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1 | INTRODUCTION

| Stephen M. Krone? | Christopher H. Remien?

Abstract

Many populations are doomed to extinction, but little is known about how evolution
contributes to their longevity. We address this by modeling an asexual population
consisting of genotypes whose abundances change independently according to a sys-
tem of continuous branching diffusions. Each genotype is characterized by its initial
abundance, growth rate, and reproductive variance. The latter two components deter-
mine the genotype’s “risk function” which describes its per capita probability of extinc-
tion at any time. We derive the probability distribution of extinction times for a
polymorphic population, which can be expressed in terms of genotypic risk functions.
We use this to explore how spontaneous mutation, abrupt environmental change, or
population supplementation and removal affect the time to extinction. Results suggest
that evolution based on new mutations does little to alter the time to extinction.
Abrupt environmental changes that affect all genotypes can have more substantial
impact, but, curiously, a beneficial change does more to extend the lifetime of thriving
than threatened populations of the same initial abundance. Our results can be used to
design policies that meet specific conservation goals or management strategies that

speed the elimination of agricultural pests or human pathogens.

KEYWORDS
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how inherent differences among individuals of a species impact the
longevity of their populations, but much has been learned in recent

The persistence of populations is so fundamental to ecology and evo-
lution that it is normally taken as given. Indeed, the central pursuits
of those fields—understanding the distribution, abundances, and char-
acteristics of species—would be completely moot without their per-
sistence. In applied biology, however, the persistence of populations
is often the paramount concern. Indeed, conservation biologists and
wildlife managers seek ways to increase the duration of target species,
and in pest and disease management in agricultural and medical set-
tings, a main goal is to hasten the demise of pathogens.

It is well known that the duration of a species is largely determined
by the capacities of its members to survive and reproduce and by its

overall abundance (MacArthur & Wilson, 1967). Less is known about

years because of the growing number of empirical and theoretical
studies investigating the combined demographic and evolutionary
responses of species to environmental change (e.g., Bourne etal.,
2014; Schiffers, Bourne, Lavergne, Thuiller, & Travis, 2013).

Among various research efforts connecting diversity and per-
sistence, arguably the most developed is focused on the processes
behind “evolutionary rescue” (reviewed in, e.g., Bell, 2012; Gonzalez,
Ronce, Ferriere, & Hochberg, 2013). Evolutionary rescue refers to a
declining population that is saved from extinction because of adap-
tive evolution. A still-growing theoretical literature motivated by the
topic allows considerable insight into a how a wide variety of genetic
and ecological conditions factor into the persistence or extinction
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of populations (Baskett & Gomulkiewicz, 2011; Gomulkiewicz, Holt,
Barfield, & Nuismer, 2010; Orr & Unckless, 2014; Ueker & Hermisson,
2016; Ueker, Otto, & Hermisson, 2014). In addition, a substantial num-
ber of experimental studies of evolutionary rescue have both tested
components of the theory and explored additional mechanisms that
might affect the probability of extinction or rescue (reviewed in Martin,
Aguilée, Ramsayer, Kaltz, & Ronce, 2013; Carlson, Cunningham, &
Westley, 2014; Alexander, Martin, Martin, & Bonhoeffer, 2014).

Evolutionary rescue is uncertain under most circumstances, and
so the most useful theoretical studies predict probabilities of rescue
for defined sets of genetic and demographic conditions. As rescue will
fail unless genomes that allow population persistence exist or come
into existence, these theoretical analyses consider both the extent to
which these genomes occur and arise as well as the stochastic dynam-
ics of their evolutionary spread. This theory, in effect, focuses exclu-
sively on diametrically opposed ultimate outcomes: an adapting pop-
ulation that either goes extinct (failed rescue) or persists indefinitely
(successful rescue).

In contrast to theory, experimental studies of evolutionary rescue
are necessarily restricted to finite time horizons that may be far shorter
than the duration of any given population headed to ultimate extinc-
tion. This practical limitation prompted Martin et al. (2013) to remark
“Measuring the probability of rescue is not that straightforward. First,
one must choose the time period over which populations can be said
to be either doomed or rescued.” Similarly, conservation biologists and
wildlife managers are often most interested in practical questions of
how stressful conditions might affect the ability of natural populations
to persist over prescribed periods of time (decade, century, etc.). In
agricultural and medical settings, the main concern is predicting how
pest management or disease treatment options might impact the time
required to eradicate a target pathogen or malady.

In this theoretical study, we consider the antithesis of evolutionary
rescue. That is, we seek a general understanding of how abundance
and genetic diversity in fitness impact longevity of populations, includ-
ing populations that necessarily are headed to extinction. We obtain
analytical results by deriving the probability distribution of extinction
times for a biologically simple stochastic model of population and evo-
lutionary dynamics. Our analyses reveal not only the relative impor-
tance of a population’s abundance and variation on its duration but
also the extent to which genomes that are incapable of supporting
permanent persistence nonetheless help slow a population’s decline
and thereby delay inevitable extinction.

2 | MODEL OF A GENETICALLY VARIABLE
POPULATION AT RISK OF EXTINCTION

Consider a polymorphic, asexually reproducing population with G gen-
otypes (clones). We model the respective abundances of the clones,
X, (t), X,(t), ..., X4(t), at time t as G independent continuous branch-
ing (CB) diffusions (e.g., Lambert, 2006). Specifically, we assume the
dynamics of genotype i are described by a CB diffusion with infini-
tesimal mean a(x) = rx and infinitesimal variance b/(x) = vx, and that

Xi(t) > 0 (Feller, 1951b). This is equivalent to the system of G stochas-
tic differential equations

dX; =rXdt+4/v,X;dW,, (1)

i=1,..,G, where W,;,W,, ..., W, are independent standard Wiener
processes. The parameter r; is called the per capita growth rate or
“Malthusian fitness” of genotype i and v, is the per capita reproductive
variance; r; can be positive or negative, whereas v; > 0.

This diffusion model provides a reasonable foundation to study
how evolution affects extinction times for at least two reasons.
First, the CB diffusion is a natural stochastic extension of density-
independent population growth and has been used extensively to
model demographic stochasticity in population ecology (e.g., Lande,
Engen, & Saether, 2003). Second, as a natural extension of discrete-
time branching processes, the CB diffusion has also been used in the-
oretical population genetics to study the fixation of genotypes in pop-
ulations with stochastic changes in size (Feller, 1951a; Gillespie, 1974;
Lambert, 2006; Martin et al., 2013). Note, however, that we here use
the CB diffusion autonomously rather than as an explicit approxima-
tion of other stochastic models (we revisit the significance of this point
in the Section 4).

The CB diffusion suffers a drawback that populations can grow
without bound. Our focus, however, will be on populations that are
small or in initial deterministic decline and thus are expected to be well
below any carrying capacity or other population ceiling imposed by
the environment. In those situations, the CB diffusion has been shown
to provide a good approximation to the dynamics of populations well
below carrying capacity (e.g., Goel & Richter-Dyn, 1974; Parsons &
Quince, 2007a, 2007b). This limitation will also be surmounted by our
consideration of percentiles and conditional moments rather than sim-
ply unconditional moments of the probability distribution, which can
be highly sensitive to relatively rare but extremely long persistence
times.

3 | PROBABILITY DISTRIBUTION OF
EXTINCTION TIME

3.1 | Baseline: Genetically uniform populations

To establish a set of baseline results and expectations, we describe
the persistence properties of a genetically uniform (“monomorphic”)
population with initial density X(0) = x whose dynamics are described
by the CB diffusion process (cf. Lambert, 2006)

dX=rXdt+ VuXdW. 2

Let T denote the time of extinction and write
O(t; x,8) =P(T<t|X(0)=x), (3)

for probability of extinction by time t given an initial population size x,
where we introduce the shorthand g = (r, v) to identify a genotype with
its two per capita parameters. Feller (1951a; see also Lambert, 2006)

showed the following:
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FIGURE 1 The per capita probability of extinction for genotype g = (r, v) as a function of time t. Each panel plots per capita risk functions
f(t; g) for different combinations of per capita growth rate r and per capita reproductive variance v (Equation 4b). The horizontal dotted line in
the upper left panel indicates the asymptotic per capita probability of extinction, F(g), for r = 0.01 (Equation 5). Note that the corresponding
probability of extinction for a population of density x that is monomorphic for genotype g is f(t; g)*

N raising f(t; g) to the power x (Equation 4a). Figure 1 shows example risk
(t; x,9) = [f(t; )] (4a) functions for genotypes with different combinations of r and v, repre-
where f(t; g) is defined as follows: senting growing, declining, and stationary monomorphic populations.

Below we show that per capita extinction risk functions are useful for
=2r/ [v(l—e‘“)] ifr£0 (4b) revealing effects of genetic variation on the duration of populations
-2/(vt) ifr=0. headed to extinction.

Let F(g) = lim,_,__ f(t; g) be the long-term limit of the per capita risk

mmw={

The mathematical form of (4a) is a manifestation of the branching function. We have from (4b)
property and, as O < f(t; g) < 1, the equation shows that the probability
of extinction declines geometrically with initial density x. 1 ifr<0

Note that the function f(t; g) defined by (4b) is independent of Fla)= { exp(—2r/v) ifr>0. (5)
the initial density x. We will refer to it as the per capita risk function
for genotype g because the extinction probability of a population The asymptotic probability of extinction of a genetically uniform

of arbitrary size x that is genetically uniform for g can be found by population with initial density x is F(g)* (cf. Lambert, 2006). Clearly only
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FIGURE 2 Mean (r < 0) or conditional mean (r > 0) times

to extinction (Equation 6b) for a population of density x that

is genetically uniform for genotype g = (r, v), where r is the per
capita growth rate and v is per capita reproductive variance. Note
that both the mean and conditional mean times to extinction
approach « as the magnitude of r shrinks to zero. Comparing
cases x/v =5, 10, and 50 shows the effect of increasing density
on the mean (or conditional mean) if v is assumed fixed or the
effect of decreasing reproductive variance if assuming x is fixed.
Inset: Probabilities of ultimate extinction F(g)* where g = (r, v) (see
Equation 5) for the same parameter values

genotypes with r > 0 have a nonzero chance of persisting indefinitely;

all others face certain extinction (Figure 2 inset).

3.1.1 | Mean time to extinction

If a monomorphic population is necessarily headed to extinction (i.e.,
if r < 0), the mean time to reach a critically low density c starting from
X = ¢ can be derived using standard diffusion methods (Karlin & Taylor,
1981). Indeed, if r < 0, this mean time is

_logx—log c—e*E (k) +e*E; (kx)

M.(x,8) = T (6a)

where k=|2r/v| and E;(a)=],” t"le~!dt is the exponential integral
function (Abramowitz & Stegun, 1972). Lande (1993) derived for-
mula (6a) assuming a CB diffusion with reflecting upper boundary at x
and ¢ = 1. Inthe limitasc— 0

v +log kx +€eXE (kx)

(6b)
[rl

Mix,g)=lim M.(x,g8) =
c-0

where y=0.57721... is the Euler-Mascheroni constant (Figure 2).
This, then, is the mean time to extinction for populations initially at
density x.

Using (6b), it can be shown that for any v > 0, Iimm_)0 M(x, g) = .
This means that while populations with r = O are necessarily destined
for extinction (see Equation 5), it takes indefinitely long on average for

them to disappear.

If r > 0, the mean time to extinction is infinite as a positive fraction
of populations are certain to persist indefinitely. However, a substan-
tial fraction of populations with r > 0 can go extinct (see Equation 5
and Figure 2 inset). Standard diffusion methods can be used to show
that the mean time to extinction of populations with r > O conditional
on extinction is given by expression (6b) (Figure 2). Indeed, it is possi-
ble to show that the CB diffusion with r > O but conditioned on extinc-
tion is itself a CB diffusion with r replaced by -r (e.g., Lambert, 2008).
A direct consequence is that the conditional distribution of extinction
times for r > O is given by (4a) with r replaced by -r.

The form of this conditional distribution has counter-intuitive
implications. For example, the expected lifetime of a genetically uni-
form population that is destined for extinction despite having positive
r actually shrinks with increasing r (Figure 2). Intuitively, this is because
a population with high r can only overcome its strong tendency to
grow if it experiences a rapid succession of unfortunate reproduc-
tive outcomes. Of course, the probability of such misfortune declines
exponentially with positive r (see Equation 5; Figure 2 inset).

Finally, note that (éb) serves as an upper bound to the average
lifetime of an extinction-bound population that is subject to density
regulation. In fact, (6b) is an upper limit to the expected duration of
the “final decline to extinction” of a population whose dynamics are
described by a CB diffusion with r > O such that its densities are con-
fined by a ceiling carrying capacity (Lande et al., 2003, pp. 47-49).

3.1.2 | Extinction time percentiles

The unconditional mean time to extinction is infinite for monomorphic
populations with r > 0. This allows only crude comparisons to popula-
tions with negative growth rates, which are expected to have finite
expected durations (Equation 6b). By comparison, extinction time
percentiles of the unconditional distribution—the time until there is
a specified probability of extinction—allow for fine-scale comparisons
of populations with different per capita growth rates, regardless of
sign. The probability distribution of extinction times (4) can be used to
determine these percentiles.

Consider the amount of time it takes a population of density x to
reach a specified probability g of extinction. This is the same as the
time needed to reach per capita probability (or risk) of extinction equal
top= g Let t(p; g) be the first time that the per capita risk of extinc-
tion is equal to p in a population monomorphic for genotype g = (r, v).
By (4a), this is the solution t of g = p* = ®(t; x, g) or, equivalently, the

solution t of

p=f(t;g). (7a)

Inverting this using (4b) leads to the general solution

1 2 .
ong) = —7Iog<1+v|0'gp) ifr£0
p;g)= ) fr—0
_vlogp rr=

(7b)

(Figure 3). As the maximum per capita probability of extinction

of genotype g is F(g) (see Equation 5), definition (7) makes sense



GOMULKIEWICZ T AL.

100
|

---Q1
Median

80
|

Time to Extinction

-0.10 -0.08 -0.06 -0.04 -0.02 0.00
r

FIGURE 3 Per capita quartiles for the unconditional time to
extinction [ Q, = t(0.25; g), Median = t(0.5; g), Q, = t(0.75; g); see (7)]
for genotypes g = (r, v) with different intrinsic growth rates r and fixed
per capita variance v = 0.1. The mean time to extinction (éb), shown
for comparison to these percentiles, assumes x/v = 10

only for values of p < F(g), that is, only for genotypes g = (r, v) with
r<-(v/2) log p.

In contrast to the mean (6b), extinction time percentiles (7) are
continuous at r =0 (Figure 3). Moreover, for per capita extinction
risks p well below F(g), the time to attain such risks (7b) rises slowly
with r (see the median and first quartile functions in Figure 3). For a
concrete comparison, consider two genotypes with the same repro-
ductive variance (v = 1), one with potential for explosive growth
(r = 0.2) and the other expected to decline catastrophically (r = -0.2).
Despite this acute difference, the median time to extinction (time to
risk p = 0.5) for the former genotype is a mere two time units lon-
ger than the latter. Put another way, if every genotype with r = -0.2
suddenly mutated to r = 0.2, the median time to extinction would
increase only a minor amount. It seems reasonable to expect that the
more realistic but comparatively slower process of adaptive substi-
tution of such a remarkably beneficial mutation would provide even
smaller advances in median longevity. Below, we show that this intu-

ition is justified.

3.1.3 | Maladaptive landscape

The per capita risk function f(t; g) defined in (4b) is useful for compar-
ing the vulnerabilities of different genotypes g = (r, v) to extinction. In
comparing two monomorphic populations of the same initial density,
the one consisting of the genotype with the higher value of f(t; g) is
more likely to be extinct at time t. In this sense, f(t; g) can be used to
construct an extinction risk-based “maladaptive landscape” for a set
of genotypes (Figure 4).

Each level of the risk function describes an entire curve of geno-
types whose combinations of r and v are equivalent with respect to
extinction risk. These “neutral” curves tend to change with t (Figure 4).
That is, two genotypes that are relatively neutral at one time may have
distinct extinction risks at other times. Indeed, it is possible for one

T, V|| £y

genotype to be more vulnerable to extinction than another for small
t and less vulnerable for large t (Figure 5). For the example shown in
Figure 5, the genotype with larger growth rate r but higher reproduc-
tive variance v (dashed curve) is more vulnerable to extinction than the
genotype with lower r and v in the short term but less vulnerable in
the long term. The genotypes have the same risk of extinction (i.e., are
neutral) at time t = 10.

With a baseline understanding of genetically uniform popula-
tions in hand, we turn to the process of extinction in polymorphic
populations.

3.2 | Genetically variable populations

Consider a population segregating for G distinct genotypes whose
dynamics are described by the system of stochastic differential equa-
tions (1). Such a population reaches extinction at the random time
T = T(w) for a particular realization o if the total population density
X(t, @)=Y, Xi(t,0)=0for t > T(w) but Xt, ®) > O for t < T(w).

We aim to understand how the probability distribution of T over
different realizations depends on the growth rates, reproductive vari-
ances, and initial densities of the G genotypes. Let x = (X1' Xy weer xG)
denote their initial densities and g = (g, g5, ..., §5) Wwhere we extend the

genotype notation g; = (r, v)) fori = 1, ..., G. Define

@(t; x,8) =P(T < t| X(0) =x), (8)

where X(t) = (X,(t), X,(t), ..., X;(t) are the densities of the genotypes
at time t. Assuming that the genotypes are independent implies that
(using Equation 4)

G G
o(t;x,9) =[] ot x.g) =[] [ft:8)]" &)

i=1 i=1

where f{t; g,) is given by (4b) with g; = (r;, v)).
Equation (9) can be rewritten in a simpler, more intuitive form as
follows. Let

xX= Z X; (10)

be the total initial density of the population and
pi=Xi/x (11)

be the initial frequency of genotype i = 1, ..., G. Then, (9) is equivalent
to

o(t;x,9) = [f(t:g)]" (12a)

where

G
fit,a) =] [ [ftt:g)]” (12b)
i=1

i

is the geometric mean per capita risk function. Note the formal simi-
larity of (12a) to (4a).
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FIGURE 4 Maladaptive landscapes at different times t. Per capita risks of extinction for genotypes g = (r, v) are shown for each combination
of r and v. Redder colors indicate genotypes with higher probabilities of extinction at the given time. Target per capita risk values p for each level

curve of the per capita risk function f(t; g) are provided

As we saw above, percentiles are expedient for comparing the
extinction times of monomorphic populations. With that in mind, we
will employ percentiles to characterize extinction times for geneti-
cally variable populations. From (12), the first time that the probability
of extinction is equal to g for a polymorphic population with initial
genotypic densities x = (x,, X,, ..., X;) is defined as the implicit solution
t = t(p, g) of

fit:9)=p, (13)

where p = ql/" is the target per capita risk of extinction for a popula-
tion of total density x (Equation 10).

It is possible to derive an approximate formula for t(p, g) for a pop-
ulation that is expected to grow or decline slowly. If |r,| < 1 for all seg-
regating genotypes i, then, from (4b), log f(t; g;) = —2/(vt). Substituting
this in (13) and solving for t lead to the approximation

2

vy logp (14)

t(p,g) ~ —
where VH:(Z,'il p;/v;)~! is the harmonic mean reproductive vari-
ance. Expression (14) reveals that in populations with slow rates of
growth or decline, the time needed to reach any specified prob-
ability of extinction is, to first approximation, independent of r
and inversely proportional to the overall variation in reproduction,
V. Note that this approximation for t(p, g) is bounded below by
-2/(v,

are, respectively, the minimum and maximum of v, v,, ..., v.. As har-

log p) and above by -2/(v., logp), where v_. and v__

max n

monic means disproportionately weight the contributions of smaller
values, the longevity of a population with slow expected change will
be extended most strongly by genotypes with lower reproductive

variance.
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FIGURE 5 Per capita risk functions f(t; g) for two genotypes
g = (r, v) that cross over time t. Solid curve: r = 0.05, v = 0.254.
Dashed curve: r=0.1,v=0.316

The results we obtained above for polymorphic populations
account for both evolutionary and population dynamic processes and
combine the distinct influences of the abundances, frequencies, and
demographic parameters (in essence, the fitnesses) of genotypes on
the time to extinction. In the sections that follow, we use our formu-
las to investigate the consequences of replacing, adding, or removing
genotypes, as well as sudden environmental change on the longevity

of a population.

3.2.1 | Mutation/replacement

Understanding how evolution impacts the duration of a doomed pop-
ulation is a main motivation for this study. Because total abundance
per se has a direct influence on population persistence, a conceptu-
ally clear way to separate out the influence of evolution on time to
extinction is to compare genetically variable and genetically uniform
populations with the same initial density. This raises the question,
however, of what monomorphic population would provide the most
biologically informative comparison. Spontaneous mutation presents
a clear option as, in essence, it causes a change in genotype with no
change in density at the moment it arises. This suggests that a mean-
ingful comparison would be to contrast a genetically uniform popula-
tion in which a mutation appears spontaneously with the same ances-
tral population sans mutation. Although we refer below to mutation,
our results also apply to a deliberate replacement of individuals by
the same density of a different genotype, as in the experiments of
Hufbauer et al. (2015).

Consider a mutation or substitute genotype with parameters
g* = (r*, v¥) that appears in an ancestral population with density x that
is monomorphic for genotype g = (r, v). Let x* denote the abundance
of the mutant genotype when it first arises. We assume the mutation
occurs at time t = 0.

To use the extinction time probability distribution (9) for t > 0, note
that there are just two genotypes—ancestral and mutant—so G = 2.
We then set x, =x - x* r, =r, v, = v for the ancestral genotype and

T, V|| £y

X, =X, ry=1r*, v, =v* for the mutant in (9). With these substitutions,
the extinction time distribution for the population that includes the

mutation, which we denote by ®*(t; x, g), is
@*(tx,9)=[fit; 9)] " [fit; )] (15a)

fitg)]"
flt;g) |

@*(t;x,8) =@(t; x,8) [ (15b)
where ®(t; x, g) is the extinction time distribution (4a) of the original
population sans mutation.

Rearranging (15b) suggests an intuitive measure for the effect of

mutation on the extinction profile of the original population:

* (4o 1/x .ot
[cb (t,x,g)] _flt;g*) (16)

D(t;x,9) T

The left-hand side of (16) is the relative change in extinction risk
per mutant at time t, which is equal to the ratio of mutant-to-ancestral
per capita risk functions.

As (15b) shows, the risk function ratio (16) predicts how a muta-
tion will impact the probability of extinction at time t of the population
in which it arose. In accord with intuition, a mutant with risk function
value f(t; g*) below or above that of the ancestral genotype, f(t; g), will
reduce or increase, respectively, the risk of extinction. Figure 6 shows
how the mutant-to-ancestral per capita risk ratio (16) varies over
mutant genotypes that arise in ancestral populations with negative,
zero, and positive growth rates, r.

Another way to understand the evolutionary impact of a sponta-
neous mutation is in terms of the relative impact it has on the duration
of the population in which it arises. Using (13), the time t* after the
mutation event needed to reach probability g of extinction is defined

implicitly by

s, g\ 1P
flt;g )] 17

p=f(t;g) [ g

where p* = x*/x is the initial frequency of the mutation and p = g
is the target per capita risk of extinction in a population of size x.
Although it does not allow a closed-form expression, (17) can be
solved numerically for t* given any combination of parameters and
initial conditions. Figure 7 indicates how mutations in the growth
rate r or in the reproductive variance v impact per capita median
times to extinction of declining, stationary, and growing monomor-
phic ancestral populations. The results suggest that mutations have
the least impact on populations that are expected to decline (i.e., r
negative) and greatest impact on populations with positive expected
growth rates. Even then, the evolutionary effect of de novo mutation
on longevity is remarkably small—well less than a time unit in abso-
lute terms.

If the effects of the mutation on r and v are small, then an approx-
imate expression for its impact on duration compared to no mutation
can be derived using Taylor series. Let t be the time (7) to per cap-
ita extinction risk p in the absence of mutation and define At = t* - t,
Ar=r*-r,and Av = v* - v. Then, the relative impact of mutation on

the duration of the population is approximately (Appendix A)
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FIGURE 6 Ratios of mutant-to-ancestral genotypic per capita
risk functions, f(t; *)/f(t; g), at times t = 10 (left column) and t = 20
(right column) assuming the mutant’s respective growth rate and
reproductive variance are r* = r + Ar and v* = 0.2 + Av, where
r=-0.1,0,0.1 and v = 0.2 are the ancestral values. Dashed contours
correspond to indicated ratio values. Warmer (colder) colors show
mutants that increase (decrease) the risk of extinction compared to
the ancestral genotype replaced. The increased intensity of color
from top to bottom panels shows mutant effects are greatest on
ancestral backgrounds with the lowest risk of extinction

et—1—rt et-1
Atzxp* | ——————Ar— Av ).
P < r2 T v> (18)

As most mutations are initially rare, p* < <1 and so approxima-
tion (18) suggests that the impact of mutation on duration should be
proportionately small. This agrees with numerical results based on
(17) shown in Figure 7 which assume p* = 0.01. In contrast to new
mutations, genotypic replacements may involve values of p* that are
substantially above zero and thus could have significant impacts on
longevity.

The coefficients of mutational effects Arand Avin (18) are, respec-
tively, always positive and always negative. Both coefficients depend
on r, but the coefficient of Ar does not depend on v. This suggests a
greater role for ancestral r than v in shaping the impacts of mutation
on extinction time. Moreover, the magnitudes of both coefficients
increase exponentially with r. These features are borne out in Figure 7.
Contrary perhaps to conventional wisdom, this implies that evolution
is generally least impactful in harsh environments where population

growth rates are below zero.

3.2.2 | Abrupt environmental change

Sudden environmental change is an important driver of evolution-
ary diversification in natural populations (e.g., Estes & Arnold, 2007;
Franks, Sim, & Weis, 2007) and a central concern in applied settings
ranging from conservation biology (e.g., rapid climate change, toxic
spills, habitat destruction and restoration) to wildlife management
(species relocation programs) to agricultural systems (pesticide appli-
cation) to human health (e.g., antimicrobial treatment). Our results can
be used to project how a sudden change in environment could affect
the time to extinction of genetically diverse populations.

Consider a one-time change in the environment that affects the
abundances or demographic properties of all genotypes present.
Suppose that before the environmental change the genotype with
fitness parameters g; = (r, v)) has density x, and that these change sud-
denly to g/ =(r/,v/) and x|, respectively. If we set the time of the abrupt
changetot = 0, then, using (4), the probability distribution of extinction
times for t > O after the change is ®(t; x’, g'), where X’ = X X X2
and g’=(g’,g’,...,g’G).

Figure 8 illustrates the impact of an abrupt environmental change
that induces identical modifications in the growth rates of two equally
frequent genotypes (G = 2) without affecting their reproductive vari-
ances or abundances. The average growth rate of the population just
prior to the change is zero in the left panel and positive in the right.
Comparing the figure panels suggests that the impact of environmen-
tal change on the time to extinction is greater for the population with
higher average growth rate. We observed a similar association for
spontaneous mutations (Figure 7). An implication of this for conserva-
tion biology is that habitat restoration would help most to prolong the
lifetime of those species that are the least threatened; the persistence
of those same species, however, would be most sensitive to environ-
mental degradation.

This example, like the mutation section just above, highlights con-
sequences of a discrete change in a population that leaves its total
abundance unmodified. We now explore how changes in the densities
of some or all genotypes can affect the lifetime of a population.

3.2.3 | Supplementation and removal

In applications ranging from species preservation and restoration to
pest and disease eradication, population genetic diversity is often
altered by adding or eliminating genotypes. This changes both the
relative frequencies of genotypes and—in contrast to spontaneous
mutation and genotype replacement—the total population density.
The results above show that genetic diversity and abundance can con-
tribute separately to the duration of a population. Here, we consider
their combined effects on time to extinction in the two most common

contexts in applied population biology: supplementation and removal.

Supplementation
Suppose a manager wants to preserve a population that is currently
headed to extinction. If habitat restoration is not an option (see Section

3.2.2), then the manager could still aid the threatened population by
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FIGURE 7 Changes in per capita median time to extinction caused by mutations in r (left panel) or in v (right panel) that arise in declining,
stationary, and growing monomorphic ancestral populations as indicated by r,, the ancestral per capita growth rate. The mutant parameters
arer*=r,+ Arand v* = v, + Av. The time to per capita extinction probability p = 0.5 is t, in populations without and t in populations with the

mutation. Both panels assume ancestral reproductive variance v, = 0.2 and mutation initial frequency p* = 0.01

adding densities y = (y,, y,, ..., ¥¢) of G different strains to achieve a
particular conservation goal, say, to ensure a maximum probability g of
extinction at future time t > 0. The scenario corresponds to managing

a threatened population with current extinction outlook

P(T<t|X(0)=x)>gq. (19)

The management goal requires additions y that lower the extinc-
tion probability to g at time t. Stated in terms of our modeling frame-
work (8) and (9), these densities are solutions y of

G
a=a(tx+y,9)=[] [fit: )] (20)
i=1

where g, t, and the initial densities x are fixed. That is, supplements y
must satisfy

G
Y vilogflt;g)=-Sla, t.x) (21a)
i—1
where
G
S(g,t,x)= Z x; log f(t; ;) —logq (21b)

i=1

describes the shortfall that management efforts must overcome to

achieve the conservation goal. The status quo (19) implies S(q, t; x) > O.

Itis possible to achieve the management goal using any single gen-
otype (g; say) by adding

S(q, t,x)

=y =
W=V Tiog it g)

(22)
of the genotype and none of the rest (i.e., y; = 0 for i # j). The general
equation (21) that any y must satisfy can be recast in terms of these

“pure supplements”:

G
Yi-t (23)
=

Each term of the sum in (23) is bound between O and 1 because
0<y; <y} (ify;>y/, the management goal is surpassed).

Although any solution y of (21) could be used to meet the manage-
ment goal, some supplementation strategies may be more efficient to
implement than others. The smallest supplement consistent with the
conservation goal is achieved using a pure strategy (22) utilizing a gen-
otype with the minimum value among ylr, ,yJGr. Note from definitions
(4b) and (22) that this genotype has the lowest per capita risk among
all genotypes at time t. A pure strategy is also best if supplementation
costs differ among genotypes. Indeed, suppose the per capita cost of
using genotype g; is ¢, then the management goal could be achieved
most economically by supplementing exclusively with a genotype that
minimizes the total cost ¢;y;” among the G genotypes.
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FIGURE 8 Effect on time to extinction of an abrupt shift in
environment. t, . and t . are the respective per capita median
times to extinction under environmental conditions before and
after the shift. All curves assume two equally abundant genotypes
with the same reproductive variance v = 0.2 but different intrinsic
growth rates (r,, r,), corresponding to mean intrinsic growth

rate o =0.5r; +0.5r, in the original environment. The abscissa,
Ar, is a one-time change in r experienced identically by both
genotypes, that is, I, =r; + Ar and r’2 =r,+ Ar. Other parameters
arefo > 0: (ry, r,) = (0.05, 0); Fo =0 (ry, rp) = (-0.025, 0.025); 5 < 0:
(ry,r,) =(0,-0.5)

In many and probably most conservation settings, managers would
need to draw supplements from a source population for which the
parameters r and v of individual genotypes are impractical to assess.
If the distribution of genotypes in the source is unknown or partly
known, Equation (21) can be used to develop a management policy
as follows. Suppose the true frequency of genotype g; in the source
pool is (Z:,.G=1 n; = 1). What size random sample from this pool would
ensure a probability p of meeting the management goal? If the true
frequencies are known, and population sizes are sufficiently large to
invoke the strong law of large numbers, randomly sampling a total
density y from this pool will result in densities y, = yr; of genotype
ie{1,..., G}l. By Equation (23), the sample density necessary to meet
the management goal (20) with probability p = 1 is

-1

G
y= [Z :7] : (24)

i=1

which is the harmonic mean of the pure supplement densities defined
in (22). If the exact values of the =, are not known but it is possible

to find constants a; such that P(a, < x,, ..., a < ) 2 p, then the man-
agement goal can be met with probability p by choosing a suitably

enlarged sample size y that satisfies

G -1
N a;
y= [Z y—L] : (25)
i=1 i
More generally, linear programming methods (e.g., Gill, Murray, &
Wright, 1981) based on (23) can be used to find management solu-
tions y that are optimal given other practicalities (e.g., a genotype

whose availability for supplementation is limited).

Removal
The primary aim of pest and disease management is to speed the
demise of pathogens or, equivalently, elevate the probability of their
extinction at any time. Eradication goals are often attained by adminis-
tering drugs, pesticides, or other treatments that reduce growth rates
of all pathogens. The impacts of sublethal options can be assessed by
applying approaches described in Section 3.2.2. We examine here how
lethal treatments or removal protocols that instantly reduce pathogen
or pest densities affect the persistence of pathogen populations.
Consider the densities of pathogen genotypes that would need to
be removed to achieve a desired probability of elimination g within a
time frame t. Intervention is needed only if g > ®(t; x, g), the proba-
bility of pathogen clearance within that time without treatment (see
Equation 12). Let z be the density of genotype g; to be removed.
Clearly, the removal densities are restricted to 0 <z <x; for all i.
Letting z = (z,, ..., z;) and solving ®(t; x - z, g) = q for z shows that the

removal densities must satisfy

=1 (26)

G
=1Z

Zi
i1 %

where z; =5(q,t,x)/ log (f(t; g;); S(q, t, x) is defined in (21b). The require-
ment q > ®(t; x, g) ensures that z; >0 for all genotypes.

In contrast to supplementation, it may be impossible to
achieve the treatment objective using a “pure” removal strategy,
z=(0,..,0, z, 0, ..., 0). This would occur whenever x; <z for all G gen-
otypes. Standard methods of linear programming (e.g., Gill et al., 1981),
however, can be applied to identify efficient removal strategies. For
example, the strategy requiring the smallest overall density of patho-
gens to be cleared can be computed by minimizing z =z, +z, + - + z;

subject to the linear constraints (26)and 0 < z; < x; fori=1, ..., G.

4 | DISCUSSION

Evolutionary rescue studies establish, both theoretically and empiri-
cally, that adaptive evolution can enable the indefinite persistence of
populations that would otherwise go extinct. By extension, it stands
to reason that evolution might also delay the demise of populations
whose extinction it cannot prevent altogether. Our findings show,
however, that evolution does little to extend the lifespan of popula-
tions headed to extinction.
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That evolution does little to prolong the remaining lifetime of popu-
lations headed to extinction was previously predicted in Gomulkiewicz
and Holt (1995). Their speculation, however, was based on an informal
inspection of results generated by deterministic models of population
and evolutionary dynamics and use of a positive density as ersatz
extinction. Our study now rigorously establishes the veracity of this
conjecture, accounting fully for stochastic population and evolution-
ary dynamics as well as exact extinction. We found that evolution is
equally impotent in delaying the final demise of populations that are
expected to decline as it is of populations expected to increase but
that nonetheless descend to extinction through a series of unfortu-
nate chance events.

We appraised the impact of evolution by comparing the extinction
time of a monomorphic, mutant-free “ancestral” population to that of
a descendant population of the same density but polymorphic due to
the spontaneous appearance of a mutation. Our numerical and analyt-
ical results (see Equation 18) show that the impact of the mutation on
persistence time is proportional to its initial frequency, which suggests
that the ineffectiveness of evolution in this assessment is due primar-
ily to the scarcity of new mutations.

Of course, populations often harbor substantial amounts of stand-
ing genetic variation, and it is natural to ask how evolution impacts
longevity in those populations. Our results apply to these populations
with ample genetic diversity as we did not require assumptions about
the rarity or commonness of genotypes. Isolating the role of evolution
is less clear, as it is not obvious which comparable nonevolving popu-
lation would make for an appropriate comparison. Although it is easy
to concoct possibilities (e.g., a genetically monomorphic population of
size x with r and v values equal to the respective means of the poly-
morphic population), it is unclear what, if any, biological insights such
highly artificial comparisons might provide. In contrast, comparing
populations with and without a mutant has clear biological relevance
as it addresses a classic question about the impact of a new mutation,
albeit in a novel context. While it may be difficult to separate the role
of evolution meaningfully from other processes such as population
dynamics, our methods explicitly account for evolution (adaptive and
otherwise) and can be used to forecast and explain population longev-
ity in a variety of contexts, including species’ responses to environ-
mental change, conservation and wildlife biology, the management of
agricultural pests, and the treatment of pathogens relevant to health
and disease.

Our analyses revealed some unexpected results. First, conditioned
on extinction, the mean time to extinction increases as the magnitude
of r, the intrinsic rate of population growth, shrinks. This is intuitive
when ris negative: Populations expected to decline more slowly should
persist longer. But the result holds even when r is positive, which
means that among populations expected to increase, those with the
higher growth rates go extinct more rapidly, on average. Conditioning
on extinction is key to making sense of this anomalous-sounding result
as populations with high expected growth rates can go extinct only
if they “escape” the strong tendency to grow by experiencing a rapid
succession of bad demographic luck (mathematically, the process con-
ditioned on extinction has a negative growth rate, viz. -r). Although
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the conditional time to extinction is reduced, the probability that a
population goes extinct declines exponentially with r (Figure 2, inset).

A second unusual finding concerns the relationship between the
harshness of the initial environment and the impact of adaptive evo-
lution on time to extinction. Conventional wisdom holds that selec-
tion is stronger in harsh than in benign demographic conditions. To
the contrary, our analyses of spontaneous changes of fixed magnitude
to the environment or to the genetic composition of a population
(e.g., new mutations with fixed change in genotype) demonstrate that
adaptive evolution can have less impact—good or bad—on struggling
populations (lower r) than on thriving populations (higher r). The lim-
ited impact of further negative changes on a threatened population
might be understandable as the time to extinction is already short
and obviously cannot be negative. In contrast, the upside potential is
boundless, yet the time to extinction is nearly the same with or with-
out beneficial changes (Figure 3). It is, alas, not intuitively clear to us
why the same beneficial changes extend the time to extinction more
when they appear in populations with higher than with lower expected
growth rates. In contrast to spontaneous changes of fixed magnitude
(e.g., new mutations that change r or v by a fixed amount), replace-
ment of individuals by genotypes sampled from a fixed distribution
(as in experiments of Hufbauer et al. (2015)) could potentially affect
longevity more in harsh demographic conditions than in benign ones.

Our analyses demonstrate the central importance of per capita
extinction risk functions for understanding the remaining lifetimes
of both genetically uniform and polymorphic populations. Much the
same way as fitness functions are used in population genetics to
describe the adaptive spread and relative prevalence of genes and
genomes within populations, per capita risk functions describe the
relative impacts of different genotypes on the time to extinction of
populations. In this sense, per capita risk functions serve as “misfit-
ness” functions.

We found that a change in the expected growth rate (r) has more
of an impact on extinction time than a comparably sized change in
reproductive uncertainty (v). This asymmetry can be traced to the dou-
ble role that r plays. Whereas r and v make comparable contributions
to the probabilities of extinction in the short term, r alone determines
whether or not a population is certain to go extinct in the long run and
so in effect sets the stage for the extinction.

The theory developed here helps enrich our understanding
of recent experimental studies that examined impacts of genetic
variation and abundance on persistence in stressful environments
(Hufbauer et al., 2015; Ramsayer, Kaltz, & Hochberg, 2013). Those
experiments, like our model, show a direct link between abundance
and persistence and also confirm the potential impact of genetic varia-
tion on persistence. Although both studies were designed with a focus
on successful cases of evolutionary rescue, visual inspection of tra-
jectories that were recorded for failed populations (fig. 1 in Ramsayer
et al. (2013) and fig. 2 in Hufbauer et al. (2015)) shows that monomor-
phic and polymorphic replicates with the same initial size have similar
extinction times, which matches our predictions.

Our theory also helps extend and refine interpretations of patterns
in studies with treatments that manipulated genetic diversity while
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controlling for initial population size. Ramsayer et al. (2013) found that
genetically “diversified” populations of the Gram-negative bacterium
Pseudomonas fluorescens were more likely to persist when exposed to
the antibiotic streptomycin than same-sized populations started with
a single clone. The diversified populations initially harbored higher fre-
quencies of resistant mutants than the clonal populations. Similarly,
the “genetic rescue” treatment in Hufbauer et al. (2015) replaced a
portion of flour beetles (Tribolium castaneum) from a stock population
with substitutes obtained from a separate population that were par-
tially pre-adapted to a stressful food resource (corn meal). Persistence
on a corn meal diet of the genetically mixed population was compared
to that of a stock population with the same starting size. The genet-
ically variable populations in both studies were more able to persist
for the duration of the experiment than the less variable controls.
The flour beetle manipulation also relieved inbreeding depression by
fostering production of more fit hybrid offspring. The experimental
treatments thus introduced novel genotypes that had lower risks of
extinction than the original genotypes they replaced or descended
from. In the vernacular of our model, the diversified and genetic rescue
populations were relatively successful because fit; g,,) < f(t; goriginal).
Of course, the hybrid genotypes in the Tribolium experiments were
ephemeral and so their impact on persistence is not given complete
account in our analyses, which assume asexual reproduction. Theory
showing how sexual reproduction, including inbreeding, hybridization,
and genetic recombination, affects time to extinction we leave to a
future study.

The models we analyzed here assume not only a genetically simple
type of inheritance but also make ecologically simplistic assumptions
about population dynamics and environmental change. Perhaps most
glaring is the absence of density dependence in population growth
rates. This assumption in particular is a considerable benefit for anal-
ysis because it implies that individuals and genotypes can be tracked
independently which in turn allows application of the extensive mathe-
matical theory developed for branching processes. Although the inde-
pendent branching assumption precludes analysis of extinction times
for populations with density-dependent dynamics, it might be possible
to derive tractable results using approaches allowing interdependent
per capita growth rates that have been developed to analyze evolu-
tionary rescue (e.g., Lambert, 2008; Ueker et al., 2014). Note too that
some of our results—such as the expected time to extinction—provide
upper bounds for populations with ceiling density dependence. Finally,
we considered the impacts of a single abrupt environmental change on
the duration of populations. Our results could be extended to scenar-
ios that assume gradual environmental change by imagining a discrete
sequence of small abrupt changes or by extending approaches (such
as those of Lynch and Lande (1993) and Biirger and Lynch (1995)) that
model continuous environmental change directly.

Similar to evolutionary rescue theory, our extinction time formulas
depend on two essential demographic parameters: r, the per capita
growth rate (or “Malthusian fitness”) and v the per capita reproduc-
tive variance. Methods for estimating these parameters from popula-
tion time series are discussed in Ramsayer et al. (2013), Martin et al.
(2013), and Alexander et al. (2014). In microbial cells, for example, it is

possible to estimate r and v by measuring the birth and death rates of
cells: If b and d are per capita birth and death rates, thenr = b - d and
v =b +d (e.g., Martin et al., 2013). Note that our extinction time prob-
ability distributions can be written as parametric versions of the risk
and hazard functions that are central to survival analysis, which is a
well-developed collection of statistical methods that are used to eval-
uate stochastic time-to-event data (e.g., Klein & Moeschberger, 2013).
Survival analysis may be particularly useful in analyzing experimental
data because experiments can consider only finite time horizons in
practice and so the ultimate fate of any population that remains at
the end of an experiment is equivocal. We plan to develop the statis-
tical connection between our models and survival analysis in a future
publication.

Besides the demographic parameters, many of our results and
those for evolutionary rescue depend on a population’s initial density,
x. We have taken care to avoid using “count” and “number” to describe
x as those terms imply a discrete scale for abundances, whereas CB
diffusions assume a continuous scale for population size. Our use of
the CB diffusion as a stand-alone stochastic modeling framework thus
has the drawback that there is no obvious value on the continuous
scale that corresponds to one individual of a specific genotype, which
is the initial count of a single new mutant. Nonetheless, some exper-
iments measure population size as a density (e.g., Ramsayer et al.,
2013) and it is often possible to use a CB diffusion to approximate
a discrete-scale branching process by prudently rescaling population
number as a density (for details and examples see Goel & Richter-Dyn,
1974; Lambert, 2006). Regardless of scale, “per capita” has the usual
meaning (i.e., “per unit abundance”) and, of course, extinction corre-
sponds to a density of zero.

The formulas we derived here can be used not only to interpret
data on temporal patterns of extinction but also to forecast population
longevity. In addition, our methods can be used to design manage-
ment strategies to meet specific conservation or wildlife policy goals
(Lankau, Jgrgensen, Harris, & Sih, 2011; Nicotra, Beever, Robertson,
Hofmann, & O’Leary, 2015; Pierson et al., 2014; Smith, Kinnison,
Strauss, Fuller, & Carroll, 2014) and to assess efforts aimed at speeding
the eradication of agricultural pests or medical pathogens (Alexander
et al., 2014; Wu, Saddler, Valckenborgh, & Tanaka, 2014). These strat-
egies include manipulations of overall population abundance, genetic
diversity, or both. We have also shown how our formulas can be
extended to compare the costs and benefits of different management
or treatment plans and to design economical schemes. Even if evolu-
tion has relatively little natural impact on how long a population has
until its demise, as our results suggest, our findings demonstrate that
well-designed managed changes have significant potential to lengthen

or shorten the lifetime of a population.
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APPENDIX A

If t is defined by (7) and t* is the solution of (17) then
log f(t; g)=(1-p*) log f(t*; g) +p" log f(t*; ") (27)
or, equivalently,
[Infit*;9) - Inf(t; g)] —p* [Inf(t*; ) - Infit*;g*)] =O. (28)

Using first-order Taylor expansions for the left-hand side, (28) is
approximately

dInflt;g) . [9Inf(t;g) aInf(t; g)
o At+p o Ar+ Y Av[ =0, (29)

where At=t*-t, Ar=r*-r, and Av=v* - v. By definition (4b) of
f(t; g) we have

oInftg) _

o cr?, (30a)
oInf(t;g) =_C(e"t—1—rt), (30b)

ar

aInf(t; -1
nfltg) __.rlet-1) (30c)
ov v
where
rt
C= _ &€

WETETE) (30d)

Substituting expressions (30) into (29) and solving for At gives the
approximation (18).



