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Abstract

Background: The differentiation process from stem cells to fully differentiated cell types is controlled by the
interplay of chromatin modifications and transcription factor activity. Histone modifications or transcription factors
frequently act in a multi-functional manner, with a given DNA motif or histone modification conveying both
transcriptional repression and activation depending on its location in the promoter and other regulatory signals
surrounding it.

Results: To account for the possible multi functionality of regulatory signals, we model the observed gene
expression patterns by a mixture of linear regression models. We apply the approach to identify the underlying
histone modifications and transcription factors guiding gene expression of differentiated CD4+ T cells. The method
improves the gene expression prediction in relation to the use of a single linear model, as often used by previous
approaches. Moreover, it recovered the known role of the modifications H3K4me3 and H3K27me3 in activating cell
specific genes and of some transcription factors related to CD4+ T differentiation.

Background
All cells in a multi-cellular organism arise from the
same zygote and thus carry the same genetic informa-
tion. However, complex regulatory programs allow stem
cells to differentiate into distinct cell types. For instance,
in response to different infectious agents Naive CD4+ T
cells differentiate into at least four types of T helper
cells—Th1, Th2, Th17, and inducible regulatory T cells
(iTregs) [1]. While all of these cell types are involved in
the adaptive immune response they serve distinct roles
by secreting different cytokines. For example, Th1 acts
against mycobacterial infections by releasing IFNg,
which activates the response of macrophages [1] while
Th2 cells secrete various interleukins helping B-cells to
induce humoral immunity.

On the transcriptional level, the differentiation process
from stem cells to fully differentiated cell types is con-
trolled by the interplay of chromatin modifications and
transcription factor activity [2]. Chromatin structure is
shaped primarily by histones. The presence or absence
of these large globular protein complexes determines
the accessibility of the promoter regions for the tran-
scriptional machinery and thus performs a high-level
control on gene expression [3,4]. The affinity of histones
to DNA is modified by the cell via a large repertoire of
post-translational protein modifications including acety-
lations and methylations.
The resulting epigenetic histone code appears highly

intricate, with a given histone frequently carrying several
different modifications at a time. Despite this complexity,
it has become clear that certain modifications, such as the
trimethylation of the lysine 4 residue in the tail of histone
H3 (abbreviated H3K4me3) are mainly associated with
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active promoters while other modifications such as
H3K27me3 tend to be associated with inactive promoters
[5]. The importance of histone modifications for the differ-
entiation of Naive CD4 T-cells into Th1 cells has recently
been verified at [6], which demonstrated that IFNg expres-
sion is controlled by the histone methylation status of its
promoter.
Aside from chromatin structure, transcription factors

(TFs), play an essential role in controlling cell differen-
tiation by guiding the transcriptional machinery to its
target promoters and facilitating the initiation of tran-
scription. For instance, in T-cell differentiation, in vitro
studies demonstrated that either high levels of the tran-
scription factor GATA3 or strong signalling via the
transcription factor STAT5 is sufficient to determine
the Th2 cell fate [1].
Particularly in the context of genome wide studies,

computational biology analysis have become an essential
component of elucidating the regulatory signals underly-
ing observed gene expression patterns. Usually, the pro-
blem of identifying the promoter elements guiding
differentiation and cell type specific gene expression is
tackled by first selecting the genes which are most spe-
cifically expressed in the particular cell type and then
performing motif over-representation analysis on their
promoter sequences as in [7,8] (see [9] for a recent
review). While such methods allow identifying poten-
tially regulating transcription factors they have the
intrinsic drawback of requiring a previous grouping of
genes and of being able to explain only the expression
of the genes with highest specificity for the condition.
In contrast, linear regression models, as first proposed

by [10,11], combine all regulatory signals in order to
explain the expression pattern of the genes. In their
work, Bussemaker et al. [10] focused on explaining gene
expression based on combinations of predicted TF bind-
ing sites. The coefficients of the linear model indicate
the importance of a particular regulatory signal. That is,
signals which obtain large positive coefficients likely cor-
respond to putative activators while signals with large
negative coefficients likely act as suppressors. Recently,
Karlic et al. [12] also used a linear regression model in
order to estimate promoter activity based on histone
modification data. By design, the above approaches
assume that a given regulatory signal exert the same
regulatory effect on all its target genes.
However, transcription factors and thus their DNA

binding motifs frequently act in a bi-functional manner,
with a given DNA motif conveying both transcriptional
repression and activation depending on its location with
respect to the transcription start site (TSS) and the
sequence motifs surrounding it. For instance, RUNX1
and RUNX3 have been shown to act both as repressors

and activators in different tissues and are involved in
determining T-cell fate [13].
To account for the possible multi functionality of reg-

ulatory signals, in this study, we propose to extend
[10-12] by allowing the observed gene expression pat-
terns to be explained by not just one, but by a mixture
of several linear regression models [14,15]. This permits
for instance to find mixture models, such that genes
with high maximal expression are controlled by a differ-
ent group of regulatory signals than genes with low
maximal expression (see Fig. 1). That is, a regulatory
signal might act as repressor when associated with lowly
expressed genes while it may function as activator or
neutral bystander when present in the promoter of
highly expressed genes.
In order to find the regression models best explaining

the expression data, our method takes as input the
matrix Y of observed expression profiles from all genes
as well as a matrix X, containing the regulatory signals
for the corresponding promoters (i.e. predicted TF bind-
ing affinities and presence of histone modifications). For
each gene, it then estimates the coefficient vector B,
representing the relative importance of each regulatory
signal and its effect on gene expression (activation or
repression).
We apply this novel approach to identify the underly-

ing regulatory signals guiding gene expression in each of
the four differentiated CD4+ T-helper cell types. As
potential regulatory signals we consider both, histone
modifications (HM) as measured by Chip-Seq [16] as
well as predicted binding affinities [17] from a set of
TFs related to lymphoiesis [1,18-20]. As we are mainly
interested in cell type specific signals, we restrict the
analysis to genes with low CpG content in their promo-
ters [21] as such genes tend to be expressed in a tissue
and stage specific manner while genes with high CpG
promoter content tend to be broadly expressed. Using
this method we expect to improve the gene expression
prediction in relation to the use of single linear model,
but also to reveal the regulatory roles for histone modi-
fications and transcription factors.

Results and discussion
Regulatory signals predicts expression
As a first step, we want to determine which set of regu-
latory signals, X, can explain the observed gene expres-
sion data, Y , best. To this end, as a first step we supply
our algorithm with a matrix X containing only predicted
TF binding affinities, only histone modification data or
both sets of regulatory signals and assess how well the
resulting regression models can capture the data. As
measure of quality for the different models we thereby
compute the mean square error between the predicted
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gene expression values and the actual measurements
(see Methods for details).
Predicting the gene expression from the four T-cell

types based on only histone modification data and by
means of only a single regression model yields MSEs of
about 0.5 for HM and HM+TF on all data sets (see red
bars in Fig. 2). A mixture of two regression models
further reduces the MSEs to an average value 0.25
across all cell types. In all scenarios, the difference of
MSE between one and two models were statistically
relevant (t-test p-value < 0.01) indicating the advantage

of using mixtures to predict expression. The model
selection procedure (see Methods) indicates that the
data is optimally explained by the combination of 2-4
regression models (see Fig. 2) and that gene expression
data can be well predicted based on histone modifica-
tion data alone.
In contrast, using a single regression model to predict

gene expression data based on TF binding affinities
alone yields considerably larger MSEs across all cell
types (average MSE = 2, see blue bars in Fig. 2). Inter-
estingly, supplying our algorithm with the combined

Figure 1 Example of Linear Regression Mixture Model. Illustrative example of the use of linear regression mixture models to predict gene
expression from the regulatory signals. Gene expression profiles, indicated by the heat map on the left (red and green correspond to highly and
lowly expressed genes, respectively), are best predicted by two different models: model 1 for genes with high to medium expression and model
2 for genes with medium to low expression. At the level of each linear model k, the gene expression vector Yk is predicted by the multiplication
of the matrix Xk (bright red values indicate higher TF binding strength or HM presence) with the vector of model coefficients Bk (red, black and
green values indicate positive, near zero and negative regression coefficients, respectively). In this example, B1 indicates that genes with high to
medium expression are repressed by TF1, positively regulated by TF2 and are unrelated to the presence of HM1. In contrast, B2 indicates that
genes with medium to low expression are repressed by TF2, positively regulated by HM1, and are unrelated to the binding affinity of TF1. If we
estimate a single linear model from the same data, TF2 would have a regression coefficient close to zero as the positive coefficient from model
2 and the negative coefficient from model 1 would cancel each other out.
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data from both histone modifications and TF binding
affinities yields MSEs similar to the ones obtained with
only histone modification data alone (see Fig. 2). This
indicates that the utilized histone modification and TF
binding data cover rather redundant than complemen-
tary information about gene expression. As histone
modifications and HM+TF affinities yield the solutions
with the lowest MSEs, in the following we will continue
the analysis with the models based on these data sets.

Control of Th1 gene expression
Having established that histone modification data
together with a mixture of two regression models yields
the most significant results we now investigate which
type of modifications contribute most strongly to these
models. We thereby restrict our analysis to the data
from Th1 cells and the corresponding regulatory signals
which obtain the largest absolute regression coefficients
(results from other cell types closely resemble those
from Th1 cells, see Additional File 1 for details).
For model 1, which explains the expression pattern of

the most highly as well as moderately expressed genes,
the histone modifications with largest influence are
H3K4me3 and H3K27me3, with regression coefficients
of +0.7975 and -0.4533, respectively. As shown in the
top part of Fig. 3 these two modification form a gradient
with H3K4me3 being most frequently found in the
highly expressed genes while being absent in moderately
to lowly expressed genes. In contrast, H3K27me3 is con-
sistently detected in promoters of lowly expressed genes
but appears weaker or even absent in promoters of
highly expressed genes.
For model 2, which explains the transcriptional activ-

ity of a small subset of highly expressed as well as most
of the lowly expressed genes, we again find H3K4me3 to

have the strongest positive regression coefficient (b =
0.71). This is reflected by a strong association of this
modification with the most highly expressed genes of
this set (see Fig. 3). In contrast, H3K27me3 obtains a
regression coefficient of close to zero (b = 0.03) in this
model as this modification appears with the same inten-
sity in nearly all genes assigned to model 2.
An alternative view of this results is presented at

Fig. 4. There, we have the interpolated values of the
histone modifications against the gene expression, the
linear models for each component and the resulting
mixture model. Clearly, dependence of H3K27me3 on
gene expression is not linear, as low expressed genes all
present a high presence of histone modifications. This
non-linearity is captured by the mixture model (red
line), and explains the lowest MSE errors obtained when
more than one linear models is applied. To see whether
the influence of TFs may contribute to this effect we
next look in detail at the results obtained from com-
bined histone and TF data together with a mixture of
three correlation models. As shown in Fig. 5), we see
similar results in respect to the histone markers:
H3K4me3 as enhancer and H3K27me3 as inhibitor of
expression for genes with high expression and
H3K4me3 as enhancer for genes with low expression.
Moreover, only for the genes with high expression, there
are some TFs (Pax5, Stat5, Meis/Hox, Iscbp) promoting
gene expression and a TF (MyB) inhibiting expression.
For all TFs, regression coefficients were in the range of
0.1 to 0.15 (see Additional File 1 for additional results).
For genes with low expression, we found no relation
between the TFs binding affinities and expression. Th1
cells are known to be regulated by T-bet and Stat4 [1].
While our study lacked the PFM of T-bet, it listed the
closely related Stat5 as a positive regulator of the genes
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Figure 2 Regression Prediction Error. We depict the MSE error for 1 to 6 models for the prediction of expression on Th1, Th2, Th17 and iTreg.
Bars marked with * indicate number of linear models indicated by the model selection. The MSE with TF is higher than the use of either HM/TF
or HM on all combinations of expression data and number of models. For all combination of expression data and number of models, the was
no significant difference between the MSE from HM or HM/TF.

Costa et al. BMC Bioinformatics 2011, 12(Suppl 1):S29
http://www.biomedcentral.com/1471-2105/12/S1/S29

Page 4 of 10



with high expression. In relation to factor related to
inhibition, there has been a recent implication of c-MyB
to bind to H3 histone tails and to promote histone acet-
ylations in Humans [22]. These results indicate a puta-
tive role of the MyB in down-regulating the expression
of genes during CD4+ T differentiation by promotion of
epigenetic changes. However, further acytilation modifi-
cation data would be required for a better characteri-
zaion of the role of this factor.

Comparison with previous studies
Several computational biology methods have been pre-
viously proposed for the use of linear models for pre-
dicting gene expression in the context transcription

factor binding [10,11] or histone modifications [12]. In
all cases, distinct datasets were used and results are not
directly comparable. In relation to [12], the analysis
were based on Human naive CD4+ T cells and included
38 histone modifications. Their predicted model
obtained a correlation coefficient of 0.72 on genes with
low CpG content with HM H3K4me3 and H3K79me1,
while our method had a coefficient at the range 0.64 –
0.68 for one model and 0.85 – 0.87 for two models for
H3K4me3 and H3K27me3 data. The increase of the cor-
relation coefficient from single linear models to two lin-
ear models is an indication that all these approaches
would profit from the use of the mixture of linear
regressions framework.

Conclusion
Predicting gene expression from regulatory signals is an
important but unmet goal in bioinformatics. In this
study, we propose a novel approach which uses mixtures
of linear regression models together with transcription
factor binding and histone modification data for esti-
mating transcriptional activity of CpG depleted promo-
ters. In addition the approach allows to determine the
functional activity of the various regulatory signals. We
show that our approach obtains significantly smaller
errors in predicting the expression of genes in compari-
son to simple linear regression models as used in pre-
vious approaches. For gene expression data from CD4+
T helper cells we find that both, histone modification
data alone and histone modifications together with pre-
dicted TF binding affinities, yields the best expression
predictors. In accordance with previous dedicated stu-
dies we recover the well known regulatory roles of
H3K4me3 as an enhancing and H3K27me3 as a repres-
sive regulatory signal for gene expression. Moreover, our
predictions suggest that histone modifications act not in
a binary on/off fashion but rather in a continuous way
with levels of H3K4me3 and H3K27me3 steadily rising
or falling over a large range of expression values in a
non-linear way. With the use of TF binding affinities,
we also partially recover the main factors such as the
Stat family involved in T helper cell type specific gene
expression. Interestingly, we observe a negative effect of
cMyb on expression in all T helper cell types. This
raises the question whether MyB, which has been
recently showed to promote histone acetylation marks
in hematopoiesis [22], could play a role in the down-
regulation of genes in T helper cells types.
The advent of next generation sequencing provides an

ever growing stock of high quality data for the full range
of histone modifications, DNA methylation state and
transcription factor occupancy across the entire genome
from various cell types and differentiation stages. Several
methodological improvements will be required to

Figure 3 Regression Results Th1. Results for mixtures of two
regression models utilizing only histone modification data on Th1.
Model 1 captures the expression of 2231 genes and model 2 of
3923 genes. Corresponding gene expression levels are shown by
the vectors Y on the left (red and green indicate high and low
expression, respectively). Association strengths of the regulatory
signals for the corresponding promotes are indicated by matrices X
(red and black indicate high and low association, respectively).
Finally, the magnitude of the corresponding regression coefficients
for each of the regulatory signals in each of the models is indicated
by vector B (bright red for large positive and bright green for large
negative values). In model 1, the amount of H3K4me3 correlates
positively while the level of H3K27me3 correlates negatively with
gene expression. In model 2, only H3K4me3 levels correlate with
gene expression as H3K27me3 levels remain constant over the
whole expression range.
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integrate this wealth of data in order to shed light on the
complex interplay between the different regulatory sig-
nals acting in eukaryotics. Moreover, in an ideal case
where all possible regulatory signals have been measured,
advanced feature selection procedures such as postulated
by [23], will be vital for the detection of all the players
involved in determining gene expression.

Methods
Mixture of linear regressions
In the following we want to model the observed expres-
sion level of all N genes, using different linear combina-
tions of the M different regulatory signals associated
with the promoters (i.e. binding affinities for various
TFs and different histone modifications). To this end let
yi be the gene expression level of gene i (the dependent
variable) and xi be a corresponding vector of M regula-
tory signals (the regressor variables). The single linear
regression model is then defined as

yi=b0+ xiB
T + ∊i, (1)

where B is a vector (b1, …,bM) representing regression
coefficients and ∊i is an error term. For mathematical
convenience, we redefine the vector with the regressor
variables to be xi = (1,xi1, …,xiM) and include the bias
parameter b0 in the beginning of B, that is B = (b0, b1,
…, bM). Assuming the error ∊ follows a Normal

distribution with standard deviation s2, the linear
regression model has the following distribution

ℙ(yi|xi, B,s2 ) = N(yi|xiB
T,s2 ). (2)

A mixture of linear regression models is defined as a
convex summation of K distributions

 y x y x Bi i k i i k
T

k

k

K

| , | ,Θ( ) = ⋅ ( )
=

∑ N 2

1

(3)

where Π = (π1, …,πK) are the mixture coefficients,

which respect πk ≥ 0 and  kk

K ==∑ 1
1

, and Θ are the

model parameters (Π, B1,…, BK, 1
2 , …,  K

2 ).

For a given data X and Y, where X is a set on N
observations xi and Y a vector with N observations yi,
the mixture of linear regression models can be estimated
with the Expectation-Maximization algorithm [14,24].
We resort to Maximum-a-posteriori (MAP) estimates of
the parameters, as described in the next section, to
avoid over-fitting [25]. The EM works by finding esti-
mates Θ maximizing the posterior distribution over the
data X and Y

ℙ(Θ|X, Y, Z) ≈ ℙ(Y, Z|X,Θ)ℙ(Θ) (4)

where Z is the vector of hidden variables with zi Î{1,
…, K} indicating which linear model an observation i

Figure 4 Histone Modification against Th1 Gene Expression. We depict the values of Th1 gene expression against H3K27me3 modification
(left) and H3K4me3 modification (right). The blue line represents a nearest-neighbor interpolation (30 samples) of the histone modification
signal, the dashed black line represents the linear model for the 1 component, the green line for the 2 component and the red curve represents
the mean regression value of the mixture of linear regression with 2 components. The interpolation indicates that the H3K4me3 is close to
linear, but not for H3K27me3 modification, which is negatively related to high expressed genes, but has little effect on low expressed genes.
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belongs to. ℙ(Θ) is the prior distribution over the model
parameters (see next section for the definition of the
prior). ℙ(Y, Z|X, Θ) is the complete data likelihood and
is given by:

 Y Z X y x B
k

K

k i i k
T

k

r

i

N
ik

, | , | ,Θ Θ( ) = ( ) ⋅ ( )( )
= =

∏ ∏
1

2

1

 N (5)

where rik is the posterior probability (or responsibility)
[25] that observation i belongs to the linear model k
and is given by:

r z k y x
y x B

y x B
ik i i i

k i i k k

k i i k k
k

= =( ) =
( )
⋅ ( )′ ′ ′′=

 | ,
| ,

| ,

 

 

N

N

2

2

1

KK∑
. (6)

For further details on mixture models we refer the
reader to [25].
The EM algorithm works by iteratively estimating the

model assignments (rik) and the model parameters Θ
until some convergence criteria is reached. In the con-
text of the mixture of linear regression models, we need
estimates of the linear regression parameters (Bk,  K

2 )

Th1 HM/TF

H3K4me3
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MYB_Q3

H3K27me3

Mean Expression

Figure 5 Regression Coefficients on Th1 with HM/TF data. We depict the regression coefficients of the most relevant regulatory signals and
mean expression values for the mixture with three linear models on Th1 with HM/TF data.
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for a particular model k, and all other parameters (rik,Π)
follow the usual EM algorithm [25].
Once the mixture model is estimated, the predicted

value ŷi for a particular regressor observation xi is given by

y z k x x Bi i i i k
T

k

K
 = =( ) ⋅

=
∑ | .

1

(7)

That is, the linear regression prediction is a mixture of
the predictions of each individual component times the
posterior probability of the observation i to belong to
the model k. In our particular application problem, we
are interested in estimating the models which corre-
sponds to an unsupervised learning problem, that is, the
coefficients indicating whether a regulatory signal plays
an important repressive or activating role. The predic-
tions ŷ can thereby be used for evaluating the fit of our
model. In cases where one wants estimate the expres-
sion level of genes, that is, estimation of ŷ (supervised
learning problem), the above equation should not be
used, as the posterior probabilities are based on the
response variable y, which is usually unknown in a pre-
dictive scenario. In such a context, methods for combi-
nations of predictors, such as [26], are required.

Bayesian linear regression estimates
We resort to Bayesian approach for obtaining MAP esti-
mates of the linear regression models as proposed in
[27]. Therefore, we avoid problems related to over-
fitting which usually occur with the EM algorithm and
mixture models [25]. More formally, the prior distribu-
tion in Eq. 4 can be decomposed as

  Θ Π( ) = ( ) ( )
=

∏ Bk

k

K

.
1

(8)

We use the following conjugate prior for the regres-
sion coefficient Bk

ℙ(Bk) = N(Bk|0, bkI), (9)

where 0 is a vector with M zeros, I is a M x M iden-
tity matrix and bk is the hyper-parameter.
Let rk be an N dimensional vector (r1k, …,rNk) contain-

ing the posterior probabilities of the observations
belonging to model k and let Wk = diag(rk), then the
estimates from model k maximizing Eq. 4 are defined as

B

X W Y

I X W X
k

T
k

k

k

T
k

k

=

( )

+ ( )


 

2

2

(10)

with

 k ik i i k
T

i

N

N
r y x B2 2

1

1
1

=
−

−( )
=
∑ . (11)

From Eq. 10, we can see that bk works by shrinking
the regression coefficients. Small bk imposes a higher
shrinkage on the regression coefficients. Furthermore,
for bk ® ∞ we have a non-informative prior and the
regression coefficients are the maximum likelihood
estimates.
We estimate the hyper-parameter bk in an Empirical

Bayes approach with


k
k
T

k

k

B B= , (12)

where




 k
j

k jj

M

=
+−

=
∑ 1

1

(13)

and lj is the jth eigenvalue of the PCA decomposition

of matrix
X W XT

k

k

( )
 2

(see [27] for details).

Note that bk requires the definition of Bk, which in
our context is taken from the previous iteration of the
EM algorithm.
For the mixture mixing coefficients, we use a sym-

metric Dirichlet distribution as prior

ℙ(Π) = Dirichlet(Π|a), (14)

where a is the hyper-parameter. Hence, the mixing
coefficients estimates used by the EM algorithm are




k

ik
i

N
r

N N
=

+ −

− −( )
=∑ 1

1
1 . (15)

We use a prior of a = 2, which avoids models with a
low number of observations assigned to it.

Transcription factor affinity
TF binding motifs are traditionally described in the form
of position frequency matrices (PFMs). PFMs show how
often a certain base occurs at a given position in the
alignments of known binding sites of the TF. To predict
the binding strength of a given TF to a promoter
sequences we utilize the TRAP method [17]. In contrast
to motif matching algorithms which make a binary dis-
tinction between binding sites and non-binding sites,
TRAP avoids this artificial separation and instead

Costa et al. BMC Bioinformatics 2011, 12(Suppl 1):S29
http://www.biomedcentral.com/1471-2105/12/S1/S29

Page 8 of 10



computes the probability of a TF to bind site i in the
sequence using the following equation

a
R e

R e
i

o
E

o
E

i

i
=

−

− ( )

− ( )

 

 1
, (16)

where δEi(l) is the energy difference between the state
in which the factor is bound to site i and the state in
which the factor is bound to its consensus site. This so
called mismatch energy is scaled by a parameter l which
was previously determined to have an optimal value of
0.7 [17]. The second transcription factor dependent para-
meter R0 determines both, the binding energy between
the factor and its consensus site as well as the TF con-
centration. R0 is derived for each PFM individually as

R0 = exp(0.6 • W – 6), (17)

where W is the number of columns in the PFM with
information content exceeding 0.1 bits. Matrix positions
which fall below this entropy cutoff also do not contri-
bute to the mismatch energy in Eq. 16. The nucleotide
dependent mismatch energies for each site in the pro-
moter sequence are computed by

 




E
v

vi

A C G T

i

i j
( ) = −

∈{ }
∑1

ln ,
, , ,

,max

,
(18)

where vi,max is the frequency of the consensus base at
position i in the PFM and vi,a, is the frequency of the
observed base a at position i in the PFM. Eventually,
TRAP obtains the expected number N of TFs bound to
the promoter by summing over the individual probabil-
ities from all L sites in the sequence:

N ai

i

L

=
=
∑ .

1

(19)

As input, TRAP requires for each TF a PFM suitable
for computing the mismatch energies and a DNA
sequence of interest (see [17] for details).
For our study we use a selection of 102 PFMs from

the Transfac database version 11.1 [28], which corre-
spond to TFs involved in lymphoid development (see
Additional File 1 for TF list). As we are mainly inter-
ested in binding sites near the promoter, the analysis
was based on the 200 base pairs upstream of the tran-
scription start site (TSS) of the genes. We restrict the
analysis to genes with normalized CpG content < 0.5 in
their promoter sequence [21], as such genes tends to be
expressed in a tissue and stage specific way. In the end,
we calculate the affinity (Eq. 19) for all the selected
genes and PFMs. This yields the matrix X containing

the TF binding data, where xi,j corresponds to the affi-
nity of TF j to the promoter of gene i.

T-cell gene expression and histone modification data
We use the gene expression and histone modification
data from Th1, Th2, Th17 and iTreg cells published by
[16]. The histone modification data was measure with the
Chip-Seq Illumina platform. We used the Cisgenome tool
[29] to align sequence data and to detect peaks. As we are
only interested in the modifications near the promoter,
we consider the region of 8000 bps upstream and 2000
bps downstream of the TSS and kept the tag counts of
the highest peak. Finally, we added a pseudo count to
avoid zero values and applied a log transform. This yields
the matrix X containing the histone modification data,
where xi,j corresponds to the number of ChIP-seq tags
derived from a particular histone modification j that are
being mapped to the promoter of gene i.
The expression data was measured with Affymetrix

430 chips. The raw data has been normalized using the
variance stabilization method of [30] and normalized the
tissues to have mean expression equal to zero.Microar-
ray probes were mapped to ENSEMBL gene identifiers
with the help of the biomart tool [31]. We thereby kept
all genes that had their expression measured by multiple
probe sets. In the following, we restrict our analysis to
those 6154 genes with low CpG content for which both,
gene expression as well as histone modification data is
available. The final data sets used in this analysis can be
found at http://www.cin.ufpe.br/~igcf/MixLin.

Experimental design
We model gene expression from four different T helper
cell types (Th1, Th2, Th17 and iTreg) with the use of
either transcription factor affinities (TF), histone modifi-
cations (HM) or both regulatory signals combined
(HM +TF). As parameter of our method, we vary the
number of linear models, K, from 1 to 6. In order to
select the optimal model for each cell type, we first per-
form 10 fold cross-validation on each parameter setting
and then estimate the Mean Square Errors (MSE) from
the validation sets. As the MSE tends to decrease with
higher K[32], we use a model selection procedure, the
Bayesian Information Criteriun (BIC) [25], to indicate
the optimal number of models. The method has been
implemented with Pymix [33] and is freely available at
http://www.pymix.org.

Additional material

Additional file 1: Supplementary Figures and Tables This file contains
additional Figures and Tables.
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