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Abstract: Foot-and-mouth disease (FMD) is an economically important and highly infectious viral
disease, predominantly controlled by vaccination. The removal of non-structural proteins (NSPs)
is very important in the process of FMD vaccine production, because vaccinated and naturally
infected animals can be distinguished by the presence of NSP antibodies in the FMD serological
surveillance. A previous study reported that 3AB protein, a representative of NSPs, was removed
by chloroform treatment. Therefore, in this study, the causes of 3AB removal and factors affecting
the effect of chloroform were investigated. As a result, the effectiveness of chloroform differed
depending on the virus production medium and was eliminated by detergents. In addition, it
was found that 3AB protein removal by chloroform is due to the transmembrane domain of the
N-terminal region (59–76 amino acid domain). Further, industrial applicability was verified by
applying the chloroform treatment process to scale-up FMD vaccine antigen production. A novel
downstream process using ultrafiltration instead of polyethylene glycol precipitation for high-purity
FMD vaccine antigen production was established. This result will contribute toward simplifying the
conventional process of manufacturing FMD vaccine antigens and ultimately reducing the time and
cost of vaccine production.

Keywords: foot-and-mouth disease virus; non-structural protein; vaccine purity; chloroform; scale-up

1. Introduction

Foot-and-mouth disease (FMD) is an economically important and highly infectious
viral disease in most parts of the world that is predominantly controlled by immunization
strategies [1]. The etiological agent, FMD virus (FMDV), belongs to the genus Aphthovirus
within the family Picornaviridae and is divided into seven serotypes (O, A, Asia1, South
African Territories 1, 2, 3, and C), with no cross-protection between serotypes [2,3]. It has a
positive-sense, single-stranded RNA genome that is translated into a polyprotein that is
further cleaved into structural proteins (SPs) and non-structural proteins (NSPs) [4,5].

The removal of NSPs is an important process for FMD vaccine production, because
vaccinated and naturally infected animals can be distinguished by the presence of NSP
antibodies in FMD serological surveillance [6]. In this regard, polyethylene glycol (PEG)
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precipitation is usually used in the downstream processing of FMD vaccine production.
PEG precipitation of FMDV antigens is often carried out after ultrafiltration and is predomi-
nantly used for concentration and partial purification of FMDV from various contaminants,
including NSPs in FMDV culture supernatants [7,8]. PEG treatment also facilitates buffer
changes. PEG is a nontoxic, water-soluble synthetic polymer that is widely used in chem-
ical and biomedical industries. The basic mechanism of precipitation involves changing
the solubility of the solvent by adding reagents to lower the solubility of the solute [9].
However, since this is a non-specific technique, NSPs could not be completely removed;
therefore, some NSPs remain in the final FMD vaccine product [10,11].

Therefore, in our previous study, we established an NSP-specific removal method
in which the 3AB protein was eliminated by chloroform treatment at a concentration
>2% (v/v) in FMDV culture supernatants [12]. The 3AB protein was selected as a marker
for NSP detection because the World Organization for Animal Health terrestrial manual
specifies that 3AB and 3ABC proteins in serological analysis are the most reliable indicators
of FMDV infection [13]. In addition, 3AB is a major precursor protein containing 3B in
FMDV-infected cells [14]. Although the role of 3AB is unclear, it is presumed to anchor
3B to the intracellular membrane induced during the initiation of RNA replication, where
uridylylated 3B primes the synthesis of nascent viral RNAs [15].

In this study, we identified the factors involved in the removal of 3AB using chloroform
and established an effective and simplified process for manufacturing high-purity FMD vac-
cine antigens by applying the chloroform treatment process to scale-up antigen production.

2. Materials and Methods
2.1. Cells and Viruses

Baby hamster kidney-21 (BHK-21) suspension cells [16] adapted to Cellvento BHK-200
(Cellvento) (Merck KGgA, Darmstadt, Germany), ProVero-1 (ProVero) (Lonza, Basel,
Switzerland), and CD BHK-200 (CD) (Thermo Fisher Scientific, Waltham, MA, USA) media
were proliferated at 37 ◦C with 5% CO2 using Erlenmeyer flasks (Corning, Corning, NY,
USA). The Korean isolates FMDV O/Boeun/SKR/2017 (GenBank accession No. MG983730.1),
O/Jincheon/SKR/2014 (GenBank accession no. 162590.1), O/Andong/SKR/2010 (GenBank ac-
cession no. KC503937) and A/Yeoncheon/SKR/2017 (GenBank accession No. KY766148.1),
foreign-origin A22 Iraq/24/64 (GenBank accession No. AY593764.1), and Asia1 Shamir/ISR/
1989 were produced in each of the media described above. BHK-21 cells at a density of
3 × 105 cells/mL were grown for 3.5 days, and then, the spent media were replaced/added
with fresh medium (replacement: ProVero, addition: Cellvento, 30% (v/v) of total vol-
ume). Exceptionally, CD medium was replaced with Dulbecco’s modified Eagle’s medium
(DMEM) (Corning). All medium combinations were optimized as described in our previous
study [17]. The cells were inoculated with FMDV at a multiplicity of infection of 0.001, and
virus was propagated for 16 h at 37 ◦C with 5% CO2. After culturing, the virus culture
supernatant was clarified by centrifugation at 3000× g for 20 min at 4 ◦C. Binary ethylen-
imine (Sigma-Aldrich, St. Louis, MO, USA) was added at 3 mM to inactivate the virus
and then incubated with shaking at 100 rpm at 26 ◦C for 28 h. Subsequently, the binary
ethyleneimine was neutralized by adding 1 M sodium thiosulfate (Daejung Chemicals &
Metals, Siheung, Korea) at a final concentration of 2% (v/v).

2.2. Expression and Purification of Recombinant 3AB Protein

The FMDV 3AB gene (O/Boeun/SKR/2017) was synthesized by Bioneer Corp. (Daejeon,
Korea). The 3AB DNA fragments, (i) full-length (672 bp) and (ii) truncated (432 bp) were am-
plified and cloned into the pET28a vector. The recombinant plasmids were transformed into
Escherichia coli (E. coli) BL21 (DE3) strain, and cells were cultured in Luria-Bertani medium
containing 50 µg/mL kanamycin at 37 ◦C until the optical density at 600 nm reached
0.6. The expression of recombinant proteins was induced by adding 1 mM isopropyl-
β-D-1-thiogalactopyranoside at 16 ◦C for 4 h. Pellets were harvested from the culture
by centrifugation at 3000× g for 10 min, resuspended in lysis buffer [50 mM Na2HPO4,
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300 mM NaCl, pH 8.0], and lysozyme was added to a final concentration of 1 mg/mL.
After incubation on ice for 30 min, the cells were lysed by sonication (20 cycles of pulsed
on-time 5 s and off-time 10 s at 20% amplitude). Cell lysates were centrifuged at 10,000× g,
4 ◦C for 30 min, and supernatants were mixed with nickel-nitrilotriacetic acid resin (Qia-
gen, Germantown, MD, USA) by inverting at 4 ◦C for 1 h. The mixture was loaded onto
an Econo-Pac column (Bio-Rad, Hercules, CA, USA) and passed through gravity flow.
The column was washed twice with wash buffer [50 mM Na2HPO4, 300 mM NaCl, and
10 mM imidazole, pH 8.0], and the recombinant 3AB protein was then eluted with elution
buffer [50 mM Na2HPO4, 300 mM NaCl, and 250 mM imidazole, pH 8.0]. The eluted
fractions were pooled and dialyzed against dialysis buffer [50 mM Tris-HCl and 150 mM
NaCl, pH 7.6] using a Slide-A-Lyzer membrane cassette (Thermo Fisher Scientific) with a
molecular weight cut-off of 10 kDa.

2.3. Prediction of Transmembrane Domain for 3AB

The 3AB protein sequence was analyzed using the TMHMM Server version 2.0. Based
on the FASTA-formatted protein sequence, the positions of the transmembrane helices
and intracellular and extracellular regions were predicted using hidden Markov mod-
els [18]. The server is available at http://www.cbs.dtu.dk/services/TMHMM/ (accessed
on 5 July 2021).

2.4. Scale-Up Production of FMD Vaccine Antigens

A wave-mixing bioreactor (BIOSTAT Cultibag RM 20/50; Sartorius Stedim Biotech,
Gottingen, Germany) was used to produce 20 L of the FMDV O/Boeun/SKR/2017 culture
supernatant. BHK-21 suspension cells were grown in Cellvento medium using a single-use
bag (Flexsafe RM 50 L Optical; Sartorius Stedim Biotech) by rocking motion agitation. The
FMDV O/Boeun/SKR/2017 virus was inoculated at a multiplicity of infection of 0.001,
and virus was propagated for 16 h at 37 ◦C with 5% CO2. The bioreactor was equipped
with probes to measure and control the temperature and dissolved oxygen concentration at
37 ◦C and 50% air saturation, respectively. The pH was controlled in the range of 7.2–7.4
by adding CO2 and 1 M NaOH solution. The virus culture supernatant was collected at
16 h post-infection and clarified by centrifugation at 3000× g for 20 min at 4 ◦C. The virus
was inactivated by binary ethyleneimine in a wave-mixing bioreactor using a single-use
bag (Flexsafe RM 50 L Optical; Sartorius Stedim Biotech). The detailed conditions for
inactivation are the same as in Section 2.1.

2.5. Chloroform Treatment

After virus inactivation, the virus culture supernatant was treated with chloroform.
Small-scale chloroform treatment using a centrifugal tube was established in our previous
study [12]. To examine the effect of chloroform treatment according to the type of virus
production medium or buffer, an Amicon Ultra-15 (nominal molecular weight limit of
10 kDa) centrifugal filter unit (Merck KGgA) was used to change the various solutions.
After repeating the washing process by centrifugation at 2000× g at 4 ◦C until the medium
was sufficiently replaced with the buffer solution, chloroform was added to the solution and
mixed by the inverting method. The virus culture supernatant in the 20 L scale was mixed
with chloroform at 350 rpm for 30 min in a STD FLEXEL tank liner bag (Sartorius Stedim
Biotech) with an impeller (Thermo Scientific, Catalog number: SH30749.12) connected to a
single-use modular mixing system (HyPerforma DS 300; Thermo Scientific).

2.6. Micro and Ultrafiltration

Chloroform-treated virus culture supernatant was clarified by depth filter (nominal
micron rating 0.2–2 µm) of 0.054 m2 Milistak plus POD C0HC (Millipore, Billerica, MA,
USA) and sterile filter (0.22 micron) of 0.059 m2 Opticap XL 600 Express SHC (Millipore).
The clarified virus supernatant was concentrated 10-fold using a Sartoflow Advanced
benchtop cross-filtration system (Sartorius Stedim Biotech) equipped with a cut-off size of
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300 kDa polyethersulfone Sartocon Slice membrane cassette (Sartorius Stedim Biotech). The
virus culture supernatant was concentrated at 10 psi transmembrane pressure according to
the manufacturer’s instructions.

2.7. Western Blot Analysis

The protein samples were mixed with 4× lithium dodecyl sulfate sample buffer
(Invitrogen, Carlsbad, CA, USA) and heated at 90 ◦C for 10 min. Samples were run on
4–12% gradient bis–tris gels (Invitrogen) and then transferred to a nitrocellulose membrane
using the iBlot2 gel-transfer device (Invitrogen). The membranes were blocked in buffer
[PBST; 10 mM sodium phosphate, 132 mM NaCl, 2.7 mM KCl, and 0.05% Tween-20, pH 7.4]
for 1 h at 25 ◦C with shaking, washed three times with PBS-T for 10 min, and then incubated
with a home-made primary antibody against FMDV VP1 (76.5E) and 3B (4G24) diluted
1/2000 in PBST at 4 ◦C overnight. The membranes were washed three times with PBS-T
and incubated with HRP-conjugated goat anti-mouse secondary antibody (Invitrogen)
diluted 1/4000 in PBST for 1 h at RT. Proteins were detected with Pierce ECL Substrate
(Invitrogen) using an Azure C600 imaging system and cSeries Capture Software (Azure
Biosystems, Dublin, CA, USA).

2.8. Transmission Electron Microscopy (TEM)

The concentrated vaccine antigen was layered on top of the sucrose density gradient
and then centrifuged at 100,000× g for 4 h. The fractions between the 30% and 35% sucrose
layers were collected and centrifuged at 100,000× g for 4 h. After removing the sucrose
solution, the pellet was resuspended in Tris-KCl buffer [20 mM Tris-HCl and 300 mM KCl,
pH 7.6]. One drop of purified FMDV suspension was placed on formvar-coated grids and
negatively stained with 1% uranyl acetate. The morphology of the purified FMDV particles
was examined using TEM (Hitachi 7100; Hitachi, Tokyo, Japan).

3. Results
3.1. Comparison of Virus Production Medium and Buffer for the Effect of Chloroform to Remove 3AB

We examined whether there was a difference in the effect of chloroform on the removal
of NSP depending on the type of virus production medium and buffer. In the ProVero and
Cellvento media, the 3AB protein was removed by chloroform treatment at a concentration
of 2% (v/v) or more. However, no effect of chloroform was observed in DMEM (Figure 1a).
Although there was no effect of chloroform on all three different serotypes of FMDV
culture supernatants cultured in DMEM, NSPs were removed by chloroform (10%, v/v)
after the medium was replaced with Tris-NaCl buffer [50 mM Tris-HCl, pH 7.6, 150 mM
NaCl]. In contrast, NSP was not removed when the ProVero medium was replaced with
radioimmunoprecipitation assay (RIPA) buffer [25 mM Tris-HCl, 150 mM NaCl, 1% NP-40,
1% sodium deoxycholate, 0.1% sodium dodecyl sulfate, pH 7.6] (Figure 1b).
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Figure 1. Effect of chloroform treatment according to the type of medium or buffer. (a) The
O/Boeun/SKR/2017 virus produced in different types of cell culture medium were treated with
various concentrations of chloroform (upper panel). The O/Jincheon/SKR/2014, A22 Iraq/24/64,
and Asia1 Shamir/ISR/1989 virus were produced in Dulbecco’s modified Eagle’s medium (DMEM)
and then exchanged with Tris-NaCl buffer. DMEM and Tris-NaCl buffer were each treated with 10%
(v/v) chloroform (lower panel). (b) The O/Jincheon/SKR/2014 and O/Andong/SKR/2010 were
produced in ProVero medium and then exchanged with radioimmunoprecipitation assay (RIPA)
buffer. ProVero and RIPA buffer were each treated with 10% (v/v) of chloroform. The 3AB protein
was detected by Western blot using anti-FMDV 3B monoclonal antibody.

3.2. Effect of Chloroform According to the Presence or Absence of 3AB Transmembrane Domain

To define the region of 3AB that causes NSP removal by chloroform, the characteristics
of the amino acid residues that make up 3AB were analyzed. The 18 amino acid residues
(59th–76th) at the N-terminus of 3AB were identified as transmembrane domains by the
TMHMM program (Figure 2a). To investigate whether the transmembrane domain is
affected by chloroform, full-length 3AB (224 amino acid residues) and truncated 3AB
(144 amino acid residues), in which the N-terminal 80 amino acid residues were deleted,
were designed (Figure 2b). Although the full-length 3AB disappeared in a concentration-
dependent manner with chloroform treatment, the truncated 3AB was not affected, and the
protein remained constant even at a concentration of 10% (v/v) chloroform (Figure 2c).
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for cloning into the pET28a vector were indicated. The yellow box represents a transmembrane
domain. (c) Purified recombinant full-length and truncated 3AB proteins were treated with various
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3.3. Scale-Up Production of FMD Vaccine Antigen by Applying Chloroform Treatment Process

The scale-up of the FMD vaccine antigen with chloroform treatment was verified at a
volume of 20 L (Figure 3a). The FMDV culture supernatant was produced in a single-use
wave bioreactor and mixed with 2% (v/v) chloroform using a mechanical mixer. After
mixing with chloroform, the opaque solution was transformed into a transparent solution
by depth filtration. After sterile filtration, the clarified FMD culture supernatant was
concentrated 10-fold using an ultrafiltration device. To investigate the effect of chloroform
on the removal of 3AB protein from the FMDV culture supernatant, Western blotting
was performed using antibodies against VP1 (SP) and 3B (NSP). While VP1 was detected
throughout the process, 3AB was not detected, even in the ten-fold concentrate after
chloroform treatment (Figure 3b). Depth filtration was sufficient to remove NSPs as an
alternative to centrifugation after chloroform treatment. We examined the integrity of the
FMDV particles by electron microscopy, and particles with a diameter of 25–30 nm were
observed in the final vaccine antigen concentrate (Figure 3c).
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Figure 3. Production of large-scale FMD vaccine antigen using chloroform treatment process. (a) The
detailed procedure for manufacturing FMD vaccine antigen is shown in images. Description of images
from left to right: (i) The O/Boeun/SKR/2017 virus was produced using a wave-type bioreactor.
(ii) The 20 L of virus culture supernatant was treated with 2% (v/v) of chloroform and mixed with
an electronic overhead stirrer. (iii) The supernatant was filtrated in the order of depth and sterile
filters. (iv) The filtrate was concentrated 10-fold by ultrafiltration. (b) FMDV SP (VP1) and NSP (3AB)
were detected by Western blot analysis using anti-FMDV VP1 and 3B monoclonal antibodies. (c) The
10-fold concentrated vaccine antigens were negatively stained and analyzed for morphology by a
transmission electron microscope.

4. Discussion

Among the various types of FMDV production media tested in our laboratory, Cell-
vento was selected for convenience of use [15]. Therefore, we previously evaluated the 3AB
removal effect of chloroform in Cellvento medium only [11]. Because there were differences
in the components of each medium, we applied ProVero and DMEM to investigate whether
chloroform treatment had the same effect on other media. The reason that chloroform
did not exert a 3AB removal effect in DMEM in this study might be attributed to certain
components. However, because only part of the ingredients of the media are known, it
is difficult to determine which component is attributable to this discrepancy. Instead, we
found clues that inhibited the effects of chloroform in buffers of defined compositions. In
the case of RIPA buffer, which is widely used for intracellular protein analysis after trans-
fection of plasmid DNA into mammalian cell lines [19,20], 3AB protein was not removed
by chloroform treatment. In contrast, the chloroform effect was observed in Tris-HCl buffer,
suggesting that the detergent contained in the RIPA buffer affected the 3AB removal effect
of chloroform. It was speculated that the effect of chloroform on the hydrophobic region of
the protein was hindered by the detergent, which increased the solubility of the protein.

The FMDV genome encodes eight different NSPs (L, 2A, 2B, 2C, 3A, 3B, 3C, and
3D) [21]. Although various hydrophobic regions are observed among them [22], amino acid
residues 59–76 of the 3A protein are predicted to have transmembrane domain properties.
Based on this, we hypothesized that the highly hydrophobic domain of 3AB was removed
from the aqueous layer because it dissolved in the chloroform layer. Similar results have
been reported, in which most of the identified chloroform-soluble membrane proteins are
highly hydrophobic proteins containing several putative membrane-spanning domains [23].
In a previous study, the recombinant 3AB protein, in which 80 amino acid residues were
truncated at the N-terminus of 3AB, was reported to be soluble in E. coli without forming
inclusion bodies [24]. As expected, the soluble recombinant 3AB protein with a truncated
transmembrane domain was unaffected by chloroform. A previous study on the membrane
topology of 3A protein [25] also supports our interpretation of the chloroform effect.
According to the model, the 3A protein interacts with the endoplasmic reticulum membrane
through its hydrophobic region, while its N- and C-termini face the cytosol. In addition,
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non-ionic detergent conditions and deletion of the N-terminus of 3A significantly increased
its solubility.

Initially, for a scale-up study of the chloroform treatment process, the effect of chlo-
roform on 3AB in a bench scale 2-L bioreactor was investigated. The chloroform effect
was closely related to the shearing force of the impeller attached to the bioreactor. As
the volume of the virus culture supernatant in the vessel increased, it was necessary to
increase the chloroform concentration or impeller agitation speed for the 3AB removal
effect (Figure S1). When the volume of the virus culture supernatant in the vessel was
0.6 L (minimum working volume of the 2 L bioreactor), 3AB was effectively removed
when mixed with 2% chloroform at 750 rpm. However, when the volume was increased
to 2 L (maximum capacity), stirring at 2000 rpm was required to remove 3AB at 2% (v/v)
chloroform treatment, whereas, at 10% (v/v) chloroform treatment, to exert the same effect,
stirring at 750 rpm was required.

Based on these results, the chloroform treatment process was applied to 20 L of virus
culture supernatant, and 2% (v/v) chloroform was mixed with a single-use modular mixing
system; as a result, 3AB was effectively removed by mixing at 350 rpm. Depth filtration, as
a subsequent chloroform treatment process, significantly removed chloroform and greatly
improved the turbidity of the virus culture supernatant without centrifugation. After
performing sterile filtration, it was confirmed that the filter membrane was not affected by
chloroform, and its integrity was maintained. Therefore, chloroform at a concentration of
2% (v/v) is considered suitable for filtration processes.

Ultrafiltration alone cannot remove 3AB protein [11], but since 3AB was eliminated by
mixing with chloroform and depth filtration in the previous step, ultrafiltration concen-
tration could be performed as a final step without concern for NSP remaining in the FMD
vaccine antigens.

The application of chloroform during vaccine production may raise concerns regarding
the safety of target animals. Therefore, we verified the safety of the FMD vaccine applied
with the chloroform treatment process according to National Standards for veterinary
biologics (Evaluation criteria: There should be no (i) hypersensitivity reaction within 2 h
after vaccination, (ii) side effects such as suppuration, necrosis, and fever at the injection
site for 14 days, and (iii) clinical symptoms of FMD during the observation period) in three
pigs (Figure S2).

5. Conclusions

We found that the effect of chloroform on the removal of 3AB is due to the properties
of the transmembrane domain and a downstream process that can produce high-purity
FMD vaccine antigen by applying chloroform treatment was proposed. This novel process
is expected to simplify the conventional process for manufacturing FMD vaccine antigens,
and ultimately contribute to reducing the cost of vaccine production.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/vaccines10071018/s1, Figure S1: Optimization of chloroform treatment
parameters at a bench scale 2-L bioreactor. Figure S2. Safety evaluation of FMD vaccine produced by
chloroform treatment.
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