
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:12846  | https://doi.org/10.1038/s41598-020-69640-5

www.nature.com/scientificreports

Parallel residual projection: a new 
paradigm for solving linear inverse 
problems
Wei Miao, Vignesh Narayanan   & Jr‑Shin Li*

A grand challenge to solve a large-scale linear inverse problem (LIP) is to retain computational 
efficiency and accuracy regardless of the growth of the problem size. Despite the plenitude of methods 
available for solving LIPs,  various challenges have emerged in recent times due to the sheer volume 
of data, inadequate computational resources to handle an oversized problem, security and privacy 
concerns, and the interest in the associated incremental or decremental problems. Removing these 
barriers requires a holistic upgrade of the existing methods to be computationally efficient, tractable, 
and equipped with scalable features. We, therefore, develop the parallel residual projection (PRP), a 
parallel computational framework involving the decomposition of a large-scale LIP into sub-problems 
of low complexity and the fusion of the sub-problem solutions to form the solution to the original LIP. 
We analyze the convergence properties of the PRP and accentuate its benefits through its application 
to complex problems of network inference and gravimetric survey. We show that any existing 
algorithm for solving an LIP can be integrated into the PRP framework and used to solve the sub-
problems while handling the prevailing challenges.

Background
A wide variety of commonly encountered model-based or data-driven problems in scientific computing, across 
diverse fields, such as recovering the dynamic topology of complex networks from measured data1,2, image 
reconstruction3, data-driven discovery of ordinary4,5 and partial differential equations4–6, seismic tomography7, 
and gravimetric survey8,9, can ultimately be posed as a linear inverse problem (LIP). Accentuated by the myriad 
application domains, methods to solve the LIP have been extensively developed over the past several decades. A 
menu of algorithms, which can be broadly classified into direct and iterative methods, is available. Representative 
direct methods include the algorithms invented based on linear algebra, such as the Gaussian elimination, LU 
factorization10, and the truncated singular value decomposition11, or sparse optimization, such as the renowned 
compressed sensing12–14, for directly calculating the solution at once. On the other hand, iterative methods such 
as the Kaczmarz15, coordinate descent16, iterative shrinkage-thresholding (IST)17,18, and conjugate gradient-
based19,20 algorithms, are tailored to improve computational efficiency by using recursive update rules to reach 
a convergent solution.

With the advent of big data, there has been a growing interest in developing algorithms that can be imple-
mented on a distributed computational platform21. In many emerging applications, the abundance of data gen-
erated during scientific experiments leads to an exaggeratedly oversized LIP. For example, in the problem of 
inferring the dynamic topology of a complex network2 composed of 5,000 nodes given a time-series data of 
1,000,000 sampling points (observations), the regression matrix A (corresponding to one of the 5,000 associated 
LIPs) alone will occupy 5,000× 1,000,000× 8 bytes(40 GB) storage space (if stored in double-precision format), 
let alone the discussions of computational issues. To handle such large volumes of data, distributed computational 
methods were extensively proposed, allowing the implementation of aforementioned algorithms on a distributed 
platform for parallel computation21–23,25.

Although one may claim victory on these developments, most of the existing computational methods were 
invented to tackle the LIP with a well-defined dimension, but not specifically tailored to be adaptive and scal-
able towards solving the associated incremental or decremental problems (see Supplementary Information, 
Section S.1). Also, besides storage management, the computational resources required to accommodate a giant 
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problem are far beyond the capability of ubiquitous low-end computing devices. For example, an exploratory 
rover on an extraterrestrial surface may require solving a large-scale LIP associated with seismic tomography 
or gravimetric survey while navigating in an uncertain environment with a limited computing memory bank. 
Therefore, an efficient computational resources utilization strategy is desired to solve the LIP in resource-con-
strained applications.

The conventional practice to remove the impediment due to limited computing resources is to employ a 
cluster of high-end servers. Distributed algorithms such as consensus-based optimization22,23,26, and distributed 
iterative algorithms21 were developed in an attempt to handle oversized linear systems of equations on distrib-
uted computing platforms. However, in addition to the tremendous cost, complete information of either the 
regression matrix or the solution vector is required to be passed to an external device (cloud-server or a cluster 
of servers), which may potentially trigger security concerns and privacy issues27,28, especially in applications 
involving sensitive information, such as financial records for business, individually identifiable health informa-
tion, or in defense sectors.

Apart from voluminous data and limited computational resources, another frequently experienced and 
essential challenge arising from many applications that involve solving an LIP is the variability in the size of the 
problem. This happens when, for example, additional unknown variables are introduced or existing ones are 
removed. These “local” changes lead to an incremental or a decremental problem with the size of the original 
problem expanded or reduced, respectively. Specifically, consider the LIP,

where A ∈ R
m×n is the regression map, b ∈ R

m is the vector of observations, and x ∈ R
n is the vector of unknown 

variables (unknown coordinates). In this problem, the addition or deletion of unknown variables leads to a 
change in the number of columns (i.e., n) of A; analogously, the inclusion of additional observations as more 
data become available or deletion of outliers due to measurement error/noise increases or decreases the number 
of rows (i.e., m) of A, respectively. For instance, in the experiments involving a gravimetric survey to study the 
density of the underground geology and surrounding terrain8, 9, adding/removing hypothetical subterranean 
mass is frequently encountered, which corresponds to adding/deleting columns of A in the associated LIP. In the 
context of network inference2, the size of the matrix A in the LIP (1) is determined by the available observation 
data points m and the number of nodes N through the relation n = (u+ 1)+ (v + 1)(N − 1) , where u, v are 
the numbers of the spectral approximation terms representing the network dynamics (see Fig. 1). As a result, 
when a single node is added to or removed from the network, the updated LIP, with v + 1 columns added or 
removed, has to be re-solved.

In this context, solving a large-scale problem modeled as an LIP in (1) is admittedly cumbersome, which may 
cost hours, even days, in many cases. On top of this, the challenges arising from sheer volume of data, inadequate 
computational resources, security and privacy concerns, and the variability in the size of the LIP inspire a com-
pelling need for developing a systematic and adaptive strategy to not only solve massive LIPs but also update the 
solution to the related incremental or decremental problems to avoid gratuitous computational time and cost.

One fundamental approach to tackle a problem of huge size is to decompose the problem into smaller, easily 
tractable sub-problems, and then develop a strategy that utilizes the solutions of the sub-problems to arrive at the 
solution or an approximate solution of the original problem. Such an approach involving decomposition and fusion 
is the inception of the distributed optimization algorithms21–25,29. However, these algorithms were not catered to 
address issues related to security and privacy concerns, and not equipped with the capability to solve for incremental 
or decremental problems through adaptive updates of the current solution in a computationally efficient manner.

In this work, inspired by the randomized coordinate descent and the randomized Kaczmarz algorithms30,31, we 
propose a universal computational framework compatible with any existing method, called the Parallel Residual 
Projection (PRP), which enables a distributed, parallel computation of the solution to an exaggeratedly oversized 
LIP. Specifically, the PRP decomposes a given LIP into multiple linear inverse sub-problems of much smaller 
size and complexity. These sub-problems are then solved independently in multiple stages, in a decentralized 
manner. The solutions of these sub-problems are then fused by the proposed update strategy so as to converge 
to the solution of the original problem. Such decomposition into sub-problems breaks through the limitation 
of computational resources and, moreover, provides a tractable procedure that returns a solution at an arbitrary 
accuracy. Most importantly, equipped with an appropriate iterative method for solving the sub-problems, the 
PRP can be contrived to tackle the incremental or decremental problems in a computationally efficient manner, 
and can be shown to be a powerful, adaptive, and scalable method.

Methods
The PRP algorithm begins by partitioning the regression matrix A into column blocks such that A = [A1, . . . ,Ap] , 
where Ai ∈ R

m×di with 
∑p

i=1 di = n . Each of these partitioned matrices can be considered as the data stored in p 
computing agents (see Fig. 1). The solution vector x is in turn decomposed into X̂1, . . . , X̂p where X̂i ∈ R

di , and 
the observation vector b is represented as b =

∑p
i=1 bi , where bi ∈ R

m . Initializing with R(0)
i = bi for i = 1, . . . , p , 

the p intermediate sub-problems of the form AiδX
(k)
i = R

(k)
i  are solved in parallel by p agents, where k denotes 

the stage number and δX(k)
i  denotes the vector of unknown variables of the ith sub-problem. We denote the 

solution of the ith sub-problem along with the associated residual as the pair (δ̂Xi
(k)
, R̂

(k)
i ) , and the total residual 

after the kth stage as R̂(k) =
∑p

i=1 R̂
(k)
i  . Then, the update rule for the solution and the residual to the LIP in (1), 

at the (k + 1)th stage, is given by

(1)Ax = b,
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with X̂(0)
i = 0 , where wi ∈ (0, 1) , i = 1, . . . , p and 

∑p
i=1 wi = 1.

Geometrically speaking, the PRP can be understood as an iterative projection of the residual components on 
the column-space of the regression matrix in multiple stages. Specifically, at each stage, the residual is divided 
and distributed to p agents, and these residual parts are projected onto the corresponding column-subspaces of 
the matrix A simultaneously. At the end of each stage, the residuals are collected and used for the reinitialization 
of the next stage using the update rule in (2). Following this procedure, the individual residual corresponding 
to each sub-problem that is not orthogonal to the subspaces of other sub-problems, is carried forward to the 
next stage, and is projected onto each column-subspace in the subsequent stages. As a result, the total residual 
R̂(k) asymptotically becomes orthogonal to all columns of the regression matrix as k goes to infinity, which cor-
responds to the minimal residual of the LIP and leads to the least-squares solution for the LIP in (1) (see Sup-
plementary Information, Section S.2).

(2)X̂
(k+1)
i = X̂

(k)
i + δ̂Xi

(k)
, R

(k+1)
i = wiR̂

(k), i = 1, . . . , p,

Figure 1.   The PRP algorithm decomposes solving the linear inverse problem into p linear inverse sub-
problems, solutions of which can be then fused to obtain the least squares solution of Ax = b . For instance, 
in a network inference problem shown in (a), inferring the connections from a specific node (shown as the 
blue node) based on its time series observations hj(t) can be formulated as an inverse problem Ax = b as 
demonstrated in (b). Here l(·), s(·) correspond to the columns of A, r(·)j , k

(·)
ji  correspond to the unknowns x, and 

ḣj(t) correspond to the observations b. Then as illustrated in (c), sub-problems are dispatched to several agents, 
where each agent infers connections between the target node and a cluster of the remaining nodes [shown as 
red, green and yellow nodes in (a)]. In this sense, the regression matrix A is partitioned into column blocks 
A1, . . . ,Ap that are distributedly stored in p computing agents. These p agents solve p sub-problems taking the 
form AiδXi = R

(k)
i  in parallel, where R(0)

i  is initialized by decomposing observations b into b1, . . . , bp satisfying 
b =

∑p
i=1 bi . By updating the intermediate solutions and the residuals X̂(k)

i , R̂
(k)
i  with a centralized computing 

device, and re-initializing the p sub-problems, the least squares solution and the minimum residual, X̂ and R̂ , of 
Ax = b are acquired in (d). The solution X̂ indicates the estimation of coupling strengths between the blue node 
and the other nodes, which is accessible only to one computing device.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:12846  | https://doi.org/10.1038/s41598-020-69640-5

www.nature.com/scientificreports/

In practice, such a decomposition procedure enables an integration of all available computational resources 
at the user’s disposal into the PRP framework for solving the LIP in (1). For instance, to solve an LIP when m is 
1,000,000 and n is 5,000 (occupying 40 GB in MATLAB) by utilizing a few desktops, say 10, with 8 GB memory 
each, the PRP distributes this problem in such a way that each of the computing devices is required to handle a 
feasible sub-problem of the size 1,000,000 by 500 (taking 4 GB memory). Similarly, when multiple cloud-servers 
are available, each server needs to have access to only one column block of the regression matrix, and have access 
only to the intermediate solution at the end of each stage. As a result, neither the complete input information, 
say A, b, nor the final solution, say x, is available to any of the cloud-servers, offsetting any security and privacy 
concerns.

In addition to the advantages mentioned above, a key attribute of the PRP, coming from its simple geometric 
interpretation, is that the algorithm converges regardless of how the matrix A is partitioned and which method 
is adopted to solve the p sub-problems (see Supplementary Information, Section S.2, Theorem S.1). Therefore, 
even if the decomposition results in a sub-problem with a large matrix that cannot be handled by a single 
computing agent, existing parallel computing methods, such as the distributed Kaczmarz algorithms7, can be 
employed to further break-down the sub-problems. Alternatively, when applicable, any of the direct methods 
can be used to compute the least-squares solution for the sub-problems. Notably, it can be established that the 
intermediate solution X̂(k) and the residual R̂(k) converge to the least-squares solution and the minimum residual 
exponentially with respect to the stage number k, respectively. Furthermore, the number of stages required to 
achieve the desired accuracy can be computed irrespective of the methods used to solve the sub-problems (see 
Supplementary Information, Section S.2, Theorem S.2).

A particular iterative method for solving the sub-problems is the randomized residual projection (RRP) algo-
rithm (see Supplementary Information, Section S.3). Using the RRP algorithm within the PRP framework, we 
are able to not only quantify the relationship between ‘the initial residual’ and ‘the number of iterations required 
for achieving a prescribed accuracy’ (see Supplementary Information, Section S.3, Theorems S.3, S.4, and S.5), 
but also provide an explicit, adaptive update rule toward finding solutions to the incremental or decremental 
problems. In this process, we also develop the parallelized RRP (PRRP), which was not addressed in the litera-
ture (see Supplementary Information, Section S.5). Most importantly, the utilization of the PRRP enables the 
PRP to be a ‘scalable’ method, by which the solutions to the related incremental or decremental problems can be 
found within a guaranteed number of iterations, which requires much less computational time and complexity 
compared to re-solving them (see Supplementary Information, Sections S.4.1 and S.4.2). In particular, when 
RRP is parallelized by the PRP framework, if the partitions of A satisfy the condition,

the computational time required to complete one stage of the PRP (i.e., to reduce the total residual R̂(k) to R̂(k+1) ) 
is less than the time needed when the RRP is directly applied (see Supplementary Information, Section S.5, 
Theorem S.6).

Results
In this section, we present several numerical experiments to demonstrate the flexibility of the proposed PRP 
framework to solve large-scale LIPs and its application to network topology inference and gravimetric survey. 
All the numerical experiments were implemented on a single workstation with Xeon Gold 6144 (24.75M Cache, 
3.5 GHz), 192 GB memory.

Example 1: Performance analysis of PRP We first present simulation results on the running time of the PRP 
algorithm. In particular, we generated A as a random matrix of dimension 100,000× 50,000 ( ≈ 40 GB memory 
storage in MATLAB). Each element of A was selected as a random number under a uniform distribution on 
[0, 1]. A sparse vector z of dimension 50,000× 1 was then generated which consisted of 99% of elements as 0’s, 
and 1’s as the remaining elements. The vector of observations b was generated by b = Az + ω , where ω was set 
as a 100,000× 1 random vector with elements uniformly distributed in [0, 0.2].

We used the PRP algorithm to solve this LIP and recorded the convergence behavior of the residuals for vari-
ous partition sizes. The main results are displayed in Fig. 2 (see also Supplementary Information, Section S.6.1). 
Figure 2a depicts the convergence of the residual with respect to the number of stages k. Figure 2b displays the 
cumulative time to shrink the total residual to a desired threshold for various number of partitions p, which 
indicates that finer partitions do not necessarily lead to faster convergence of the algorithm. This is because, in the 
case where finer partitions are defined, although the original LIP is divided into smaller sub-problems that can 
be solved in less time, it requires more stages in order to reduce the total residual to within a desired threshold, 
as evidenced in Fig. 2a. To see how the parallel framework of the PRP accelerates the solving of a large-scale LIP, 
we provide a comparison between the RRP algorithm and the PRRP algorithm with p = 2 in Fig. 2c. We specifi-
cally varied the size of the matrix A and solved the resulting LIPs using the RRP algorithm and the proposed 
PRRP algorithm. For each of the LIPs, we recorded the number of iterations required to bring the residual error 
within a threshold defined by ǫ = 1× 10−4 using the RRP algorithm (see Algorithm S.2 in Supplemental Mate-
rial). Similarly, for the PRRP algorithm, we recorded the cumulative number of iterations required to achieve 
a total residual error satisfying �R̂�2 < 1× 10−4 , where this number was computed by adding the number of 
iterations in each of the sub-problems. We observed from Fig. 2c that due to the parallelization of computations, 
the PRRP algorithm required around 50% fewer iterations to reach the desired accuracy compared with the use 
of the RRP algorithm.

(3)max
i∈{1,...,p}

∥∥wiAi(A
′
iAi)

−1A′
iR̂

(k)
∥∥
2
≤

∥∥
p∑

i=1

wiAi(A
′
iAi)

−1A′
iR̂

(k)
∥∥
2
,
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Example 2: Network inference To accentuate the effectiveness of the PRP framework, we present an emerging 
application in network inference1, 2. We consider a complex network constituted by a large number of structurally 
identical dynamical units that interact with each other. An essential objective of the network inference problem 
is to find out time-varying interactions between units, and to identify the significant connections/couplings to 
recover the network topology, using the time-series data of each node in the network (see Fig. 1). For a network 
with N nodes, the inference can be encoded into N LIPs2. Since the ultimate goal is to decode the coupling topol-
ogy, it is imperative to not only effectively solve the corresponding large-scale LIP, but also have the flexibility 
to track the accuracy of the solution and terminate the algorithm when a desired accuracy is met. Such an early 
termination helps recover network topology swiftly, in particular, in terms of identifying dominating nodes 
that govern the network dynamics (see Supplementary Information, Section S.6.2). It is also a key feature of the 
PRP that new estimates of the network topology can be adaptively updated based on the current estimate when 
more observations become available or when the network is expanded or reduced due to addition or deletion 
of nodes, respectively.

In our numerical experiment, we generated a synthetic network of Kuramoto oscillators33. In particular, we 
defined a small-world network based on Watts–Strogatz model32, which was used to characterize the coupling 
topology of the Kuramoto oscillator network. The total number of nodes was fixed as 300. We considered two 
cases corresponding to a dense and a sparse network. We then generated time-series data with 600,000 data 
points from each of the 300 nodes. The problem of inferring the topology of this network was then mapped into 
300 LIPs2, each with a regression matrix of size 600,000× 300 . The detailed parameterization of the oscillator 
network and the formulation of this network inference problem into LIPs are provided in the Supplementary 
Information, Section S.6.2.

The estimation results regarding the strength of the interaction between two nodes for both dense and sparse 
network, across different number of stages, are presented in Figs. 3 and 4. The topology of the recovered dense 
and sparse networks of 300 nodes given 600,000 data points are reported in Fig. 5a, b, respectively. The results 
of the recovered topology after the PRP algorithm was terminated (450 stages for the dense network and 100 
stages for the sparse network) are visualized in Fig. 5c, d and Table 1. It can be observed that for the dense net-
work, after 450 stages of the PRP algorithm, 5,352 out of the 5,672 strong connections were correctly identified, 
while the remaining 320 were inferred as weak connections, yielding a 94.3% accuracy to the network topology 
recovery; while for the sparse network, the recovery attained 100% accuracy after 100 stages of PRP algorithm.

Example 3: Gravimetric survey To illustrate the scalability of the PRP and its flexibility to handle incremental/
decremental problems associated with an LIP, we present an application example using a gravimetric survey 
experiment. In geophysics, due to the inhomogeneity of lithology in the subsurface of the Earth, the gravity 
measured on the surface varies across different locations. Such perturbations on the gravitational field can be 
used to infer the mineralogical composition underground, which is formulated as LIPs based on the observed 
data8, 34. Here, we consider the problem of detecting large masses in the subsurface using the measured gravi-
tational field, which can be encoded into an LIP. We demonstrate the flexibility of the PRP algorithm to solve 
this LIP. In particular, we observe that detecting additional mass and re-computing mass distribution in this 
application can be formulated as incremental/decremental problems. We generated a 2-D example for illustrating 
a gravimetric survey experiment (see Fig. 6a).

In the example, we considered a gravimetric survey experiment with 20,000 gravimeters to detect the exist-
ence of 10,000 unknown masses, as depicted in Fig. 6b. Suppose the locations and masses of 9,999 objects are 

0 50 100 150
0

500

1000

1500

2000
p = 4
p = 10
p = 20
p = 50
p = 100

(a)
2 4 10 20 50 100 200 500

0

0.4

0.8

1.2

(b)
0 2000 4000 6000 8000 10000

0

0.5

1

1.5

2
107

RRP
PRRP

(c)

Figure 2.   A random matrix A of dimension 100,000× 50,000 was generated ( ≈ 40 GB memory storage in 
MATLAB), where each element of A was selected as a random number under a uniform distribution on [0, 1]. A 
sparse vector z of dimension 50,000× 1 was then generated in which 99% of the elements were set as 0, and the 
remaining elements were set as 1. The vector of observations, denoted as b, was defined as b = Az + ω , where ω 
was chosen as a 100,000× 1 random vector with elements uniformly distributed in [0, 0.2]. The PRP algorithm, 
where sub-problems are solved by directly computing the pseudo-inverse of Ai , was applied to solve the linear 
inverse problem Ax = b . (a) Residuals at different stages (of the PRP algorithm) when various numbers of 
agents were used to solve the sub-problems, where the matrix A of size 100,000× 50,000 was partitioned into 
blocks of p columns of size 100,000× 50,000/p in each case. (b) Convergence time (in s) when the total residual 
becomes smaller than 0.5% of the initial residual using the PRP algorithm with various number of partitions p. 
(c) Number of iterations required to achieve a residual error ǫ < 1× 10−4 when using the RRP and the PRRP 
(with p = 2 ) algorithms to solve the LIPs with different sizes of the matirx A.
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Figure 3.   (a) Original topology of dense Kuramoto oscillator network indicating if the connections are 
either strong or weak. Each point indicates whether two nodes are strongly or weakly coupled. (b–g) Network 
topology recovered using the PRP algorithm after 10, 50, 100, 200, 300, 450 stages.

Figure 4.   (a) Original topology of a sparse Kuramoto oscillator network. (b–e) Coupling strengths estimated 
for the sparse network using the PRP algorithm after 10, 30, 50, and 100 stages.
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Figure 5.   The Watts–Strogatz network model was used to generate a sparse Kuramoto oscillator network with 
N = 300,K = 10,β = 0.3 ; and N = 300,K = 20,β = 0.3 for a dense network. The frequency of Kuramoto 
oscillator was uniformly distributed in [5, 10]. The coupling strength was uniformly distributed in [0.4, 0.6] for 
a strong coupling; for a weak coupling, the coupling strength was set to 0 in the sparse network and 0.2 in the 
dense network. (a) Topology recovered for dense network after 450 stage using the PRP algorithm; true positive 
indicates a strong coupling recovered as strong one; false negative means a strong coupling recovered as weak 
one; false positive implies a weak coupling recovered as strong one; nodes without connections are considered 
as weakly coupled. (b) Topology recovered for sparse network after 100 stages using PRP the algorithm. (c) 
Degree histograms for the original and the estimated network after 450 stages for the dense Kuramoto oscillator 
network. Normalized Wasserstein distance of two histogram is 5.8× 10−3 . (d) Degree histograms for the 
original and the estimated network after 100 stages for the sparse network. Normalized Wasserstein distance of 
two histogram is 0, which indicates the network topology was perfectly recovered.

Table 1.   Topology recovered for dense (after 450 stages) and sparse network (after 100 stages) using the PRP 
algorithm.

Original

Recovered

Strong Weak

Dense network

Strong 5352 320

Weak 80 84,248

Sparse network

Strong 3000 0

Weak 0 87,000



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:12846  | https://doi.org/10.1038/s41598-020-69640-5

www.nature.com/scientificreports/

already known. Then the estimation of the remaining object’s mass becomes an incremental LIP problem that 
requires solving an LIP of size 20,000× 10,000 , which cost 181.33 s when it was solved as a new problem using 
the PRP. However, it only consumed 9.8036 s for the PRRP algorithm (with p = 2 ) to provide a solution when 
this incremental problem was adaptively updated using the existing solution corresponding to the LIP with 9,999 
known objects, which significantly reduced the computations. The implementation details and analysis for this 
example are provided in the Supplementary Information, Section S.6.3.

Discussion
To summarize, we develop a parallel computational framework for solving large-scale LIPs and demonstrated 
its efficacy and flexibility using numerical examples from diverse scientific fields. In the following, we discuss 
some important features of the PRP algorithm, the design choices for implementing the PRP and their associated 
trade-offs, and how we deal with them in our numerical experiments.

The PRP algorithm reduces the computational resource required to solve a large-scale LIP by decomposing 
the given LIP into sub-problems and then fusing the solutions of these sub-problems using the proposed update 
rule in (2) to compute the solution of the given LIP. This is done by partitioning the matrix A into several column 
blocks A1, . . . ,Ap . Then each block Ai , i = 1, . . . , p , is distributed to a computing agent to solve a smaller LIP 
associated with Ai . As illustrated through Example 1, finer partitions do not necessarily lead to faster convergence 
(see Fig. 2). The number of partitions and the size of each partition are design choices. We do not provide rules 
on how to partition A in order to achieve the ‘best’ performance since no computing agent has full-information 
of A. In our experiments, we empirically chose p and then evenly divided the columns of A into p column blocks. 
In addition to the partition of A, one needs to select the weights, i.e., wi , of the residual for each sub-problem 
in order to compute the residual for the next stage using the update rule in (2). It is worthwhile to mention that 
the choice of wi ’s will influence the speed of convergence up to a constant factor (see (S.21) in Supplementary 
Information). The optimal choice of wi ’s yielding the fastest convergence cannot be obtained without calculating 
the eigen-decomposition of A. Therefore, in our numerical implementation, we picked wi =

1
p , i = 1, . . . , p , as 

we have proved that the sequence of residuals {R̂(k)} computed by (2) converges to the minimal residual of the 
original LIP exponentially regardless the choice of wi ’s (see Section S.2 in Supplementary Information). We also 
show that equipped with the RRP algorithm, the PRP framework is upgraded to the PRRP algorithm, which 
reduces the time needed to solve a large-scale LIP by parallelizing the RRP algorithm. Moreover, we show that the 
PRRP algorithm efficiently handles the incremental/decremental problems associated with an LIP. In particular, 
we provide a sufficient condition in (3) guaranteeing that PRRP expedites the process of solving the incremental/
decremental problems, compared with the RRP algorithm. We also observe that the sufficient condition in (3) 
was satisfied in most of our experiments, though a rigorous guideline on how to choose the partitions Ai that 
satisfy this sufficient condition is not provided due to the computational intractability.

Conclusions
A seemingly inconspicuous problem like the LIP has a significant impact on scientific computing. Notwithstand-
ing the plenitude of methods available for solving an LIP, several new challenges have emerged due to sheer vol-
ume of data, inadequate computational resources, security and privacy concerns, and the prevalence of relevant 
incremental/decremental problems. Inevitably, given such constraints, scalable, and distributed algorithms for 
solving exaggerated LIPs are much sought after. The pliability of the PRP framework enables the integration and 

Gravimeter

Unknown mass

Sensor
Unknown mass
Additional location

(b)(a)

Figure 6.   (a) Demonstration of estimating unknown masses in the subsurface using gravimeters. Suppose 
there are five objects (shown in the dashed block) whose locations and an estimate of their masses are known 
apriori, and if an additional object is detected, then estimating the masses all six objects can be formulated as 
an incremental problem. Alternatively, if one of the objects is proved to be absent, estimating the remaining 
four masses can be formulated as decremental problem. (b) Locations of gravimeters and unknown masses in 
the numerical experiments. Red circles indicate location of gravimeters, which are uniformly distributed on the 
surface; blue circles show where the unknown masses are in the subsurface; green dot represents the location 
where additional mass is detected. For ease of exposition, only 100 gravimeters and 100 unknown masses are 
shown in this figure.
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expedition of any existing algorithm developed for directly solving a standard LIP. In particular, we show that 
the RRP algorithm, a state-of-the-art iterative algorithm for solving LIPs, can be accelerated in tandem with the 
PRP framework, which saved nearly 50% of the computational time as recorded in our numerical experiments. 
Although rigorous guidelines on how to tailor the parameters in the PRRP algorithm to achieve the best perfor-
mance are not provided due to computational intractability, we propose sufficient conditions that warrant faster 
convergence of this algorithm. We further provide feasible choices of design parameters for implementing the 
proposed PRP algorithm to solve any given large-scale LIP. The applications to complex problems, including 
the network inference and the gravimetric survey (see Sections S.6.2 and S.6.3 in Supplementary Information), 
illustrate the promise of the developed PRP algorithm to be equipped with desirable properties that can confront 
the existing challenges.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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