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Abstract
Many	populations	are	doomed	to	extinction,	but	little	is	known	about	how	evolution	
contributes	 to	 their	 longevity.	We	 address	 this	 by	modeling	 an	 asexual	 population	
consisting	of	genotypes	whose	abundances	change	independently	according	to	a	sys-
tem	of	continuous	branching	diffusions.	Each	genotype	is	characterized	by	its	initial	
abundance,	growth	rate,	and	reproductive	variance.	The	latter	two	components	deter-
mine	the	genotype’s	“risk	function”	which	describes	its	per	capita	probability	of	extinc-
tion	 at	 any	 time.	 We	 derive	 the	 probability	 distribution	 of	 extinction	 times	 for	 a	
polymorphic	population,	which	can	be	expressed	in	terms	of	genotypic	risk	functions.	
We	use	this	to	explore	how	spontaneous	mutation,	abrupt	environmental	change,	or	
population	supplementation	and	removal	affect	the	time	to	extinction.	Results	suggest	
that	 evolution	 based	 on	 new	mutations	 does	 little	 to	 alter	 the	 time	 to	 extinction.	
Abrupt	 environmental	 changes	 that	 affect	 all	 genotypes	 can	have	more	 substantial	
impact,	but,	curiously,	a	beneficial	change	does	more	to	extend	the	lifetime	of	thriving	
than	threatened	populations	of	the	same	initial	abundance.	Our	results	can	be	used	to	
design	policies	that	meet	specific	conservation	goals	or	management	strategies	that	
speed	the	elimination	of	agricultural	pests	or	human	pathogens.
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1  | INTRODUCTION

The	persistence	of	populations	is	so	fundamental	to	ecology	and	evo-
lution	that	 it	 is	normally	taken	as	given.	 Indeed,	 the	central	pursuits	
of	those	fields—understanding	the	distribution,	abundances,	and	char-
acteristics	of	 species—would	be	completely	moot	without	 their	per-
sistence.	In	applied	biology,	however,	the	persistence	of	populations	
is	often	the	paramount	concern.	Indeed,	conservation	biologists	and	
wildlife	managers	seek	ways	to	increase	the	duration	of	target	species,	
and	in	pest	and	disease	management	in	agricultural	and	medical	set-
tings,	a	main	goal	is	to	hasten	the	demise	of	pathogens.

It	is	well	known	that	the	duration	of	a	species	is	largely	determined	
by	the	capacities	of	its	members	to	survive	and	reproduce	and	by	its	
overall	abundance	(MacArthur	&	Wilson,	1967).	Less	is	known	about	

how	 inherent	differences	among	 individuals	of	a	 species	 impact	 the	
longevity	of	 their	populations,	but	much	has	been	 learned	 in	 recent	
years	 because	 of	 the	 growing	 number	 of	 empirical	 and	 theoretical	
studies	 investigating	 the	 combined	 demographic	 and	 evolutionary	
responses	 of	 species	 to	 environmental	 change	 (e.g.,	 Bourne	 et	al.,	
2014;	Schiffers,	Bourne,	Lavergne,	Thuiller,	&	Travis,	2013).

Among	 various	 research	 efforts	 connecting	 diversity	 and	 per-
sistence,	 arguably	 the	most	 developed	 is	 focused	 on	 the	 processes	
behind	“evolutionary	rescue”	(reviewed	in,	e.g.,	Bell,	2012;	Gonzalez,	
Ronce,	Ferriere,	&	Hochberg,	2013).	Evolutionary	 rescue	 refers	 to	a	
declining	population	 that	 is	 saved	 from	extinction	because	of	adap-
tive	evolution.	A	still-	growing	theoretical	 literature	motivated	by	the	
topic	allows	considerable	insight	into	a	how	a	wide	variety	of	genetic	
and	 ecological	 conditions	 factor	 into	 the	 persistence	 or	 extinction	
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of	populations	 (Baskett	&	Gomulkiewicz,	2011;	Gomulkiewicz,	Holt,	
Barfield,	&	Nuismer,	2010;	Orr	&	Unckless,	2014;	Ueker	&	Hermisson,	
2016;	Ueker,	Otto,	&	Hermisson,	2014).	In	addition,	a	substantial	num-
ber	of	experimental	studies	of	evolutionary	rescue	have	both	tested	
components	of	 the	theory	and	explored	additional	mechanisms	that	
might	affect	the	probability	of	extinction	or	rescue	(reviewed	in	Martin,	
Aguilée,	 Ramsayer,	 Kaltz,	 &	 Ronce,	 2013;	 Carlson,	 Cunningham,	 &	
Westley,	2014;	Alexander,	Martin,	Martin,	&	Bonhoeffer,	2014).

Evolutionary	 rescue	 is	 uncertain	 under	most	 circumstances,	 and	
so	the	most	useful	theoretical	studies	predict	probabilities	of	rescue	
for	defined	sets	of	genetic	and	demographic	conditions.	As	rescue	will	
fail	unless	genomes	that	allow	population	persistence	exist	or	come	
into	existence,	these	theoretical	analyses	consider	both	the	extent	to	
which	these	genomes	occur	and	arise	as	well	as	the	stochastic	dynam-
ics	of	their	evolutionary	spread.	This	theory,	in	effect,	focuses	exclu-
sively	on	diametrically	opposed	ultimate	outcomes:	an	adapting	pop-
ulation	that	either	goes	extinct	(failed	rescue)	or	persists	indefinitely	
(successful	rescue).

In	contrast	to	theory,	experimental	studies	of	evolutionary	rescue	
are necessarily restricted to finite	time	horizons	that	may	be	far	shorter	
than	the	duration	of	any	given	population	headed	to	ultimate	extinc-
tion.	This	practical	limitation	prompted	Martin	et	al.	(2013)	to	remark	
“Measuring	the	probability	of	rescue	is	not	that	straightforward.	First,	
one	must	choose	the	time	period	over	which	populations	can	be	said	
to	be	either	doomed	or	rescued.”	Similarly,	conservation	biologists	and	
wildlife	managers	are	often	most	interested	in	practical	questions	of	
how	stressful	conditions	might	affect	the	ability	of	natural	populations	
to	persist	over	prescribed	periods	of	 time	 (decade,	 century,	 etc.).	 In	
agricultural	and	medical	settings,	the	main	concern	is	predicting	how	
pest	management	or	disease	treatment	options	might	impact	the	time	
required	to	eradicate	a	target	pathogen	or	malady.

In	this	theoretical	study,	we	consider	the	antithesis	of	evolutionary	
rescue.	That	 is,	we	seek	a	general	understanding	of	how	abundance	
and	genetic	diversity	in	fitness	impact	longevity	of	populations,	includ-
ing	populations	that	necessarily	are	headed	to	extinction.	We	obtain	
analytical	results	by	deriving	the	probability	distribution	of	extinction	
times	for	a	biologically	simple	stochastic	model	of	population	and	evo-
lutionary	dynamics.	Our	analyses	reveal	not	only	the	relative	 impor-
tance	of	a	population’s	abundance	and	variation	on	 its	duration	but	
also	 the	 extent	 to	which	 genomes	 that	 are	 incapable	 of	 supporting	
permanent	persistence	nonetheless	help	slow	a	population’s	decline	
and	thereby	delay	inevitable	extinction.

2  | MODEL OF A GENETICALLY VARIABLE 
POPULATION AT RISK OF EXTINCTION

Consider	a	polymorphic,	asexually	reproducing	population	with	G	gen-
otypes	(clones).	We	model	the	respective	abundances	of	the	clones,	
X1(t),	X2(t),	…,	XG(t),	 at	 time	 t as G	 independent	 continuous	 branch-
ing	(CB)	diffusions	(e.g.,	Lambert,	2006).	Specifically,	we	assume	the	
dynamics	of	genotype	 i	 are	described	by	a	CB	diffusion	with	 infini-
tesimal mean ai(x)	=	rix	 and	 infinitesimal	variance	bi(x)	=	vix,	 and	 that	

Xi(t)	≥	0	(Feller,	1951b).	This	is	equivalent	to	the	system	of	G stochas-
tic	differential	equations

i	=	1,	…,	G,	 where	W1,	W2,	…,	WG	 are	 independent	 standard	Wiener	
processes.	 The	 parameter	 ri	 is	 called	 the	 per	 capita	 growth	 rate	 or	
“Malthusian	fitness”	of	genotype	i and vi	is	the	per	capita	reproductive	
variance; ri	can	be	positive	or	negative,	whereas	vi > 0.

This	 diffusion	model	 provides	 a	 reasonable	 foundation	 to	 study	
how	 evolution	 affects	 extinction	 times	 for	 at	 least	 two	 reasons.	
First,	 the	 CB	 diffusion	 is	 a	 natural	 stochastic	 extension	 of	 density-	
independent	 population	 growth	 and	 has	 been	 used	 extensively	 to	
model	 demographic	 stochasticity	 in	 population	 ecology	 (e.g.,	 Lande,	
Engen,	&	Saether,	2003).	Second,	as	a	natural	extension	of	discrete-	
time	branching	processes,	the	CB	diffusion	has	also	been	used	in	the-
oretical	population	genetics	to	study	the	fixation	of	genotypes	in	pop-
ulations	with	stochastic	changes	in	size	(Feller,	1951a;	Gillespie,	1974;	
Lambert,	2006;	Martin	et	al.,	2013).	Note,	however,	that	we	here	use	
the	CB	diffusion	autonomously	rather	than	as	an	explicit	approxima-
tion	of	other	stochastic	models	(we	revisit	the	significance	of	this	point	
in	the	Section	4).

The	CB	 diffusion	 suffers	 a	 drawback	 that	 populations	 can	 grow	
without	bound.	Our	 focus,	however,	will	 be	on	populations	 that	 are	
small	or	in	initial	deterministic	decline	and	thus	are	expected	to	be	well	
below	 any	 carrying	 capacity	 or	 other	 population	 ceiling	 imposed	 by	
the	environment.	In	those	situations,	the	CB	diffusion	has	been	shown	
to	provide	a	good	approximation	to	the	dynamics	of	populations	well	
below	 carrying	 capacity	 (e.g.,	 Goel	 &	 Richter-	Dyn,	 1974;	 Parsons	&	
Quince,	2007a,	2007b).	This	limitation	will	also	be	surmounted	by	our	
consideration	of	percentiles	and	conditional	moments	rather	than	sim-
ply	unconditional	moments	of	the	probability	distribution,	which	can	
be	 highly	 sensitive	 to	 relatively	 rare	 but	 extremely	 long	 persistence	
times.

3  | PROBABILITY DISTRIBUTION OF 
EXTINCTION TIME

3.1 | Baseline: Genetically uniform populations

To	establish	a	set	of	baseline	 results	and	expectations,	we	describe	
the	persistence	properties	of	a	genetically	uniform	(“monomorphic”)	
population	with	initial	density	X(0)	=	x whose dynamics are described 
by	the	CB	diffusion	process	(cf.	Lambert,	2006)

Let	T	denote	the	time	of	extinction	and	write

for	probability	of	extinction	by	time	t	given	an	initial	population	size	x,	
where we introduce the shorthand g	=	(r,	v)	to	identify	a	genotype	with	
its	two	per	capita	parameters.	Feller	(1951a;	see	also	Lambert,	2006)	
showed	the	following:

(1)dXi= riXidt+

√
viXidWi,

(2)dX= rXdt+
√
vXdW.

(3)Φ(t; x, g)=P(T≤ t ∣X(0)=x),
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where f(t; g)	is	defined	as	follows:

The	mathematical	form	of	(4a)	is	a	manifestation	of	the	branching	
property	and,	as	0	≤	f(t; g)	≤	1,	the	equation	shows	that	the	probability	
of	extinction	declines	geometrically	with	initial	density	x.

Note	 that	 the	 function	 f(t; g)	 defined	 by	 (4b)	 is	 independent	 of	
the initial density x.	We	will	refer	to	it	as	the	per	capita	risk	function	
for	 genotype	 g	 because	 the	 extinction	 probability	 of	 a	 population	
of	 arbitrary	 size	x	 that	 is	 genetically	 uniform	 for	g	 can	be	 found	by	

raising	f(t; g)	to	the	power	x	(Equation	4a).	Figure	1	shows	example	risk	
functions	for	genotypes	with	different	combinations	of	r and v,	repre-
senting	growing,	declining,	and	stationary	monomorphic	populations.	
Below	we	show	that	per	capita	extinction	risk	functions	are	useful	for	
revealing	effects	of	genetic	variation	on	the	duration	of	populations	
headed	to	extinction.

Let	F(g)	=	limt→∞  f(t; g)	be	the	long-	term	limit	of	the	per	capita	risk	
function.	We	have	from	(4b)

The	asymptotic	probability	of	extinction	of	a	genetically	uniform	
population	with	initial	density	x is F(g)x	(cf.	Lambert,	2006).	Clearly	only	

(4a)Φ(t; x, g)=
[
f(t; g)

]x

(4b)ln f(t; g)=

{
−2r∕

[
v
(
1−e−rt

)]
if r≠0

−2∕(vt) if r=0.

(5)F(g)=

{
1 if r≤0

exp(−2r∕v) if r>0.

F IGURE  1 The	per	capita	probability	of	extinction	for	genotype	g	=	(r,	v)	as	a	function	of	time	t.	Each	panel	plots	per	capita	risk	functions	
f(t; g)	for	different	combinations	of	per	capita	growth	rate	r	and	per	capita	reproductive	variance	v	(Equation	4b).	The	horizontal	dotted	line	in	
the	upper	left	panel	indicates	the	asymptotic	per	capita	probability	of	extinction,	F(g),	for	r	=	0.01	(Equation	5).	Note	that	the	corresponding	
probability	of	extinction	for	a	population	of	density	x	that	is	monomorphic	for	genotype	g is f(t; g)x
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genotypes	with	r	>	0	have	a	nonzero	chance	of	persisting	indefinitely;	
all	others	face	certain	extinction	(Figure	2	inset).

3.1.1 | Mean time to extinction

If	a	monomorphic	population	is	necessarily	headed	to	extinction	(i.e.,	
if	r	≤	0),	the	mean	time	to	reach	a	critically	low	density	c	starting	from	
x	≥	c	can	be	derived	using	standard	diffusion	methods	(Karlin	&	Taylor,	
1981).	Indeed,	if	r	<	0,	this	mean	time	is

where k	=	∣ 2r/v ∣  and E1(a)= ∫
∞

a
t−1e−tdt	 is	 the	 exponential	 integral	

function	 (Abramowitz	 &	 Stegun,	 1972).	 Lande	 (1993)	 derived	 for-
mula	(6a)	assuming	a	CB	diffusion	with	reflecting	upper	boundary	at	x 
and c	=	1.	In	the	limit	as	c	→	0

where γ	=	0.57721…	 is	 the	 Euler–Mascheroni	 constant	 (Figure	2).	
This,	 then,	 is	 the	mean	time	to	extinction	for	populations	 initially	at	
density x.

Using	(6b),	it	can	be	shown	that	for	any	v	>	0,	lim∣r∣→0  M(x,	g)	=	∞.	
This	means	that	while	populations	with	r	=	0	are	necessarily	destined	
for	extinction	(see	Equation	5),	it	takes	indefinitely	long	on	average	for	
them	to	disappear.

If	r	>	0,	the	mean	time	to	extinction	is	infinite	as	a	positive	fraction	
of	populations	are	certain	to	persist	indefinitely.	However,	a	substan-
tial	 fraction	of	populations	with	 r	>	0	can	go	extinct	 (see	Equation	5	
and	Figure	2	inset).	Standard	diffusion	methods	can	be	used	to	show	
that	the	mean	time	to	extinction	of	populations	with	r > 0 conditional 
on	extinction	is	given	by	expression	(6b)	(Figure	2).	Indeed,	it	is	possi-
ble	to	show	that	the	CB	diffusion	with	r	>	0	but	conditioned	on	extinc-
tion	is	itself	a	CB	diffusion	with	r	replaced	by	−r	(e.g.,	Lambert,	2008).	
A	direct	consequence	is	that	the	conditional	distribution	of	extinction	
times	for	r	>	0	is	given	by	(4a)	with	r	replaced	by	−r.

The	 form	 of	 this	 conditional	 distribution	 has	 counter-	intuitive	
implications.	For	example,	the	expected	lifetime	of	a	genetically	uni-
form	population	that	is	destined	for	extinction	despite	having	positive	
r	actually	shrinks	with	increasing	r	(Figure	2).	Intuitively,	this	is	because	
a	 population	with	 high	 r	 can	 only	 overcome	 its	 strong	 tendency	 to	
grow	 if	 it	 experiences	 a	 rapid	 succession	 of	 unfortunate	 reproduc-
tive	outcomes.	Of	course,	the	probability	of	such	misfortune	declines	
exponentially	with	positive	r	(see	Equation	5;	Figure	2	inset).

Finally,	 note	 that	 (6b)	 serves	 as	 an	 upper	 bound	 to	 the	 average	
lifetime	of	an	extinction-	bound	population	that	 is	subject	to	density	
regulation.	 In	fact,	 (6b)	 is	an	upper	 limit	to	the	expected	duration	of	
the	“final	decline	to	extinction”	of	a	population	whose	dynamics	are	
described	by	a	CB	diffusion	with	r > 0 such that its densities are con-
fined	by	a	ceiling	carrying	capacity	(Lande	et	al.,	2003,	pp.	47–49).

3.1.2 | Extinction time percentiles

The	unconditional	mean	time	to	extinction	is	infinite	for	monomorphic	
populations	with	r	≥	0.	This	allows	only	crude	comparisons	to	popula-
tions	with	negative	growth	rates,	which	are	expected	to	have	finite	
expected	 durations	 (Equation	6b).	 By	 comparison,	 extinction	 time	
percentiles	of	 the	unconditional	distribution—the	 time	until	 there	 is	
a	specified	probability	of	extinction—allow	for	fine-	scale	comparisons	
of	 populations	with	different	 per	 capita	 growth	 rates,	 regardless	of	
sign.	The	probability	distribution	of	extinction	times	(4)	can	be	used	to	
determine	these	percentiles.

Consider	the	amount	of	time	it	takes	a	population	of	density	x to 
reach	a	specified	probability	q	of	extinction.	This	 is	 the	same	as	the	
time	needed	to	reach	per	capita	probability	(or	risk)	of	extinction	equal	
to ρ	=	q1/x.	Let	t(ρ; g)	be	the	first	time	that	the	per	capita	risk	of	extinc-
tion	is	equal	to	ρ	in	a	population	monomorphic	for	genotype	g	=	(r,	v).	
By	(4a),	this	 is	the	solution	t	of	q	=	ρx	=	Φ(t; x,	g)	or,	equivalently,	the	
solution t	of

Inverting	this	using	(4b)	leads	to	the	general	solution

(Figure	3).	 As	 the	 maximum	 per	 capita	 probability	 of	 extinction	
of	 genotype	 g is F(g)	 (see	 Equation	5),	 definition	 (7)	 makes	 sense	

(6a)Mc(x, g)=
log x− log c−ekcE1(kc)+ekxE1(kx)

∣ r ∣

(6b)M(x, g)= lim
c→0

Mc(x, g)=
γ+ log kx+ekxE1(kx)

∣ r ∣
(7a)ρ= f(t; g).

(7b)t(ρ; g)=

⎧
⎪⎨⎪⎩

−
1

r
log

�
1+

2r

v log ρ

�
if r≠0

−
2

v log ρ
if r=0

F IGURE  2 Mean	(r	≤	0)	or	conditional	mean	(r	>	0)	times	
to	extinction	(Equation	6b)	for	a	population	of	density	x that 
is	genetically	uniform	for	genotype	g	=	(r,	v),	where	r	is	the	per	
capita	growth	rate	and	v	is	per	capita	reproductive	variance.	Note	
that	both	the	mean	and	conditional	mean	times	to	extinction	
approach	∞	as	the	magnitude	of	r	shrinks	to	zero.	Comparing	
cases x/v	=	5,	10,	and	50	shows	the	effect	of	increasing	density	
on	the	mean	(or	conditional	mean)	if	v	is	assumed	fixed	or	the	
effect	of	decreasing	reproductive	variance	if	assuming	x	is	fixed.	
Inset:	Probabilities	of	ultimate	extinction	F(g)x where g	=	(r,	v)	(see	
Equation	5)	for	the	same	parameter	values
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only	 for	values	 of	 ρ	≤	F(g),	 that	 is,	 only	 for	 genotypes	 g	=	(r,	v)	with	
r	≤	−(v/2)	log	ρ.

In	contrast	 to	the	mean	 (6b),	extinction	time	percentiles	 (7)	are	
continuous at r	=	0	 (Figure	3).	 Moreover,	 for	 per	 capita	 extinction	
risks	ρ well below F(g),	the	time	to	attain	such	risks	(7b)	rises	slowly	
with r	(see	the	median	and	first	quartile	functions	in	Figure	3).	For	a	
concrete	comparison,	consider	two	genotypes	with	the	same	repro-
ductive variance (v	=	1),	 one	 with	 potential	 for	 explosive	 growth	
(r	=	0.2)	and	the	other	expected	to	decline	catastrophically	(r	=	−0.2).	
Despite	this	acute	difference,	the	median	time	to	extinction	(time	to	
risk	ρ	=	0.5)	 for	 the	 former	genotype	 is	a	mere	 two	time	units	 lon-
ger	than	the	latter.	Put	another	way,	if	every	genotype	with	r	=	−0.2	
suddenly mutated to r	=	0.2,	 the	median	 time	 to	 extinction	would	
increase	only	a	minor	amount.	It	seems	reasonable	to	expect	that	the	
more	realistic	but	comparatively	slower	process	of	adaptive	substi-
tution	of	such	a	remarkably	beneficial	mutation	would	provide	even	
smaller	advances	in	median	longevity.	Below,	we	show	that	this	intu-
ition	is	justified.

3.1.3 | Maladaptive landscape

The	per	capita	risk	function	f(t; g)	defined	in	(4b)	is	useful	for	compar-
ing	the	vulnerabilities	of	different	genotypes	g	=	(r,	v)	to	extinction.	In	
comparing	two	monomorphic	populations	of	the	same	initial	density,	
the	one	consisting	of	the	genotype	with	the	higher	value	of	f(t; g)	 is	
more	likely	to	be	extinct	at	time	t.	In	this	sense,	f(t; g)	can	be	used	to	
construct	an	extinction	risk-	based	“maladaptive	 landscape”	for	a	set	
of	genotypes	(Figure	4).

Each	level	of	the	risk	function	describes	an	entire	curve	of	geno-
types	whose	combinations	of	r and v	are	equivalent	with	respect	to	
extinction	risk.	These	“neutral”	curves	tend	to	change	with	t	(Figure	4).	
That	is,	two	genotypes	that	are	relatively	neutral	at	one	time	may	have	
distinct	extinction	 risks	at	other	 times.	 Indeed,	 it	 is	possible	 for	one	

genotype	to	be	more	vulnerable	to	extinction	than	another	for	small	
t	and	less	vulnerable	for	large	t	(Figure	5).	For	the	example	shown	in	
Figure	5,	the	genotype	with	larger	growth	rate	r	but	higher	reproduc-
tive variance v	(dashed	curve)	is	more	vulnerable	to	extinction	than	the	
genotype	with	lower	r and v in the short term but less vulnerable in 
the	long	term.	The	genotypes	have	the	same	risk	of	extinction	(i.e.,	are	
neutral)	at	time	t	≈	10.

With	 a	 baseline	 understanding	 of	 genetically	 uniform	 popula-
tions	 in	 hand,	we	 turn	 to	 the	 process	 of	 extinction	 in	 polymorphic	
populations.

3.2 | Genetically variable populations

Consider	 a	 population	 segregating	 for	G	 distinct	 genotypes	 whose	
dynamics	are	described	by	the	system	of	stochastic	differential	equa-
tions	(1).	 Such	 a	 population	 reaches	 extinction	 at	 the	 random	 time	
T	=	T(ω)	 for	 a	 particular	 realization	ω	 if	 the	 total	 population	 density	
X(t,ω)=

∑G

i=1
Xi(t,ω)=0	for	t	≥	T(ω)	but	X(t,	ω)	>	0	for	t < T(ω).

We	aim	to	understand	how	the	probability	distribution	of	T over 
different	realizations	depends	on	the	growth	rates,	reproductive	vari-
ances,	 and	 initial	 densities	 of	 the	G	 genotypes.	 Let	 x	=	(x1,	x2,	…,	xG)	
denote their initial densities and g	=	(g1,	g2,	…,	gG)	where	we	extend	the	
genotype	notation	gi	=	(ri,	vi)	for	i	=	1,	…,	G.	Define

where X(t)	=	(X1(t),	X2(t),	…,	XG(t))	 are	 the	 densities	 of	 the	 genotypes	
at time t.	Assuming	that	the	genotypes	are	independent	implies	that	
(using	Equation	4)

where f(t; gi)	is	given	by	(4b)	with	gi	=	(ri,	vi).
Equation	(9)	can	be	rewritten	in	a	simpler,	more	intuitive	form	as	

follows.	Let

be	the	total	initial	density	of	the	population	and

be	the	initial	frequency	of	genotype	i	=	1,	…,	G.	Then,	(9)	is	equivalent	
to

where

is	the	geometric	mean	per	capita	risk	function.	Note	the	formal	simi-
larity	of	(12a)	to	(4a).

(8)Φ(t; x, g)=P(T≤ t ∣X(0)=x),

(9)Φ(t; x, g)=

G∏
i=1

Φ(t; xi,gi)=

G∏
i=1

[
f(t; gi)

]xi

(10)x=

G∑
i=1

xi

(11)pi=xi∕x

(12a)Φ(t; x, g)=
[
f̃(t; g)

]x

(12b)f̃(t; g)=

G∏
i=1

[
f(t; gi)

]pi

F IGURE  3 Per	capita	quartiles	for	the	unconditional	time	to	
extinction	[	Q1	=	t(0.25;	g),		Median	=	t(0.5;	g),		Q3	=	t(0.75;	g);	see	(7)]	
for	genotypes	g	=	(r,	v)	with	different	intrinsic	growth	rates	r	and	fixed	
per	capita	variance	v	=	0.1.	The	mean	time	to	extinction	(6b),	shown	
for	comparison	to	these	percentiles,	assumes	x/v	=	10

–0.10 –0.08 –0.06 –0.04 –0.02 0.00

0
20

40
60

80
10

0

r

Ti
m

e 
to

 E
xt

in
ct

io
n

Q1
Median
Q3
Mean



476  |     GOMULKIEKICZ Iet  Ul

As	we	 saw	 above,	 percentiles	 are	 expedient	 for	 comparing	 the	
extinction	times	of	monomorphic	populations.	With	that	in	mind,	we	
will	 employ	 percentiles	 to	 characterize	 extinction	 times	 for	 geneti-
cally	variable	populations.	From	(12),	the	first	time	that	the	probability	
of	 extinction	 is	 equal	 to	q	 for	 a	 polymorphic	 population	with	 initial	
genotypic	densities	x	=	(x1,	x2,	…,	xG)	is	defined	as	the	implicit	solution	
t	=	t(ρ,	g)	of

where ρ	=	q1/x	is	the	target	per	capita	risk	of	extinction	for	a	popula-
tion	of	total	density	x	(Equation	10).

It	is	possible	to	derive	an	approximate	formula	for	t(ρ,	g)	for	a	pop-
ulation	that	is	expected	to	grow	or	decline	slowly.	If	|ri| ≪	1	for	all	seg-
regating	genotypes	i,	then,	from	(4b),	log	f(t; gi)	≈	−2/(vit).	Substituting	
this	in	(13)	and	solving	for	t	lead	to	the	approximation

where v̄H= (
∑G

i=1
pi∕vi)

−1	 is	 the	 harmonic	mean	 reproductive	 vari-
ance.	Expression	(14)	reveals	that	in	populations	with	slow	rates	of	
growth	 or	 decline,	 the	 time	 needed	 to	 reach	 any	 specified	 prob-
ability	 of	 extinction	 is,	 to	 first	 approximation,	 independent	 of	 r  
and	inversely	proportional	to	the	overall	variation	in	reproduction,	
v̄H.	 Note	 that	 this	 approximation	 for	 t(ρ,	g)	 is	 bounded	 below	 by	 
−2/(vmax	log	ρ)	 and	 above	 by	 −2/(vmin	log	ρ),	 where	 vmin and vmax  
are,	respectively,	the	minimum	and	maximum	of	v1,	v2,	…,	vG.	As	har-
monic	means	disproportionately	weight	the	contributions	of	smaller	
values,	the	longevity	of	a	population	with	slow	expected	change	will	
be	extended	most	 strongly	by	genotypes	with	 lower	 reproductive	
variance.

(13)f̃(t; g)=ρ,

(14)t(ρ, g)≈−
2

v̄H log ρ

F IGURE  4 Maladaptive	landscapes	at	different	times	t.	Per	capita	risks	of	extinction	for	genotypes	g	=	(r,	v)	are	shown	for	each	combination	
of	r and v.	Redder	colors	indicate	genotypes	with	higher	probabilities	of	extinction	at	the	given	time.	Target	per	capita	risk	values	ρ	for	each	level	
curve	of	the	per	capita	risk	function	f(t; g)	are	provided
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The	 results	 we	 obtained	 above	 for	 polymorphic	 populations	
account	for	both	evolutionary	and	population	dynamic	processes	and	
combine	the	distinct	 influences	of	the	abundances,	frequencies,	and	
demographic	parameters	 (in	essence,	 the	fitnesses)	of	genotypes	on	
the	time	to	extinction.	In	the	sections	that	follow,	we	use	our	formu-
las	to	investigate	the	consequences	of	replacing,	adding,	or	removing	
genotypes,	as	well	as	sudden	environmental	change	on	the	longevity	
of	a	population.

3.2.1 | Mutation/replacement

Understanding	how	evolution	impacts	the	duration	of	a	doomed	pop-
ulation	is	a	main	motivation	for	this	study.	Because	total	abundance	
per	se	has	a	direct	influence	on	population	persistence,	a	conceptu-
ally	clear	way	to	separate	out	the	influence	of	evolution	on	time	to	
extinction	is	to	compare	genetically	variable	and	genetically	uniform	
populations	with	 the	 same	 initial	 density.	 This	 raises	 the	 question,	
however,	of	what	monomorphic	population	would	provide	the	most	
biologically	informative	comparison.	Spontaneous	mutation	presents	
a	clear	option	as,	in	essence,	it	causes	a	change	in	genotype	with	no	
change	in	density	at	the	moment	it	arises.	This	suggests	that	a	mean-
ingful	comparison	would	be	to	contrast	a	genetically	uniform	popula-
tion	in	which	a	mutation	appears	spontaneously	with	the	same	ances-
tral	population	sans	mutation.	Although	we	refer	below	to	mutation,	
our	 results	 also	apply	 to	a	deliberate	 replacement	of	 individuals	by	
the	 same	density	of	a	different	genotype,	 as	 in	 the	experiments	of	
Hufbauer	et	al.	(2015).

Consider	 a	 mutation	 or	 substitute	 genotype	 with	 parameters	
g*	=	(r*,	v*)	that	appears	in	an	ancestral	population	with	density	x that 
is	monomorphic	for	genotype	g	=	(r,	v).	Let	x* denote the abundance 
of	the	mutant	genotype	when	it	first	arises.	We	assume	the	mutation	
occurs at time t	=	0.

To	use	the	extinction	time	probability	distribution	(9)	for	t	>	0,	note	
that	 there	 are	 just	 two	 genotypes—ancestral	 and	mutant—so	G	=	2.	
We	then	set	x1	=	x	−	x*,	 r1	=	r,	v1	=	v	 for	 the	ancestral	genotype	and	

x2	=	x*,	r2	=	r*,	v2	=	v*	for	the	mutant	in	(9).	With	these	substitutions,	
the	extinction	 time	distribution	 for	 the	population	 that	 includes	 the	
mutation,	which	we	denote	by	Φ*(t; x,	g),	is

where Φ(t; x,	g)	 is	the	extinction	time	distribution	(4a)	of	the	original	
population	sans	mutation.

Rearranging	(15b)	suggests	an	intuitive	measure	for	the	effect	of	
mutation	on	the	extinction	profile	of	the	original	population:

The	left-	hand	side	of	(16)	is	the	relative	change	in	extinction	risk	
per	mutant	at	time	t,	which	is	equal	to	the	ratio	of	mutant-	to-	ancestral	
per	capita	risk	functions.

As	(15b)	shows,	the	risk	function	ratio	(16)	predicts	how	a	muta-
tion	will	impact	the	probability	of	extinction	at	time	t	of	the	population	
in	which	it	arose.	In	accord	with	intuition,	a	mutant	with	risk	function	
value f(t; g*)	below	or	above	that	of	the	ancestral	genotype,	f(t; g),	will	
reduce	or	increase,	respectively,	the	risk	of	extinction.	Figure	6	shows	
how	 the	 mutant-	to-	ancestral	 per	 capita	 risk	 ratio	 (16)	 varies	 over	
mutant	 genotypes	 that	 arise	 in	 ancestral	 populations	with	negative,	
zero,	and	positive	growth	rates,	r.

Another	way	to	understand	the	evolutionary	impact	of	a	sponta-
neous	mutation	is	in	terms	of	the	relative	impact	it	has	on	the	duration	
of	the	population	 in	which	 it	arises.	Using	(13),	the	time	t*	after	the	
mutation	event	needed	to	reach	probability	q	of	extinction	is	defined	
implicitly	by

where p*	=	x*/x	 is	the	initial	frequency	of	the	mutation	and	ρ	=	q1/x 
is	 the	 target	per	 capita	 risk	of	 extinction	 in	 a	population	of	 size	x. 
Although	 it	 does	 not	 allow	 a	 closed-	form	 expression,	 (17)	 can	 be	
solved	numerically	 for	 t*	given	any	combination	of	parameters	and	
initial	 conditions.	 Figure	7	 indicates	 how	 mutations	 in	 the	 growth	
rate r	 or	 in	 the	 reproductive	 variance	 v	 impact	 per	 capita	 median	
times	to	extinction	of	declining,	stationary,	and	growing	monomor-
phic	ancestral	populations.	The	results	suggest	that	mutations	have	
the	 least	 impact	on	populations	that	are	expected	to	decline	 (i.e.,	r 
negative)	and	greatest	impact	on	populations	with	positive	expected	
growth	rates.	Even	then,	the	evolutionary	effect	of	de	novo	mutation	
on	longevity	is	remarkably	small—well	less	than	a	time	unit	in	abso-
lute terms.

If	the	effects	of	the	mutation	on	r and v	are	small,	then	an	approx-
imate	expression	for	its	impact	on	duration	compared	to	no	mutation	
can	be	derived	using	Taylor	 series.	Let	 t	be	 the	 time	 (7)	 to	per	cap-
ita	extinction	risk	ρ	in	the	absence	of	mutation	and	define	Δt	=	t*	−	t,	
Δr	=	r*	−	r,	and	Δv	=	v*	−	v.	Then,	the	relative	 impact	of	mutation	on	
the	duration	of	the	population	is	approximately	(Appendix	A)

(15a)Φ∗(t; x, g)=
[
f(t; g)

](x−x∗ ) [
f(t; g∗)

]x∗

(15b)Φ∗(t; x, g)=Φ(t; x, g)

[
f(t; g∗)

f(t; g)

]x∗
,

(16)
[
Φ∗(t; x, g)

Φ(t; x, g)

]1∕x∗
=
f(t; g∗)

f(t; g)
.

(17)ρ= f(t∗; g)

[
f(t∗; g∗)

f(t∗; g)

]p∗

F IGURE  5 Per	capita	risk	functions	f(t; g)	for	two	genotypes	
g	=	(r,	v)	that	cross	over	time	t.	Solid	curve:	r	=	0.05,	v	=	0.254.	
Dashed curve: r	=	0.1,	v	=	0.316
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As	most	mutations	 are	 initially	 rare,	p*	<	<	1	 and	 so	 approxima-
tion	(18)	suggests	that	the	impact	of	mutation	on	duration	should	be	
proportionately	 small.	 This	 agrees	 with	 numerical	 results	 based	 on	
(17)	 shown	 in	 Figure	7	which	 assume	p*	=	0.01.	 In	 contrast	 to	 new	
mutations,	genotypic	replacements	may	involve	values	of	p* that are 
substantially	 above	zero	and	 thus	 could	have	 significant	 impacts	on	
longevity.

The	coefficients	of	mutational	effects	Δr and Δv	in	(18)	are,	respec-
tively,	always	positive	and	always	negative.	Both	coefficients	depend	
on r,	but	the	coefficient	of	Δr	does	not	depend	on	v.	This	suggests	a	
greater	role	for	ancestral	r than v	in	shaping	the	impacts	of	mutation	
on	 extinction	 time.	 Moreover,	 the	 magnitudes	 of	 both	 coefficients	
increase	exponentially	with	r.	These	features	are	borne	out	in	Figure	7.	
Contrary	perhaps	to	conventional	wisdom,	this	implies	that	evolution	
is	generally	 least	 impactful	 in	harsh	environments	where	population	
growth	rates	are	below	zero.

3.2.2 | Abrupt environmental change

Sudden	 environmental	 change	 is	 an	 important	 driver	 of	 evolution-
ary	diversification	in	natural	populations	(e.g.,	Estes	&	Arnold,	2007;	
Franks,	Sim,	&	Weis,	2007)	and	a	central	concern	in	applied	settings	
ranging	 from	 conservation	 biology	 (e.g.,	 rapid	 climate	 change,	 toxic	
spills,	 habitat	 destruction	 and	 restoration)	 to	 wildlife	 management	
(species	relocation	programs)	to	agricultural	systems	(pesticide	appli-
cation)	to	human	health	(e.g.,	antimicrobial	treatment).	Our	results	can	
be	used	to	project	how	a	sudden	change	in	environment	could	affect	
the	time	to	extinction	of	genetically	diverse	populations.

Consider	a	one-	time	change	 in	 the	environment	 that	affects	 the	
abundances	 or	 demographic	 properties	 of	 all	 genotypes	 present.	
Suppose	 that	 before	 the	 environmental	 change	 the	 genotype	 with	
fitness	parameters	gi	=	(ri,	vi)	has	density	xi	and	that	these	change	sud-
denly to g�

i
= (r�

i
, v�

i
) and x′

i
,	respectively.	If	we	set	the	time	of	the	abrupt	

change	to	t	=	0,	then,	using	(4),	the	probability	distribution	of	extinction	
times	for	t	≥	0	after	the	change	is	Φ(t; x′,	g′),	where	x� = (x�

1
, x�

2
,… , x�

G
) 

and g� = (g�
1
, g�

2
,… , g�

G
).

Figure	8	illustrates	the	impact	of	an	abrupt	environmental	change	
that	induces	identical	modifications	in	the	growth	rates	of	two	equally	
frequent	genotypes	(G	=	2)	without	affecting	their	reproductive	vari-
ances	or	abundances.	The	average	growth	rate	of	the	population	just	
prior	to	the	change	is	zero	in	the	left	panel	and	positive	in	the	right.	
Comparing	the	figure	panels	suggests	that	the	impact	of	environmen-
tal	change	on	the	time	to	extinction	is	greater	for	the	population	with	
higher	 average	 growth	 rate.	We	 observed	 a	 similar	 association	 for	
spontaneous	mutations	(Figure	7).	An	implication	of	this	for	conserva-
tion	biology	is	that	habitat	restoration	would	help	most	to	prolong	the	
lifetime	of	those	species	that	are	the	least	threatened;	the	persistence	
of	those	same	species,	however,	would	be	most	sensitive	to	environ-
mental	degradation.

This	example,	like	the	mutation	section	just	above,	highlights	con-
sequences	of	 a	discrete	 change	 in	 a	population	 that	 leaves	 its	 total	
abundance	unmodified.	We	now	explore	how	changes	in	the	densities	
of	some	or	all	genotypes	can	affect	the	lifetime	of	a	population.

3.2.3 | Supplementation and removal

In	applications	ranging	from	species	preservation	and	restoration	to	
pest	 and	 disease	 eradication,	 population	 genetic	 diversity	 is	 often	
altered	 by	 adding	 or	 eliminating	 genotypes.	 This	 changes	 both	 the	
relative	 frequencies	 of	 genotypes	 and—in	 contrast	 to	 spontaneous	
mutation	 and	 genotype	 replacement—the	 total	 population	 density.	
The	results	above	show	that	genetic	diversity	and	abundance	can	con-
tribute	separately	to	the	duration	of	a	population.	Here,	we	consider	
their	combined	effects	on	time	to	extinction	in	the	two	most	common	
contexts	in	applied	population	biology:	supplementation	and	removal.

Supplementation
Suppose	a	manager	wants	to	preserve	a	population	that	is	currently	
headed	to	extinction.	If	habitat	restoration	is	not	an	option	(see	Section	
3.2.2),	then	the	manager	could	still	aid	the	threatened	population	by	

(18)Δt≈p∗
(
ert−1− rt

r2
Δr−

ert−1

rv
Δv

)
.

F IGURE  6 Ratios	of	mutant-	to-	ancestral	genotypic	per	capita	
risk	functions,	f(t; g*)/f(t; g),	at	times	t	=	10	(left	column)	and	t	=	20	
(right	column)	assuming	the	mutant’s	respective	growth	rate	and	
reproductive	variance	are	r*	=	r + Δr and v*	=	0.2	+	Δv,	where	
r	=	−0.1,	0,	0.1	and	v	=	0.2	are	the	ancestral	values.	Dashed	contours	
correspond	to	indicated	ratio	values.	Warmer	(colder)	colors	show	
mutants	that	increase	(decrease)	the	risk	of	extinction	compared	to	
the	ancestral	genotype	replaced.	The	increased	intensity	of	color	
from	top	to	bottom	panels	shows	mutant	effects	are	greatest	on	
ancestral	backgrounds	with	the	lowest	risk	of	extinction
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adding	densities	y	=	(y1,	y2,	…,	yG)	 of	G	 different	 strains	 to	achieve	a	
particular	conservation	goal,	say,	to	ensure	a	maximum	probability	q	of	
extinction	at	future	time	t	>	0.	The	scenario	corresponds	to	managing	
a	threatened	population	with	current	extinction	outlook

The	management	goal	requires	additions	y	that	lower	the	extinc-
tion	probability	to	q at time t.	Stated	in	terms	of	our	modeling	frame-
work	(8)	and	(9),	these	densities	are	solutions	y	of

where q,	t,	and	the	initial	densities	x	are	fixed.	That	is,	supplements	y 
must	satisfy

where

describes	 the	 shortfall	 that	 management	 efforts	 must	 overcome	 to	
achieve	the	conservation	goal.	The	status	quo	(19)	implies	S(q,	t; x)	>	0.

It	is	possible	to	achieve	the	management	goal	using	any	single	gen-
otype	(gj,	say)	by	adding

of	the	genotype	and	none	of	the	rest	(i.e.,	yi	=	0	for	i	≠	j).	The	general	
equation	(21)	that	any	y	must	satisfy	can	be	recast	in	terms	of	these	
“pure	supplements”:

Each	term	of	the	sum	in	(23)	is	bound	between	0	and	1	because	
0≤yi≤y+

i
	(if	yi>y+

i
,	the	management	goal	is	surpassed).

Although	any	solution	y	of	(21)	could	be	used	to	meet	the	manage-
ment	goal,	some	supplementation	strategies	may	be	more	efficient	to	
implement	than	others.	The	smallest	supplement	consistent	with	the	
conservation	goal	is	achieved	using	a	pure	strategy	(22)	utilizing	a	gen-
otype	with	the	minimum	value	among	y+

1
,… , y+

G
.	Note	from	definitions	

(4b)	and	(22)	that	this	genotype	has	the	lowest	per	capita	risk	among	
all	genotypes	at	time	t.	A	pure	strategy	is	also	best	if	supplementation	
costs	differ	among	genotypes.	Indeed,	suppose	the	per	capita	cost	of	
using	genotype	gi is ci,	then	the	management	goal	could	be	achieved	
most	economically	by	supplementing	exclusively	with	a	genotype	that	
minimizes	the	total	cost	ciy+i 	among	the	G	genotypes.

(19)P(T≤ t ∣X(0)=x)>q.

(20)q=Φ(t; x+y, g)=

G∏
i=1

[
f(t; gi)

]xi+yi

(21a)
G∑
i=1

yi log f(t; gi)=−S(q, t, x)

(21b)S(q, t, x)=

G∑
i=1

xi log f(t; gi)− log q

(22)yj=y+
j
:=−

S(q, t, x)

log f(t; gj)
,

(23)
G∑
i=1

yi

y+i
=1.

F IGURE  7 Changes	in	per	capita	median	time	to	extinction	caused	by	mutations	in	r	(left	panel)	or	in	v	(right	panel)	that	arise	in	declining,	
stationary,	and	growing	monomorphic	ancestral	populations	as	indicated	by	rA,	the	ancestral	per	capita	growth	rate.	The	mutant	parameters	
are r*	=	rA + Δr and v*	=	vA + Δv.	The	time	to	per	capita	extinction	probability	ρ	=	0.5	is	tA	in	populations	without	and	t	in	populations	with	the	
mutation.	Both	panels	assume	ancestral	reproductive	variance	vA	=	0.2	and	mutation	initial	frequency	p*	=	0.01
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In	many	and	probably	most	conservation	settings,	managers	would	
need	 to	 draw	 supplements	 from	 a	 source	 population	 for	which	 the	
parameters	r and v	of	individual	genotypes	are	impractical	to	assess.	
If	 the	 distribution	 of	 genotypes	 in	 the	 source	 is	 unknown	 or	 partly	
known,	Equation	 (21)	can	be	used	 to	develop	a	management	policy	
as	follows.	Suppose	the	true	frequency	of	genotype	gi in the source 
pool	is	πi (

∑G

i=1
πi=1).	What	size	random	sample	from	this	pool	would	

ensure	a	probability	p	of	meeting	 the	management	goal?	 If	 the	 true	
frequencies	are	known,	and	population	sizes	are	sufficiently	 large	to	
invoke	 the	 strong	 law	 of	 large	 numbers,	 randomly	 sampling	 a	 total	
density y	 from	 this	 pool	will	 result	 in	 densities	 yi	=	yπi	 of	 genotype	
i ∊	{1,	…,	G}.	By	Equation	(23),	 the	sample	density	necessary	 to	meet	
the	management	goal	(20)	with	probability	p	=	1	is

which	is	the	harmonic	mean	of	the	pure	supplement	densities	defined	
in	 (22).	 If	 the	exact	values	of	 the	πi	are	not	known	but	 it	 is	possible	

to	find	constants	ai such that P(a1	≤	π1,	…,	aG	≤	πG)	≥	p,	then	the	man-
agement	 goal	 can	 be	met	with	 probability	p	 by	 choosing	 a	 suitably	
enlarged	sample	size	ŷ	that	satisfies

More	generally,	linear	programming	methods	(e.g.,	Gill,	Murray,	&	
Wright,	1981)	based	on	 (23)	can	be	used	to	find	management	solu-
tions y	 that	 are	 optimal	 given	 other	 practicalities	 (e.g.,	 a	 genotype	
whose	availability	for	supplementation	is	limited).

Removal
The	 primary	 aim	 of	 pest	 and	 disease	 management	 is	 to	 speed	 the	
demise	of	pathogens	or,	equivalently,	elevate	the	probability	of	their	
extinction	at	any	time.	Eradication	goals	are	often	attained	by	adminis-
tering	drugs,	pesticides,	or	other	treatments	that	reduce	growth	rates	
of	all	pathogens.	The	impacts	of	sublethal	options	can	be	assessed	by	
applying	approaches	described	in	Section	3.2.2.	We	examine	here	how	
lethal	treatments	or	removal	protocols	that	instantly	reduce	pathogen	
or	pest	densities	affect	the	persistence	of	pathogen	populations.

Consider	the	densities	of	pathogen	genotypes	that	would	need	to	
be	removed	to	achieve	a	desired	probability	of	elimination	q within a 
time	 frame	 t.	 Intervention	 is	needed	only	 if	q > Φ(t; x,	g),	 the	proba-
bility	of	pathogen	clearance	within	that	time	without	treatment	 (see	
Equation	 12).	 Let	 zi	 be	 the	 density	 of	 genotype	 gi to be removed. 
Clearly,	 the	 removal	 densities	 are	 restricted	 to	 0	≤	zi	≤	xi	 for	 all	 i. 
Letting	z	=	(z1,	…,	zG)	and	solving	Φ(t; x	−	z,	g)	=	q	for	z shows that the 
removal	densities	must	satisfy

where z−
i
=S(q, t, x)∕ log (f(t; gi); S(q,	t,	x)	is	defined	in	(21b).	The	require-

ment q > Φ(t; x,	g)	ensures	that	z−
i
>0	for	all	genotypes.

In	 contrast	 to	 supplementation,	 it	 may	 be	 impossible	 to	
achieve	 the	 treatment	 objective	 using	 a	 “pure”	 removal	 strategy,	
z	=	(0,	…,	0,	zj,	0,	…,	0).	This	would	occur	whenever	xi< z−

i
	for	all	G	gen-

otypes.	Standard	methods	of	linear	programming	(e.g.,	Gill	et	al.,	1981),	
however,	can	be	applied	 to	 identify	efficient	 removal	strategies.	For	
example,	the	strategy	requiring	the	smallest	overall	density	of	patho-
gens	to	be	cleared	can	be	computed	by	minimizing	z	=	z1 + z2 + ··· + zG 
subject	to	the	linear	constraints	(26)	and	0	≤	zi	≤	xi	for	i	=	1,	…,	G.

4  | DISCUSSION

Evolutionary	rescue	studies	establish,	both	theoretically	and	empiri-
cally,	that	adaptive	evolution	can	enable	the	indefinite	persistence	of	
populations	that	would	otherwise	go	extinct.	By	extension,	it	stands	
to	reason	that	evolution	might	also	delay	the	demise	of	populations	
whose	 extinction	 it	 cannot	 prevent	 altogether.	 Our	 findings	 show,	
however,	that	evolution	does	little	to	extend	the	lifespan	of	popula-
tions	headed	to	extinction.

(24)y=

[
G∑
i=1

πi

y+i

]−1

,

(25)ŷ=

[
G∑
i=1

ai

y+i

]−1

.

(26)
G∑
i=1

zi

z−
i

=1

F IGURE  8 Effect	on	time	to	extinction	of	an	abrupt	shift	in	
environment. tbefore and tafter	are	the	respective	per	capita	median	
times	to	extinction	under	environmental	conditions	before	and	
after	the	shift.	All	curves	assume	two	equally	abundant	genotypes	
with	the	same	reproductive	variance	v	=	0.2	but	different	intrinsic	
growth	rates	(r1,	r2),	corresponding	to	mean	intrinsic	growth	
rate r̄O=0.5r1+0.5r2	in	the	original	environment.	The	abscissa,	
Δr,	is	a	one-	time	change	in	r	experienced	identically	by	both	
genotypes,	that	is,	r�

1
= r1+Δr and r�

2
= r2+Δr.	Other	parameters	

are r̄O>0: (r1,	r2)	=	(0.05,	0);	r̄O=0: (r1,	r2)	=	(−0.025,	0.025);	r̄O<0: 
(r1,	r2)	=	(0,	−0.5)
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That	evolution	does	little	to	prolong	the	remaining	lifetime	of	popu-
lations	headed	to	extinction	was	previously	predicted	in	Gomulkiewicz	
and	Holt	(1995).	Their	speculation,	however,	was	based	on	an	informal	
inspection	of	results	generated	by	deterministic	models	of	population	
and	 evolutionary	 dynamics	 and	 use	 of	 a	 positive	 density	 as	 ersatz	
extinction.	Our	study	now	rigorously	establishes	 the	veracity	of	 this	
conjecture,	accounting	fully	for	stochastic	population	and	evolution-
ary	dynamics	as	well	as	exact	extinction.	We	found	that	evolution	is	
equally	impotent	in	delaying	the	final	demise	of	populations	that	are	
expected	to	decline	as	 it	 is	of	populations	expected	to	 increase	but	
that	nonetheless	descend	 to	extinction	 through	a	series	of	unfortu-
nate chance events.

We	appraised	the	impact	of	evolution	by	comparing	the	extinction	
time	of	a	monomorphic,	mutant-	free	“ancestral”	population	to	that	of	
a	descendant	population	of	the	same	density	but	polymorphic	due	to	
the	spontaneous	appearance	of	a	mutation.	Our	numerical	and	analyt-
ical	results	(see	Equation	18)	show	that	the	impact	of	the	mutation	on	
persistence	time	is	proportional	to	its	initial	frequency,	which	suggests	
that	the	ineffectiveness	of	evolution	in	this	assessment	is	due	primar-
ily	to	the	scarcity	of	new	mutations.

Of	course,	populations	often	harbor	substantial	amounts	of	stand-
ing	genetic	variation,	 and	 it	 is	natural	 to	ask	how	evolution	 impacts	
longevity	in	those	populations.	Our	results	apply	to	these	populations	
with	ample	genetic	diversity	as	we	did	not	require	assumptions	about	
the	rarity	or	commonness	of	genotypes.	Isolating	the	role	of	evolution	
is	less	clear,	as	it	is	not	obvious	which	comparable	nonevolving	popu-
lation	would	make	for	an	appropriate	comparison.	Although	it	is	easy	
to	concoct	possibilities	(e.g.,	a	genetically	monomorphic	population	of	
size	x with r and v	values	equal	to	the	respective	means	of	the	poly-
morphic	population),	it	is	unclear	what,	if	any,	biological	insights	such	
highly	 artificial	 comparisons	 might	 provide.	 In	 contrast,	 comparing	
populations	with	and	without	a	mutant	has	clear	biological	relevance	
as	it	addresses	a	classic	question	about	the	impact	of	a	new	mutation,	
albeit	in	a	novel	context.	While	it	may	be	difficult	to	separate	the	role	
of	 evolution	meaningfully	 from	 other	 processes	 such	 as	 population	
dynamics,	our	methods	explicitly	account	for	evolution	(adaptive	and	
otherwise)	and	can	be	used	to	forecast	and	explain	population	longev-
ity	 in	 a	variety	of	 contexts,	 including	 species’	 responses	 to	environ-
mental	change,	conservation	and	wildlife	biology,	the	management	of	
agricultural	pests,	and	the	treatment	of	pathogens	relevant	to	health	
and disease.

Our	analyses	revealed	some	unexpected	results.	First,	conditioned	
on	extinction,	the	mean	time	to	extinction	increases	as	the	magnitude	
of	 r,	 the	 intrinsic	 rate	of	population	growth,	shrinks.	This	 is	 intuitive	
when r	is	negative:	Populations	expected	to	decline	more	slowly	should	
persist	 longer.	 But	 the	 result	 holds	 even	when	 r	 is	 positive,	 which	
means	that	among	populations	expected	to	increase,	those	with	the	
higher	growth	rates	go	extinct	more	rapidly,	on	average.	Conditioning	
on	extinction	is	key	to	making	sense	of	this	anomalous-	sounding	result	
as	populations	with	high	expected	growth	 rates	can	go	extinct	only	
if	they	“escape”	the	strong	tendency	to	grow	by	experiencing	a	rapid	
succession	of	bad	demographic	luck	(mathematically,	the	process	con-
ditioned	on	extinction	has	a	negative	growth	rate,	viz.	−r).	Although	

the	 conditional	 time	 to	 extinction	 is	 reduced,	 the	 probability	 that	 a	
population	goes	extinct	declines	exponentially	with	r	(Figure	2,	inset).

A	second	unusual	finding	concerns	the	relationship	between	the	
harshness	of	the	initial	environment	and	the	impact	of	adaptive	evo-
lution	on	 time	 to	extinction.	Conventional	wisdom	holds	 that	 selec-
tion	 is	 stronger	 in	 harsh	 than	 in	 benign	demographic	 conditions.	To	
the	contrary,	our	analyses	of	spontaneous	changes	of	fixed	magnitude	
to	 the	 environment	 or	 to	 the	 genetic	 composition	 of	 a	 population	
(e.g.,	new	mutations	with	fixed	change	in	genotype)	demonstrate	that	
adaptive	evolution	can	have	less	impact—good	or	bad—on	struggling	
populations	(lower	r)	than	on	thriving	populations	(higher	r).	The	lim-
ited	 impact	of	 further	negative	changes	on	a	 threatened	population	
might	 be	 understandable	 as	 the	 time	 to	 extinction	 is	 already	 short	
and	obviously	cannot	be	negative.	In	contrast,	the	upside	potential	is	
boundless,	yet	the	time	to	extinction	is	nearly	the	same	with	or	with-
out	beneficial	changes	(Figure	3).	It	is,	alas,	not	intuitively	clear	to	us	
why	the	same	beneficial	changes	extend	the	time	to	extinction	more	
when	they	appear	in	populations	with	higher	than	with	lower	expected	
growth	rates.	In	contrast	to	spontaneous	changes	of	fixed	magnitude	
(e.g.,	new	mutations	 that	change	 r or v	by	a	 fixed	amount),	 replace-
ment	 of	 individuals	 by	 genotypes	 sampled	 from	 a	 fixed	 distribution	
(as	 in	experiments	of	Hufbauer	et	al.	 (2015))	could	potentially	affect	
longevity	more	in	harsh	demographic	conditions	than	in	benign	ones.

Our	 analyses	 demonstrate	 the	 central	 importance	 of	 per	 capita	
extinction	 risk	 functions	 for	 understanding	 the	 remaining	 lifetimes	
of	both	genetically	uniform	and	polymorphic	populations.	Much	the	
same	 way	 as	 fitness	 functions	 are	 used	 in	 population	 genetics	 to	
describe	 the	 adaptive	 spread	 and	 relative	 prevalence	 of	 genes	 and	
genomes	within	 populations,	 per	 capita	 risk	 functions	 describe	 the	
relative	 impacts	of	different	genotypes	on	 the	 time	 to	extinction	of	
populations.	 In	 this	 sense,	per	capita	 risk	 functions	serve	as	 “misfit-
ness”	functions.

We	found	that	a	change	in	the	expected	growth	rate	(r)	has	more	
of	 an	 impact	 on	 extinction	 time	 than	 a	 comparably	 sized	 change	 in	
reproductive	uncertainty	(v).	This	asymmetry	can	be	traced	to	the	dou-
ble role that r	plays.	Whereas	r and v	make	comparable	contributions	
to	the	probabilities	of	extinction	in	the	short	term,	r alone determines 
whether	or	not	a	population	is	certain	to	go	extinct	in	the	long	run	and	
so	in	effect	sets	the	stage	for	the	extinction.

The	 theory	 developed	 here	 helps	 enrich	 our	 understanding	
of	 recent	 experimental	 studies	 that	 examined	 impacts	 of	 genetic	
variation	 and	 abundance	 on	 persistence	 in	 stressful	 environments	
(Hufbauer	 et	al.,	 2015;	 Ramsayer,	 Kaltz,	 &	 Hochberg,	 2013).	 Those	
experiments,	 like	our	model,	 show	a	direct	 link	between	abundance	
and	persistence	and	also	confirm	the	potential	impact	of	genetic	varia-
tion	on	persistence.	Although	both	studies	were	designed	with	a	focus	
on	 successful	 cases	of	 evolutionary	 rescue,	visual	 inspection	of	 tra-
jectories	that	were	recorded	for	failed	populations	(fig.	1	in	Ramsayer	
et	al.	(2013)	and	fig.	2	in	Hufbauer	et	al.	(2015))	shows	that	monomor-
phic	and	polymorphic	replicates	with	the	same	initial	size	have	similar	
extinction	times,	which	matches	our	predictions.

Our	theory	also	helps	extend	and	refine	interpretations	of	patterns	
in	 studies	with	 treatments	 that	manipulated	 genetic	 diversity	while	
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controlling	for	initial	population	size.	Ramsayer	et	al.	(2013)	found	that	
genetically	“diversified”	populations	of	the	Gram-	negative	bacterium	
Pseudomonas fluorescens	were	more	likely	to	persist	when	exposed	to	
the	antibiotic	streptomycin	than	same-	sized	populations	started	with	
a	single	clone.	The	diversified	populations	initially	harbored	higher	fre-
quencies	of	 resistant	mutants	 than	 the	clonal	populations.	Similarly,	
the	 “genetic	 rescue”	 treatment	 in	Hufbauer	 et	al.	 (2015)	 replaced	 a	
portion	of	flour	beetles	(Tribolium castaneum)	from	a	stock	population	
with	substitutes	obtained	from	a	separate	population	that	were	par-
tially	pre-	adapted	to	a	stressful	food	resource	(corn	meal).	Persistence	
on	a	corn	meal	diet	of	the	genetically	mixed	population	was	compared	
to	that	of	a	stock	population	with	the	same	starting	size.	The	genet-
ically	variable	populations	 in	both	studies	were	more	able	 to	persist	
for	 the	 duration	 of	 the	 experiment	 than	 the	 less	 variable	 controls.	
The	flour	beetle	manipulation	also	relieved	inbreeding	depression	by	
fostering	 production	 of	more	 fit	 hybrid	 offspring.	The	 experimental	
treatments	 thus	 introduced	novel	genotypes	 that	had	 lower	 risks	of	
extinction	 than	 the	 original	 genotypes	 they	 replaced	 or	 descended	
from.	In	the	vernacular	of	our	model,	the	diversified	and	genetic	rescue	
populations	were	relatively	successful	because	 f(t; gnew)	<	f(t; goriginal).	
Of	 course,	 the	 hybrid	 genotypes	 in	 the	Tribolium	 experiments	were	
ephemeral	and	so	their	 impact	on	persistence	is	not	given	complete	
account	in	our	analyses,	which	assume	asexual	reproduction.	Theory	
showing	how	sexual	reproduction,	including	inbreeding,	hybridization,	
and	genetic	 recombination,	 affects	 time	 to	extinction	we	 leave	 to	a	
future	study.

The	models	we	analyzed	here	assume	not	only	a	genetically	simple	
type	of	inheritance	but	also	make	ecologically	simplistic	assumptions	
about	population	dynamics	and	environmental	change.	Perhaps	most	
glaring	 is	 the	 absence	 of	 density	 dependence	 in	 population	 growth	
rates.	This	assumption	in	particular	is	a	considerable	benefit	for	anal-
ysis	because	it	implies	that	individuals	and	genotypes	can	be	tracked	
independently	which	in	turn	allows	application	of	the	extensive	mathe-
matical	theory	developed	for	branching	processes.	Although	the	inde-
pendent	branching	assumption	precludes	analysis	of	extinction	times	
for	populations	with	density-	dependent	dynamics,	it	might	be	possible	
to	derive	tractable	results	using	approaches	allowing	interdependent	
per	capita	growth	rates	that	have	been	developed	to	analyze	evolu-
tionary	rescue	(e.g.,	Lambert,	2008;	Ueker	et	al.,	2014).	Note	too	that	
some	of	our	results—such	as	the	expected	time	to	extinction—provide	
upper	bounds	for	populations	with	ceiling	density	dependence.	Finally,	
we	considered	the	impacts	of	a	single	abrupt	environmental	change	on	
the	duration	of	populations.	Our	results	could	be	extended	to	scenar-
ios	that	assume	gradual	environmental	change	by	imagining	a	discrete	
sequence	of	small	abrupt	changes	or	by	extending	approaches	(such	
as	those	of	Lynch	and	Lande	(1993)	and	Bürger	and	Lynch	(1995))	that	
model	continuous	environmental	change	directly.

Similar	to	evolutionary	rescue	theory,	our	extinction	time	formulas	
depend	on	 two	essential	 demographic	parameters:	 r,	 the	per	 capita	
growth	 rate	 (or	 “Malthusian	 fitness”)	and	v	 the	per	capita	 reproduc-
tive	variance.	Methods	for	estimating	these	parameters	from	popula-
tion	time	series	are	discussed	in	Ramsayer	et	al.	(2013),	Martin	et	al.	
(2013),	and	Alexander	et	al.	(2014).	In	microbial	cells,	for	example,	it	is	

possible	to	estimate	r and v	by	measuring	the	birth	and	death	rates	of	
cells:	If	b and d	are	per	capita	birth	and	death	rates,	then	r	=	b	−	d and 
v	=	b + d	(e.g.,	Martin	et	al.,	2013).	Note	that	our	extinction	time	prob-
ability	distributions	can	be	written	as	parametric	versions	of	the	risk	
and	hazard	functions	that	are	central	 to	survival	analysis,	which	 is	a	
well-	developed	collection	of	statistical	methods	that	are	used	to	eval-
uate	stochastic	time-	to-	event	data	(e.g.,	Klein	&	Moeschberger,	2013).	
Survival	analysis	may	be	particularly	useful	in	analyzing	experimental	
data	 because	 experiments	 can	 consider	 only	 finite	 time	 horizons	 in	
practice	 and	 so	 the	 ultimate	 fate	 of	 any	population	 that	 remains	 at	
the	end	of	an	experiment	is	equivocal.	We	plan	to	develop	the	statis-
tical	connection	between	our	models	and	survival	analysis	in	a	future	
publication.

Besides	 the	 demographic	 parameters,	 many	 of	 our	 results	 and	
those	for	evolutionary	rescue	depend	on	a	population’s	initial	density,	
x.	We	have	taken	care	to	avoid	using	“count”	and	“number”	to	describe	
x	as	those	terms	 imply	a	discrete	scale	for	abundances,	whereas	CB	
diffusions	assume	a	continuous	scale	for	population	size.	Our	use	of	
the	CB	diffusion	as	a	stand-	alone	stochastic	modeling	framework	thus	
has	 the	drawback	 that	 there	 is	no	obvious	value	on	 the	continuous	
scale	that	corresponds	to	one	individual	of	a	specific	genotype,	which	
is	the	initial	count	of	a	single	new	mutant.	Nonetheless,	some	exper-
iments	 measure	 population	 size	 as	 a	 density	 (e.g.,	 Ramsayer	 et	al.,	
2013)	and	 it	 is	often	possible	 to	use	a	CB	diffusion	 to	approximate	
a	discrete-	scale	branching	process	by	prudently	rescaling	population	
number	as	a	density	(for	details	and	examples	see	Goel	&	Richter-	Dyn,	
1974;	Lambert,	2006).	Regardless	of	scale,	“per	capita”	has	the	usual	
meaning	(i.e.,	“per	unit	abundance”)	and,	of	course,	extinction	corre-
sponds	to	a	density	of	zero.

The	formulas	we	derived	here	can	be	used	not	only	to	 interpret	
data	on	temporal	patterns	of	extinction	but	also	to	forecast	population	
longevity.	 In	 addition,	 our	methods	 can	 be	 used	 to	 design	manage-
ment	strategies	to	meet	specific	conservation	or	wildlife	policy	goals	
(Lankau,	Jørgensen,	Harris,	&	Sih,	2011;	Nicotra,	Beever,	Robertson,	
Hofmann,	 &	 O’Leary,	 2015;	 Pierson	 et	al.,	 2014;	 Smith,	 Kinnison,	
Strauss,	Fuller,	&	Carroll,	2014)	and	to	assess	efforts	aimed	at	speeding	
the	eradication	of	agricultural	pests	or	medical	pathogens	(Alexander	
et	al.,	2014;	Wu,	Saddler,	Valckenborgh,	&	Tanaka,	2014).	These	strat-
egies	include	manipulations	of	overall	population	abundance,	genetic	
diversity,	 or	 both.	 We	 have	 also	 shown	 how	 our	 formulas	 can	 be	
extended	to	compare	the	costs	and	benefits	of	different	management	
or	treatment	plans	and	to	design	economical	schemes.	Even	if	evolu-
tion	has	relatively	little	natural	impact	on	how	long	a	population	has	
until	its	demise,	as	our	results	suggest,	our	findings	demonstrate	that	
well-	designed	managed	changes	have	significant	potential	to	lengthen	
or	shorten	the	lifetime	of	a	population.
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APPENDIX A

If	t	is	defined	by	(7)	and	t*	is	the	solution	of	(17)	then

or,	equivalently,

Using	 first-	order	Taylor	expansions	 for	 the	 left-	hand	 side,	 (28)	 is	
approximately

where Δt	=	t*	−	t,	 Δr	=	r*	−	r,	 and	 Δv	=	v*	−	v.	 By	 definition	 (4b)	 of	
f(t; g)	we	have

where

Substituting	expressions	(30)	into	(29)	and	solving	for	Δt	gives	the	
approximation	(18).

(27)log f(t; g)= (1−p∗) log f(t∗; g)+p∗ log f(t∗; g∗)

(28)
[
ln f(t∗; g)− ln f(t; g)

]
−p∗

[
ln f(t∗; g)− ln f(t∗; g∗)

]
=0.

(29)
� ln f(t; g)

�t
Δt+p∗

[
� ln f(t; g)

�r
Δr+

� ln f(t; g)

�v
Δv

]
≈0,

(30a)
� ln f(t; g)

�t
=Cr2,

(30b)
� ln f(t; g)

�r
=−C(ert−1− rt),

(30c)
� ln f(t; g)

�v
=−C

r(ert−1)

v
,

(30d)C=
ert

v(ert−1)2.


