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Abstract
Anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitides (AAV) are
rare systemic autoimmune diseases characterised by inflammation of small
blood vessels. Recent developments have been made in our understanding of
the pathogenesis of these diseases, including the pathogenic role of ANCA,
neutrophils and monocytes as mediators of injury, dysregulation of the
complement system, and the role of T and B cells. Current treatment strategies
for AAV are based on broad immunosuppression, which may have significant
side effects. Advances in understanding of the pathogenesis of disease have
led to the identification of new therapeutic targets which may lead to treatment
protocols with less-toxic side effects. The aim of this review is to summarise
current information and recent advances in understanding of the pathogenesis
of AAV.
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Introduction and background
The anti-neutrophil cytoplasm antibody (ANCA)-associated 
vasculitides (AAV) are a group of systemic autoimmune dis-
eases characterised by inflammation of small blood vessels with 
multi-organ involvement, including the kidney, lung, nerves, 
gut, and ear, nose, and throat (ENT). Until 1979, it was assumed 
that rapidly progressive glomerulonephritis (RPGN) was caused 
by circulating immune complexes or anti-glomerular base-
ment membrane (anti-GBM) antibodies. However, Stilmant  
et al. observed that many cases had no evidence of glomerular  
deposition of complement or immunoglobulin and were  
pauci-immune1. Subsequently, antibody binding to neutrophil 
cytoplasm was shown by using serum from patients with  
crescentic glomerulonephritis for indirect immunofluorescence2. 
The two main target antigens of ANCA were then identified as  
proteinase-3 (PR3) and myeloperoxidase (MPO), which are  
present in the granules of neutrophils and lysosomes of  
monocytes3–5. There are differing clinical syndromes associated 
with ANCA: granulomatosis with polyangiitis (GPA), micro-
scopic polyangiitis (MPA), eosinophilic GPA (EGPA), and renal 
limited vasculitis. Around 10% of patients are ANCA negative6.  
The aim of this review is to provide an overview of the  
current information and recent advances in understanding of the 
pathogenesis of AAV focussing on MPA and GPA rather than 
EGPA.

AAV is uncommon; its incidence in Europe is reported to be 
13 to 20 cases per million7. There is a slight male preponder-
ance, and incidence increases with age, although peak inci-
dence has been reported variously as 55 to 64, 65 to 74, and 
more than 75 years7–9. AAV is rarer in non-Caucasian or non-
Asian populations, and there are differences in the incidence 
of different clinical phenotypes between populations. When a  
Japanese and UK population were directly compared, the  
overall incidence of AAV was similar but GPA was much less 
common in Japan10. There is certainly a genetic basis for AAV, 
and this may explain some of the population differences. Two 
large genome-wide association studies showed an association 
between AAV and genetic factors, and there was a stronger 
genetic association with ANCA specificity than clinical  
syndrome, suggesting that MPO-ANCA and PR3-ANCA may 
be defining differing diseases. In anti-PR3 AAV, there were asso-
ciations with HLA-DP, PRTN3 (the gene encoding proteinase-3), 
and SERPINA1 (the gene encoding a1-antitrypsin, a circulating  
inhibitor of PR3); anti-MPO AAV was associated mainly with 
HLA-DQ polymorphisms11,12. There are reports of an association 
between HLA-DRB1*15 and PR3-ANCA in African-Americans, 
and HLA DPB1*0401 has also been associated with PR3- 
ANCA disease13,14. Several studies have shown an associa-
tion with a single-nucleotide polymorphism (SNP) in PTPN22 
(the gene encoding a lymphoid-specific phosphatase which is  
involved in T-cell activation) and GPA, although whether this  
SNP is also associated with MPA is less clear15,16.

There are several reported environmental associations with 
AAV. Infection may precede disease relapse and nasal carriage 
of staphylococci correlates with disease relapse in patients with 
anti-PR3 AAV and ENT disease17. A mechanism of molecular  
mimicry whereby an immune response against microbial antigens 

cross-reacts with self tissue has been proposed18. An atypical 
ANCA, anti-human lysosome-associated membrane protein-
2 (anti-LAMP-2) antibody, was first identified in patients with 
pauci-immune glomerulonephritis (GN) in 1995 and has 100% 
sequence homology with FimH, a bacterial adhesion protein on  
Gram-negative bacteria. Rats immunised with FimH develop 
GN and antibodies which react to human and rat LAMP-218.  
However, the clinical association has been reproduced in some 
but not other laboratories19,20. An alternative proposal involves  
complementary peptides of the auto-antigen. Patients with  
anti-PR3 AAV have been shown to have circulating antibodies to  
both PR3 and anti-sense complementary PR3 peptides (cPr3),  
suggesting that an initial immune response may be against the 
anti-sense peptide leading to the development of anti-idiotype  
antibodies which recognise PR321.

Other environmental risk factors identified include silica, heavy 
metal exposure and drugs which can induce ANCA, including 
propylthiouracil, hydralazine, and levamisole-contaminated  
cocaine22–24.

Pathogenicity of ANCA
ANCA have been shown to be pathogenic in several clinical  
and pre-clinical studies. There is a reported case of maternal– 
foetal transfer of anti-MPO ANCA resulting in neonatal renal  
disease and pulmonary haemorrhage shortly after birth25. Levels 
of ANCA have been shown to correlate with disease activity 
in some but not all case series with better correlation in patients 
with renal disease26. Removal of antibodies with plasma  
exchange has been shown to improve prognosis in severe  
AAV27, and depletion of B cells with rituximab has been shown  
to be effective in induction and maintenance of remission28–30.

Some of the best evidence for the pathogenesis of ANCA comes 
from a passive transfer model of anti-MPO AAV. MPO-deficient 
mice are immunised with mouse MPO and develop high-
titre anti-MPO antibodies. Transfer of these antibodies into  
wild-type or Rag2 mice (which lack lymphocytes) results in 
the mice developing severe vasculitis with crescentic GN and  
pulmonary haemorrhage, demonstrating that MPO-ANCA alone 
are sufficient to induce disease31. Neutrophils were shown to 
have an essential role in disease pathogenesis in this model;  
depletion of neutrophils prior to transfer of antibodies prevented 
the development of disease32. ANCA have also been shown to 
be pathogenic in an autoimmune rat model of AAV, experimen-
tal autoimmune vasculitis in the susceptible WKY rat strain. 
Rats are immunised with human MPO in complete Freund’s 
adjuvant and also receive two doses of intraperitoneal pertussis 
toxin as an immune adjuvant. Animals develop polyclonal  
anti-MPO antibodies with pauci-immune vasculitis and pulmo-
nary haemorrhage. Intra-vital imaging in this model showed 
increased leucocyte adhesion and transmigration at the endothe-
lium in response to CXCL1, and this could also be observed in 
healthy animals following infusion of anti-MPO IgG isolated 
from rats with disease, supporting a role for the pathogenicity 
of ANCA33. The pathogenic role of PR3-ANCA is less well 
defined and this is owing, at least in part, to the difficulty in  
developing animal models of anti-PR3 AAV. An attempt to cre-
ate a passive transfer model analogous to the one using anti-MPO 
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antibodies resulted in no features of vasculitis and only a mild 
inflammatory response to tumour necrosis factor (TNF) in the 
skin34. This is potentially due to a lack of PR3 expression on the 
surface of unstimulated mouse neutrophils and a lesser degree  
of sequence homology between mouse and human PR3 than  
there is for MPO35.

Despite evidence for the pathogenicity of ANCA, the relationship 
between ANCA and active vasculitis is complex and ANCA are 
not always pathogenic. ANCA can persist in remission, can recur 
without evidence of clinical relapse, and have been identified in 
healthy individuals. Natural anti-MPO antibodies are of lower 
avidity and titre than are antibodies from patients with AAV36. 
The IgG subclass of ANCA may also be important. In vitro, 
IgG3-ANCA has been shown to be more effective than other  
IgG subclasses at activating neutrophils, although in other  
clinical studies the IgG subclass of ANCA did not correlate with  
disease severity37,38. Epitope mapping to identify the pathogenic 
epitopes of both PR3 and MPO have been carried out. One study 
using epitope excision and mass spectrometry identified a linear 
epitope on MPO at residue 447–459 that was limited to patients 
with disease; interestingly, when the three-dimensional struc-
ture of MPO was visualised, this epitope was close to epitopes 
seen in individuals with natural antibodies, leading the authors 
to suggest that pathogenic ANCA arise by a process of epitope  
spreading. In this study, IgG purified from patients with ANCA-
negative vasculitis was able to bind to an MPO epitope, and it 
was suggested that competition for binding in immunoassays 
by a fragment of caeruloplasmin may be why ANCA cannot  
be detected in these patients39.

ANCA-induced activation of neutrophils and 
monocytes
The ability of ANCA to bind to and activate neutrophils  
causing degranulation and production of reactive oxygen spe-
cies (ROS) was first shown nearly 30 years ago40. Since then, 
several in vitro studies have shown that neutrophils which have 
been primed with TNFα, lipopolysaccharide (LPS), or comple-
ment (C5a) undergo activation and degranulation and medi-
ate endothelial cell damage when stimulated with MPO or  
PR3-ANCA41,42. ANCA binding to neutrophils has also been 
shown to activate intracellular signalling pathways leading to 
altered adhesion molecule expression and conformational changes 
which promote neutrophil adhesion and transmigration at the vas-
cular endothelium43. Both the ANCA antigen-binding site and 
binding to Fcγ receptors on the surface of primed neutrophils 
and monocytes have been identified as mechanisms by which  
ANCA activates these cells.

ANCA have also been shown to be mediators of NETosis, a 
form of neutrophil cell death with release of neutrophil extra-
cellular traps (NETs). NETs have a DNA backbone with a 
variety of pro-inflammatory proteins, including histones, 
high-mobility group box 1 (HMGB-1), neutrophil elastase, cal-
protectin, MPO, and PR344. NETs have been shown to be present 
at sites of tissue damage in AAV, and patients also have increased  
levels of NETs in the circulation45. NETs may play a pathogenic 
role in AAV; they can cause activation of dendritic cells and 
autoreactive B cells, endothelial damage, and complement  

activation46,47. NETs may also play a role in the loss of toler-
ance to ANCA antigens; one study has shown that dendritic cells  
activated by NETs induce loss of tolerance to both MPO and 
PR348. Neutrophils from patients with AAV undergo more spon-
taneous NETosis than those from healthy controls, but ANCA 
can also induce this process. The exact mechanism by which 
ANCA induce NETosis is unclear but is thought to require  
binding of both Fcγ receptors and the ANCA target antigen on the 
cell surface49.

Although many studies have focussed on neutrophils and their 
interactions with ANCA in the pathogenesis of disease, mono-
cytes may also play a role in mediating AAV. Monocytes express 
ANCA antigens, and stimulation of monocytes in vitro with 
ANCA leads to cytokine production and generation of ROS50,51. 
Monocytes from patients with AAV have been shown to express 
higher levels of CD14, the LPS receptor, than monocytes 
from patients in remission or healthy controls, suggesting an 
increased cell activation state in patients with AAV52. Circulating  
monocytes from patients with active AAV have also been shown 
to express higher levels of cell surface markers which are essen-
tial for interaction between leucocytes and the endothelium53. 
Recent studies have shown that monocytes and macrophages 
are the predominant cells in glomeruli in renal biopsies from 
patients with AAV54,55. In one study using the passive transfer 
model of mouse anti-MPO AAV, depleting monocytes decreased  
glomerular crescent formation but had no effect on urinary  
abnormalities56.

Complement and AAV
There is increasing evidence for a role for complement in the 
pathogenesis of AAV. In the antibody transfer model of mouse 
anti-MPO AAV, mice deficient in C5 or those depleted of com-
plement by pre-treatment with cobra venom did not develop  
disease. C4-deficient mice were not protected, suggesting a 
role for the alternative rather than the classic pathway57. Mice  
deficient in C5aR are protected from disease, and mice with 
knock-in of the human C5a receptor treated with an antagonist 
of human C5aR (CCX168; avacopan) showed decreased disease 
severity58,59. There is also evidence for a role for complement 
from in vitro studies; C5a can prime neutrophils to respond to 
stimulation by ANCA, and this may be due to its actions at the  
C5aR42. The interaction of C5a with its other receptor, C5L2, 
is more complex, and some studies report that it has a pro- 
inflammatory role in vitro but knockout of C5L2 resulted in 
more-severe disease in mouse anti-MPO AAV59,60. It has also 
been shown that both ANCA-stimulated neutrophils and NETs 
can activate the alternative pathway of the complement system, 
leading to a positive feedback loop47,57. There is evidence 
of complement deposition, such as C3d and factor B, at 
sites of tissue inflammation in patients with AAV and kid-
ney deposition of Bb (a marker of activation of the alternative  
pathway) correlated with pathological severity of disease61. 
Plasma levels of C3a, C5a, soluble C5b-9, and Bb were higher 
in patients with active AAV than in those in remission62,63. In 
one study, patients with lower circulating C3 levels were shown 
to have poorer outcomes in terms of both patient and renal  
survival64. Blockade of C5 cleavage with eculizumab has been 
reported as treatment for AAV in one case report. It was used as 
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add-on therapy to cyclophosphamide with good renal recovery, 
although unfortunately the patient developed non-Hodgkin lym-
phoma, thought to be unrelated to the eculizumab, and died from  
sepsis following chemotherapy65. A recently published phase 
II trial has shown that avacopan was effective in replacing 
high-dose glucocorticoids for induction of remission when 
added to cyclophosphamide or rituximab66. A phase III trial of 
this treatment approach is currently recruiting (ADVOCATE,  
ClinicalTrials.gov Identifier: NCT02994927).

B cells and AAV
B cells have a central role in AAV in that they produce ANCA, 
and levels of activated B cells have been shown to correlate 
with disease activity67. Depletion of B cells with rituximab 
has been shown to be effective in inducing and maintaining  
disease remission28,29. The return of B cells after rituximab may 
predict relapse of AAV, and it has been shown that following 
induction of remission with rituximab and cyclophosphamide, 
the return of B cells has a high negative predictive value for 
relapse but a poor positive predictive value68,69. It may be that the  
phenotype of the repopulating B cells is important in predicting 
relapse, and one study suggested that those who repopulate 
with a low percentage of CD5+ B cells have a shorter time to 
relapse70. Several studies have shown differences in B-cell  
subsets between patients with AAV and healthy controls. One 
study reported a memory B-cell subset with higher CD19 expres-
sion in patients with AAV, suggesting that these may repre-
sent autoreactive B cells71. Regulatory B (B

reg
) cells skew T-cell  

differentiation towards regulatory T (T
reg

) cells and away from T 
helper 1 (T

H1
) and T

H17
 phenotypes and decrease B cells which 

are producing ANCA72. Several studies have shown decreased 
B

reg
 cells in patients with AAV as defined by cell surface mark-

ers such as CD5, CD24, and CD3873,74. In vitro, neutrophils  
stimulated with ANCA release B-cell survival factors such as 
B lymphocyte stimulator (BLyS) and a proliferation-inducing 
ligand (APRIL). In one study, incubating B cells with superna-
tant from ANCA-stimulated neutrophils or with recombinant 
BLyS resulted in increased B-cell survival75. Several studies 
have reported higher levels of BLyS in patients with AAV, and 
some have shown that levels correlated with disease activity and  
ANCA titre and decreased following treatment76,77. Follow-
ing rituximab treatment, serum BLyS levels have been shown 
to increase both in patients with AAV and in patients with other 
auto-immune diseases75,78. One study has shown that a SNP 
in BLyS predicted which patients were more likely to relapse  
following rituximab and had earlier return of B cells after treat-
ment. The authors suggest that this SNP may result in higher 
baseline BLyS or increase in BLyS after B-cell depletion79. This 
may suggest a potential role for targeting BLyS as maintenance 
treatment of AAV following induction treatment with rituxi-
mab. A phase III trial which added anti-BLyS treatment with  
belimumab to azathioprine and steroids for maintenance of 
remission did not show any reduction in risk of relapse; how-
ever, in the subgroup of patients who received rituximab as an  
induction agent, belimumab did reduce relapse rate, although this 
was not significant80.

T-cell immunity and AAV
T cells are present in glomeruli and the tubulointerstitium in 
renal biopsy tissue from patients with AAV, suggesting that  
T-cell responses are pathogenic. Studies have shown that patients 

with AAV have defective T
reg

 cell suppressive function81; one 
study has also shown increased frequency of a CD4+ T-cell  
subset that is resistant to the suppressor effects of T

reg
 cells82. In 

a small group of patients, anti-thymocyte globulin was used 
as a successful treatment for refractory GPA83. Additionally, 
differential T

H
 cell polarisation has been described in AAV,  

such that patients with active and systemic disease are more  
likely to have a T

H2
 response84.

In the mouse passive transfer model of anti-MPO AAV, CD4+ T 
cells have been used to transfer disease, demonstrating a role 
for T cells in pathogenesis. Mice pre-immunised with CD4+ T 
cells from MPO-immunised, B-cell-deficient, MPO-deficient 
mice developed greater severity of GN after induction of disease 
with MPO-ANCA compared with mice immunised with OVA-
sensitised CD4+ cells85. In a model of anti-MPO AAV in which  
mice are immunised with MPO followed by a subnephritogenic 
dose of anti-GBM globulin, depletion of CD4+ cells decreased 
disease severity with no effect on ANCA titres86. This model 
of disease has been used to identify pathogenic epitopes for  
both CD4+ and CD8+ T cells, and these epitopes have been used  
to induce disease87,88.

The T
H17

 axis may also be involved in the development of 
ANCA; serum interleukin-23 (IL-23) and IL-17 are raised in 
the serum of patients with acute AAV, and in one study IL-23 
levels correlated with disease activity89. IL-23 induces T-cell  
differentiation into the T

H17
 subset and enhances the produc-

tion of IL-17 from these cells. Stimulation of neutrophils by 
ANCA has been shown to induce the production of IL-1790, and 
in one study IL-17-deficient mice were protected from MPO- 
ANCA-induced disease91.

Granuloma formation
Granulomatous disease is frequently seen in isolated and  
systemic GPA. Early granuloma formation is typified by acti-
vated neutrophils forming micro-abscesses and only scattered 
multinucleated giant cells. Later granulomas consist of a  
central necrotic area with multinucleated giant cells at the margin 
and surrounding dendritic cells, T lymphocytes, B lymphocytes, 
and plasma cells forming a follicular structure of ectopic lym-
phoid tissue92,93. The mechanisms initiating granuloma formation 
have not been fully identified, but there is some evidence 
that granulomatous inflammation is being driven by T cells  
producing T

H1
 cytokines94. It has also been shown that APRIL 

and BLyS are present in granulomas along with activated B 
cells, leading some authors to suggest that close association of 
B cells with PR3-positive cells within granulomas could lead 
to initiation or maintenance of anti-PR3 responses95. In an in 
vivo model of xenografted nasal mucosa from patients with  
GPA to mice, tissue damage was shown to be mediated by  
fibroblasts96.

Conclusions
The pathogenesis of AAV is complex and remains incom-
pletely understood. Recent advances have been made in our 
understanding of the mechanisms of both the development of  
auto-immunity and inflammation leading to tissue damage. Our 
understanding of the generation of the auto-immune response 
is incomplete but may well involve molecular mimicry and  
dysregulation of both B and T cells. There is substantial evidence 
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for the pathogenicity of ANCA, and neutrophils are both the  
target of ANCA and mediators of endothelial injury. NETs in 
particular have been shown to mediate tissue damage but also 
could be involved in the loss of tolerance to ANCA. Advances 
in understanding the role of the alternative pathway of the  
complement system in AAV have led to clinical trials of novel  
therapeutic agents. Further understanding of the mechanisms of 
disease may lead to the use of other novel therapeutics such as  
molecules to block NETosis, BLyS inhibitors, or monoclonal  
antibodies against IL-17 or IL-23.
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