrim S, Murphy S, Chute C, Liu H. MedXN: an open 
source medication extraction and normalization tool for clinical text. J Am Med 
Inform Assoc. 2014;21(5):858–65.

	 42.	 Sohn S, Wagholikar KB, Li D, et  al. Comprehensive temporal information 
detection from clinical text: medical events, time, and TLINK identification.  
J Am Med Inform Assoc. 2013;20(5):836–42.

	 43.	 Jonnalagadda SR, Li D, Sohn S, et  al. Coreference analysis in clinical notes:  
a multipass sieve with alternate anaphora resolution modules. J Am Med Inform 
Assoc. 2012;19(5):867–74.

	 44.	 Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. 
Commun ACM. 2008;51(1):107–13.

	 45.	 Chang F, Dean J, Ghemawat S, et al. Bigtable: A Distributed Storage System for 
Structured Data. ACM Transactions on Computer Systems (TOCS). June 2008; 
26(2):1–26.

	 46.	 Li DC, Liu H, Chute CG, Jonnalagadda SR. Towards assigning references using 
semantic, journal and citation relevance. IEEE International Conference on Bio-
informatics and Biomedicine (BIBM); 2013; Shanghai.

	 47.	 Rajeev Chaudhry et al. Innovations in the delivery of primary care services using 
a software solution: the Mayo Clinics Generic Disease Management System. 
International Journal of Person Centered Medicine. 2012;2(3):361–7.

http://www.la-press.com
http://www.la-press.com/journal-biomedical-informatics-insights-j82
http://www.pcori.org/sites/default/files/PCORI-PFA-CDRN.pdf
http://www.pcori.org/sites/default/files/PCORI-PFA-CDRN.pdf

