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Wheat is one of the most important food crops worldwide. Even though wheat yields have
increased considerably in recent years, future wheat production is predicted to face
enormous challenges due to global climate change and new versions of diseases.
CRISPR/Cas technology is a clean gene technology and can be efficiently used to
target genes prone to biotic stress in wheat genome. Herein, the published research
papers reporting the genetic factors corresponding to stripe rust, leaf rust, stem rust,
powdery mildew, fusarium head blight and some insect pests were critically reviewed to
identify negative genetic factors (Susceptible genes) in bread wheat. Out of all reported
genetic factors related to these disease, 33 genetic factors (S genes) were found as
negative regulators implying that their down-regulation, deletion or silencing improved
disease tolerance/resistance. The results of the published studies provided the concept of
proof that these 33 genetic factors are potential targets for CRISPR/Cas knockdowns to
improve genetic tolerance/resistance against these diseases in wheat. The sequences of
the 33 genes were retrieved and re-mapped on the latest wheat reference genome IWGSC
RefSeq v2.1. Phylogenetic analysis revealed that pathogens causing the same type of
disease had some common conserved motifs and were closely related. Considering the
significance of these disease on wheat yield, the S genes identified in this study are
suggested to be disrupted using CRISPR/Cas system in wheat. The knockdown mutants
of these S genes will add to genetic resources for improving biotic stress resistance in
wheat crop.
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INTRODUCTION

Wheat (Triticum aestivum L.) is grown in 89 countries and consumed by 2.5 billion people due to its dietary
values (CGIAR, 2019). Each growing season, wheat is exposed to a wide range of diseases and pests that
affect the crop yield (Gulnaz et al., 2019). Among biotic stresses, pathogenic fungi pose a serious threat to
global wheat production. Stripe rust, stem rust, leaf rust, powdery mildew, and head blight are the primary
diseases of wheat (Simón et al., 2021). Stripe rust has historically caused and continues to cause catastrophic
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losses in sensitivewheat cultivars globally (Gad et al., 2019). According
to a recent estimate, 21.5% wheat yield losses are due to pests and
diseases (Savary et al., 2019). Thus far, various breeding methods and
biotechnological tools have exploited resistant genes (R genes) to
breed biotic stress tolerant wheat varieties over different periods of
time (Supplementary Figure S1). However, susceptible genes (S
genes) are not yet explored to improve resistance against pests and
diseases.

The advent of CRISPR/Cas (clustered regularly interspaced short
palindromic repeats-CRISPR-associated) system such as CRISPR/
Cas9 and CRISPR/Cas12 for precise genome editing presents great
scope of targeting S genes to improve economical traits in crops
including wheat (Mubarik et al., 2021). As an allohexaploid,
however, wheat has three closely linked sub genomes that were
passed down from three homoeologous ancestors, with 2n = 6x = 42,
AABBDD (Petersen et al., 2006). The A, B, and D genomes each
contain three copies of a gene that is functionally redundant and
complementary. As a result, it is extremely unlikely that natural
selection or induced mutagenesis will result in the simultaneous
mutation of genes in the human genomes A, B, and D.
Consequently, compared to other cereals like rice and maize,
wheat’s complicated polyploid structure has hampered the
development of functional genomics and breeding (Char et al.,
2017), and the failure to eliminate all of a gene’s duplicates may
not necessarily result in phenotypic changes due to genome
buffering. On the other hand, wheat’s genome is massive
(~17 Gb) and contains a high proportion of repetitive DNA
(80%–90%), making targeted modifications extremely difficult.
However, with the availability of novel Cas orthologues, gRNA
design in the CRISPR/Cas systems has grown more flexible and
can be easily created to target a variety of genes (Char and Yang
2020; Gürel et al., 2020).

To date, Cas9 and Cas12a, have been used for genome editing
in wheat to create new alleles and disrupt gene’s function (Kefale
& Getahun 2022). Due to their unique pros and cons, Cas9 and
Cas12a have made the applications of CRISPR/Cas system highly
versatile. Cas12a, has certain advantages over Cas9, in its ability to
be used for multiplex genome editing and production of staggered
DSB (double-stranded break), which promotes HDR (homology-
directed repair) instead of NHEJ (non-homologous end joining).

Continuous improvement in genetic resources for biotic stress
resistance is pre-requisite for sustained increase in yield potential
of newly developing wheat varieties (Alemu, 2019). This report
intends to provide a guide for exploiting S genes through
CRISPR/Cas knockdowns to develop new genetic resources for
breeding biotic stress resistant wheat varieties. The genetically
stable knockdown-mutants the S genes could provide new genetic
resources for enhancing biotic stress tolerance in future wheat
varieties.

RESISTANCE (R) VERSUS SUSCEPTIBLE
(S) GENES

Plants have evolved a sophisticated immune system through
co-evolution with diseases, while pathogens have developed
counter-defense mechanisms. The pathogen-associated

molecular patterns (PAMPs) such as bacterial flagellin or
viral double-stranded RNAs are detected by PRRs on the
cell surface, activating PAMP-triggered immunity (PTI).
PTI causes dynamic changes in the defense-responsive
transcriptome, reactive oxygen species (ROS) generation,
and antimicrobial peptide/compound release in the apoplast
(Jighly et al., 2016). Pathogens release virulence proteins or
effectors and other poisons to reduce PTI (Huerta-Espino
et al., 2011). These effector chemicals also change plant
physiology to aid infection. Plants have evolved R genes
that may detect effector activities and trigger effector
triggered immunity (ETI). Strong defensive responses often
cause localized cell death or hypersensitivity (Sharma et al.,
2015; Alemu, 2019). S genes, on the other hand, are required
for pathogen infection and consequently for suitable
plant–pathogen interactions. They help in host
identification and penetration, pathogen growth and spread,
and negative modulation of immunological signals (Zaidi
et al., 2018). While R genes are dominant, disease resistance
offered by S genes is recessive and comes with a fitness penalty.
S-gene-mediated disease resistance is pathogen specific when
the damaged pathway is required for pathogen entry,
penetration, or post-penetration. A suitable host surface
state is essential for bacterial adhesion or fungal/oomycete
spore germination prior to penetration. Pathogens enter their
hosts in a variety of ways. Direct penetration through physical
or chemical barriers, and indirect penetration through natural
cell openings like stomata. Pathogens invade host cells after
penetration by avoiding plant monitoring systems and/or
dampening numerous levels of defense (Zaidi et al., 2018).
In the same way, the target S gene involved in protracted or
constitutive defense responses can be broad-spectrum. We use
genome editing to target S-gene-mediated pathogen resistance.

SELECTION OF TARGET S GENES AND
THEIR FUNCTIONS IN WHEAT

The target S genes were selected based on critical review of
research papers published from well-known labs. The genes/
genetic factors whose absence, down regulation, reduced
expression, silencing or loss of function mutation improved
resistance against one or more than one of the diseases or
insect pests were considered as S genes. Out of >100 genes
reported to be associated with stripe rust, leaf rust, stem rust,
powdery mildew and fusarium head blight, 33 were selected as S
genes with strong concept of proof (Supplementary Table S1).
The R genes or the genes without any functional concept of proof
were not included in this mini review. Herein, 20 target S genes
were selected for stripe rust. For powdery mildew, fusarium head
blight, aphides and leaf rust, 4, 7, 1 and 1, target S genes were
selected, respectively. Besides improving resistance to disease, the
knockdowns of these S genes could cause some yield penalty or
negatively affect some other agronomic traits. For example, the
knockdown of TaNAC21/22 gene produces necrotic and shorter
leaves which can lead significant yield penalty. The side effects of
knockdowns of the S genes can be recovered by subsequent
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backcrossing with wild plants. The CRISPR/Cas knockdowns of
these genes to develop null mutants will create valuable genetic
resources for breeding against disease in wheat. Further, the
orthologs of the selected S genes from Zea mays, Oryza sativa,
were also searched to confirm their similar functions inmaize and
rice using NCBI-BLASTp (https://blast.ncbi.nlm.nih.gov) and
phytozyme database (https://phytozome-next.jgi.doe.gov/).
Based on their homology, complete sequence information of
the selected 33 S genes were extracted from NCBI.

MAPPING OF SELECTED S GENES

To map the selected S genes Wheat URGI (https://wheat-urgi.
versailles. inrae. fr) (Appels et al., 2018) database was used. All the
retrieved sequences were matched using public blast. Once the
alignment was retrieved, chromosomes to be mapped were
selected using IWGSC RefSeq v2.1. The map was constructed
based on the highest similarity score and lowest E-values
(Figure 1).

MULTIPLE SEQUENCE ALIGNMENT AND
PHYLOGENETIC ANALYSIS OF THE
SELECTED S GENES
For multiple sequence alignment (MSA) of the selected S genes,
Clustal W software (Thompson et al., 1994) was used
(Supplementary Figure S2). The Molecular Evolutionary
Genetics Analysis (MEGA) program is a computer tool that
lets you to compare homologous genetic sequences from many
classes or multi - gene families, with a focus on implying
evolutionary links and patterns of DNA and protein evolution

(Kumar et al., 2018). For phylogenetic analysis of the S genes
MEGA software (Kumar et al., 2018) was used (Supplementary
Figure S3).

All the coding sequences were retrieved from NCBI database
and homology between the negative regulator genes was
identified. Based on the phylogenetic analysis pathogens
causing strip stripe rust, powdery mildew, leaf rust, and
fusarium head blight were predicted to have common
conserved motifs and to be closely related from evolution
perspective.

FUTURE PERSPECTIVES

The CRISPR/Cas9 genome-editing technique has made a big
splash in plant genetics. It is the most sophisticated gene -
editing system ever built due to its remarkable versatility in
attacking any DNA sequence with the greatest specificity and
modification effectiveness (100%). Furthermore, unlike typical
transgene-carrying GMOs, CRISPR/Cas9 doesn’t really
incorporate foreign genes into the plant genome, so
genetically altered plants are not (yet) subject to legal
constraints. Since its first use in plants 4 years ago, this
approach has proven to be an innovative tool for increasing
critical mating targets including yield, quality, herbicide
tolerance, and biotic/abiotic stress resistance. This method
is also utilized to change the patterns and architecture of
plant inflorescences, as well as to manipulate gene
expression through transcriptional regulation.

CRISPR-based genome editing and CRISPR, when combined
with other breakthroughs such as the better transgenic
technologies and generation of high-quality genome sequences,
would propel rational design-based molecular breeding of

FIGURE 1 | Mapping of selected S genes on wheat genome using URGI tool.
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polyploid wheat and functional genomics to the forefront of
wheat biology. Gene-edited wheat and transgene-free, we
believe, will play a crucial role in addressing environmental
challenges while boosting maintainable agriculture. This is
important to note that it is not a substitute for conventional
breeding; rather, it is one of the strategies for speeding up wheat
biology and developing wheat breeding programs.

CONCLUSION

Herein, 33 S genes were selected as potential targets for CRISPR/
Cas9 knockdowns. The genetically stable knockdown mutants
can be used as valuable parents for designing crosses to breed
disease resistant cultivars in wheat. The MSA and phylogenic
analysis of the selected genes revealed that the S genes related to a
specific disease such as stripe rust share some common conserved
motifs and have high sequence similarities. Using this
information new S genes could be identified using relevant
bioinformatics tools and validated in wet lab experiments.
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