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Healthy aging delays scalp EEG sensitivity to noise in a face 
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We used a single-trial ERP approach to quantify age-related changes in the time-course of noise 
sensitivity. A total of 62 healthy adults, aged between 19 and 98, performed a non-speeded 
discrimination task between two faces. Stimulus information was controlled by parametrically 
manipulating the phase spectrum of these faces. Behavioral 75% correct thresholds increased 
with age. This result may be explained by lower signal-to-noise ratios in older brains. ERP from 
each subject were entered into a single-trial general linear regression model to identify variations 
in neural activity statistically associated with changes in image structure. The fit of the model, 
indexed by R2, was computed at multiple post-stimulus time points. The time-course of the 
R2 function showed significantly delayed noise sensitivity in older observers. This age effect is 
reliable, as demonstrated by test–retest in 24 subjects, and started about 120 ms after stimulus 
onset. Our analyses suggest also a qualitative change from a young to an older pattern of brain 
activity at around 47 ± 4 years old.

Keywords: healthy aging, face processing, vision, noise, single-trials, EEG, ERP

Overall, these structural and physiological changes suggest that 
senescence slows the whole cascade of information processing along 
the ventral pathway involved in object processing. Several studies 
have tested this prediction in humans using faces. Surprisingly, 
the results are inconsistent. Five studies have reported no effect 
of aging on early perceptual processing speed (Chaby et al., 2001, 
2003; Pfutze et al., 2002; de Fockert et al., 2009; Gao et al., 2009), 
whereas three studies did report an effect around 150–200 ms after 
stimulus onset (Nakamura et al., 2001; Gazzaley et al., 2008; Wiese 
et al., 2008).

These eight studies used EEG or MEG component peak laten-
cies to estimate processing speed and made a series of assump-
tions: (1) peak latency is a good measure of processing speed; (2) 
activity between peaks is irrelevant; (3) one ERP peak is often 
associated with one mechanism; (4) the link between a compo-
nent and a process is stable over the life-span. In a recent study, 
we used a component-free approach, which does not rely on these 
unwarranted assumptions (Rousselet et al., 2009). We manipu-
lated image structure systematically by varying the phase spectra 
of our stimuli along a continuum from 100% phase coherence 
(i.e., the original phase spectrum) to 0% phase coherence (i.e., 
completely random phase, Philiastides and Sajda, 2006; Rousselet 
et al., 2008b). A linear model was applied at all electrodes and 
time points in each subject, thus providing a spatial–temporal 
mapping of phase noise sensitivity that is not constrained to a 
priori defined events and time-windows. Because of the inter-
individual differences in brain anatomy, scalp projections of neu-
ronal activity can differ across subjects, with different electrodes 
showing the best model fit. Thus, one electrode showing the best 

IntroductIon
Visual cognition depends on fast and progressive transformations 
of retinal inputs into higher-order representations useful for deci-
sion-making (Rousselet et al., 2004; DiCarlo and Cox, 2007; Schyns 
et al., 2009). Hence, a theory of visual aging must specify how 
aging affects the time-course of visual processing, the informa-
tion content of brain activity, and the operations performed on 
this information.

In this paper, we are primarily interested in age-related changes 
in the time-course of object processing. Fast processing has an obvi-
ous survival value and is essential for neural network coordina-
tion (Bullier, 2001; Uhlhaas et al., 2009). However, several results 
suggest that neural processes slow with age. First, in monkeys and 
in humans, aging is associated with a degradation of myelinated 
nerve fibers (Thomas et al., 2008; Davis et al., 2009; Peters, 2009; 
Piguet et al., 2009), which logically should lead to conduction slow-
ing along these fibers. Second, the response selectivity of V1 and V2 
neurons degrades with age in monkeys (Leventhal et al., 2003; Wang 
et al., 2005; Yu et al., 2006). Similarly, in the higher-order cortex of 
humans, age seems to lessen BOLD preferential categorical responses 
(Park et al., 2004; Voss et al., 2008). Such changes in tuning may lead 
to longer processing times, following a model of perceptual decision 
by accumulation of evidence in neuronal populations (Perrett et al., 
1998). Third, spike timing within V1, and between V1 and V2, but 
not between the LGN and V1, has been shown to increase with age 
in monkeys (Wang et al., 2005). Finally, EEG and MEG studies in 
humans have described age-related increases in the peak latency of 
the P100 component in response to checkerboards and sine-wave 
gratings (Tobimatsu, 1995).
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All subjects reported that they did not have cataracts, macular 
degeneration, amblyopia, or any other visual pathology. Younger 
adults had significantly better near decimal acuity and Pelli-Robson 
contrast sensitivity than older adults (slopes of the linear regression: 
acuity = −0.009 [−0.01, −0.006], P = 0; contrast sensitivity = −0.001 
[−0.003, 0], P = 0.03). Additionally, younger subjects had more 
years of education (slope = −0.08 [−0.11, −0.05], P = 0). Subjects 
over 50 years old completed the Mini-Mental State Examination 
(MMSE) in Canada (median score 29, min = 26, max = 30), and the 
Montreal Cognitive Assessment (MOCA) in the UK (median score 
28, min = 27, max = 30). All subjects scored above the thresholds 
for normal subjects.

ExpErImEntal dEsIgn
We tested subjects in two experimental sessions. The first day was 
a practice behavioral session; the second day consisted of both 
a behavioral task and simultaneous EEG recordings. In the UK 
group, 24 subjects participated in an additional EEG session. Each 
day, subjects performed a one-interval, two-alternative forced 
choice task discriminating between the same two faces. On each 
trial, one face appeared briefly (53 ms), and subjects had to indicate 
which of two possible faces was presented by pressing 1 or 2 on 
the numerical pad of the keyboard. The button-identity associa-
tion was assigned randomly for all subjects. Subjects were given 
unlimited time to respond, and were told to emphasize response 
accuracy, not speed. Each subject performed the task with a single 
pair of base faces throughout the experiment. In Canada, for half 
of the subjects, the base face pair comprised two male faces; for 
the other half the base face pair comprised two female faces. In the 
UK, for all subjects the base face pair comprised two male faces. 
These faces were selected from a set of 10 faces, which are described 
in detail in previous publications (Gold et al., 1999; Husk et al., 
2007; Rousselet et al., 2008a, 2009). Critically, the phase coherence 
of the faces was manipulated across trials. In Canada, on day 1, 
subjects saw 11 conditions along a noise–signal continuum, from 
0 to 100% phase coherence, with increments of 10%. On day 2, 
subjects saw only seven conditions (0, 30, 40, 50, 60, 70, 100% phase 

model fit, as indexed by R2, was selected independently for each 
subject and entered into group analyses. This electrode optimiza-
tion ensures that signals from electrodes with maximum sensitiv-
ity to image structure are compared; R2, the variance explained 
by the model, is a measure of the amount of information in 
the model. Hence, R2 time-courses eliminate effects caused by 
group differences in absolute response amplitude and provide a 
response metric that is based on the visual system’s sensitivity to 
image structure. Using this approach, we showed that the visual 
system of older adults (mean age 70) becomes sensitive to image 
structure at about the same time as younger adults (mean age 
22), but then shows a systematic delay, culminating 190 ms after 
stimulus onset with a 50-ms delay between age groups (Rousselet 
et al., 2009). This 50-ms difference is considerably greater than 
previous estimates of 10–20 ms derived from peak measure-
ments (Nakamura et al., 2001; Gazzaley et al., 2008; Wiese et al., 
2008). In addition to a delay in noise sensitivity with age, we 
observed a qualitative change in the shape of the R2 function with 
age. Behavioral results also suggested that older subjects needed 
more information to achieve the same level of performance as 
younger subjects.

In the present study, we sought to provide a more quantitative 
description of the effect of aging on visual processing and to assess 
the reliability of this effect. To this aim, we merged the data from the 
31 subjects described previously (Rousselet et al., 2009), with data 
from another 31 subjects. The new data set also contained middle-
aged participants, allowing us to assess age-related qualitative but 
also quantitative changes in the time-course of visual processing. 
Among the new subjects, 24 were tested twice to determine the 
reliability of the effects.

matErIals and mEthods
Square brackets indicate the boundaries of 95% confidence intervals 
(CI) constructed using a percentile bootstrap technique (Wilcox, 
2005). We used 1000 samples with replacement for descriptive sta-
tistics and group comparisons; we used 600 samples with replace-
ment, and special adjustments to better control the type I error 
rate (Wilcox, 2005, pp. 418–419), to compute CI for regression 
parameters. P values of 0 are sometime reported – this is unu-
sual for parametric statistics relying on an a priori distribution, 
but it is not impossible when the P value is computed from a 
bootstrapped distribution.

Testing procedures differed between the two subject groups, 
because of different laboratory setups in the two countries 
where the studies took place, and improvements we brought 
to the second set of recordings and analyses. We explain these 
differences below.

subjEcts
We recruited 62 subjects from subject pools and the community in 
Canada (n = 31) and the UK (n = 31). We reported data from the 
Canadian group in Rousselet et al. (2009). Table 1 contains data 
pooled across the two groups of subjects.

All subjects received CAN$10/h or £6/h for their participation 
and gave written informed consent. The research ethics boards from 
McMaster University and the University of Glasgow approved the 
research protocols.

Table 1 | Details of subjects split into three age categories.

 Age category

 <30 ≥30 and <60 ≥60

Mean age 23 [22, 24] 43 [39, 47] 69 [66, 72]

Age range

Minimum 19 32 60

Maximum 29 59 98

n 18 17 27

SEx

Female 8 9 11

Male 10 8 16

40 cm decimal acuity 1.41 [1.32, 1.51] 1.21 [1.07, 1.34] 0.97 [0.89, 1.06]

Contrast sensitivity 1.97 [1.93, 2.02] 1.95 [1.95, 1.95] 1.92 [1.88, 1.95]

Years of education 18 [17, 19] 20 [19, 22] 15 [14, 16]

The three age categories are arbitrary but often cut-offs at 30 and 60 define 
younger and older groups in the literature.
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Active Two EEG system (BioSemi, Amsterdam, Netherlands). We 
recorded from four additional electrodes – UltraFlat Active BioSemi 
electrodes – below and at the outer canthi of both eyes. Analog sig-
nal was digitized at 512-Hz and band-pass filtered online between 
0.1 and 200 Hz. Electrode offsets were kept between ±20 μV.

For both datasets we removed bad channels and down-sampled 
the signal at 250 Hz. The Canadian dataset was low-pass filtered at 
30 Hz, following our observation that evoked responses to faces are 
contained within a narrow 5–15 Hz band (Rousselet et al., 2007a). 
In the UK dataset, we applied a 40-Hz low-pass filter and epoched 
the data between −300 and 1200 ms before using ICA (Makeig et al., 
2004), as implemented in the runica EEGLAB function (Delorme 
and Makeig, 2004; Delorme et al., 2007). We removed ICA corre-
sponding to blink activity, identified by visual inspection of their 
scalp topographies, time-courses and activity spectra. Subsequently, 
we re-epoched the data between −300 and 500 ms, and subtracted 
the average baseline activity from each time point. In both datasets, 
trials with abnormal activities were excluded based on a ±100 μV 
threshold for extreme values. An epoch was rejected for abnormal 
trends if it had a slope larger than 75 μV/epoch and a regression R2 
larger than 0.3. All remaining trials were included in the analyses, 
whether they were associated with correct or incorrect behavioral 
responses. The average number of trials per subject was 594 [558, 
630] in the Canadian group, 1110 [1097, 1122] in the UK group.

gEnEral lInEar modElIng of EEg data
We used a GLM approach (Figure 1) to express the single-trial 
EEG amplitude, in μV, independently at each time point and each 
electrode, using the model:

EEG = β
0
 + β

1
F

1
 + β

2
F

2
 + β

3
ϕ

G
 + β

4
ϕ

L
 + ε.

Stimulus identity was coded as two categories in our design 
matrix. Each column represented the state within one face, with one 
column for face 1 (F1) and the other for face 2 (F2); in each column 
a 1 indicated the presence of the face and a 0 indicated the absence 
of the face. Global phase coherence (ϕ

G
) and local phase coherence 

(LPC, ϕ
L
) were continuous regressors. Global phase coherence was 

our image noise manipulation. Kovesi’s LPC is a measure of wavelet 
phase alignment across spatial frequencies which is independent of 
image contrast and luminance (Kovesi, 1999, 2003). LPC can pre-
dict subjects’ behavior in a natural scene classification task (Gaspar 
and Rousselet, 2009) and seems to provide a good representation of 
non-linear changes in local image structure imposed by the linear 
global phase coherence manipulation (Rousselet et al., 2009). β

0
 is 

the constant term and ε the error.
We used a generalized Moore–Penrose pseudoinverse to estimate 

the beta parameters (Moore, 1920; Penrose, 1955). Thus, although 
the design matrix is rank deficient, the Moore–Penrose pseudoin-
verse minimizes the norm of the parameters’ vector and therefore 
their ratios for F or T tests are exact and R2 is identical to that 
obtained by applying a standard inverse to full rank matrix. In addi-
tion, inversion ensures that variance attributed to each regressor 
is unique even though the regressors might be correlated (Healy, 
2000, p. 66, 76; McCulloch et al., 2008, pp. 121–122).

We used the time-course of the R2 model fits across age groups 
to provide an estimate of age-related changes in visual process-
ing. For each subject, we report the electrode at which the model 

information). In the UK, on both days, subjects saw 18 conditions 
along a noise–signal continuum, from 0 to 85% phase coherence, 
with increments of 5%.

In Canada, on the first day, there were seven blocks of 132 trials: 924 
trials in total, with 84 trials per level of phase coherence. The second 
day, there were 10 blocks of 84 trials: 840 trials in total with 120 tri-
als per level of phase coherence. In the UK, on both days, there were 
eight blocks of 144 trials: 1152 trials in total, with 64 trials per level 
of phase coherence. Within each block, there were equal repetitions 
of each face and each phase coherence level. Each block was preceded 
by 10 practice trials that allowed subjects to learn the stimulus–key 
association. In a regular trial, a blank screen was presented for 1000 ms, 
followed by a small fixation cross (i.e., a 0.3° “+” in the middle of the 
screen) for 200 ms, after which another blank screen was presented for 
a random duration ranging from 500 to 1000 ms. Then a test stimulus 
was presented for 53 ms, followed by a blank screen that stayed on 
until subjects provided their response. Practice trials were very similar, 
except that immediately after stimulus presentation, a choice screen 
appeared that showed each face simultaneously, one above the other, 
with the corresponding label below each item. Auditory feedback was 
provided after the subject pressed a response key, with low- and high-
pitched tones indicating incorrect and correct responses. Feedback 
was provided only during practice trials.

Testing was conducted in a dimly-lit, sound-attenuated booth. 
Viewing distance was maintained with a chinrest, at 90 cm in 
Canada, and 80 cm in the UK. In Canada, the screen was 25° × 19° 
of visual angle, and the stimuli 8° × 8°. In the UK, the dimensions 
were 28° × 21°, and 9° × 9°. Stimuli were presented at an average 
luminance of about 33 cd/m2.

bEhavIoral normalIzEd thrEshold
Behavioral percent correct data were modeled by a Weibull function 
(Rousselet et al., 2009). The goodness of fit was evaluated using 
a χ2 statistics and a bootstrap procedure with 10,000 resamples 
(Wichmann and Hill, 2001). In this procedure the model prediction 
is the null hypothesis and therefore a large P value indicates a reli-
able fit. Our fits were reliable (mean P value = 0.71 [0.64 0.78]) and 
did not vary with age (slope of the linear regression = 0.002 [−0.002, 
0.006], P = 0.3, R2 = 0.02). From the fit, we obtained an estimate 
of subjects’ maximal performance and 75% correct thresholds. We 
used a modeled observer analysis to obtain a benchmark against 
which to compare subjects’ thresholds. For each observer, the two 
noise-free target stimuli, face 1 and face 2, served as templates that 
were cross-correlated (sum of pixel-by-pixel multiplications) with 
the stimuli shown at each noise level. For each image at a given 
noise level, the modeled observer response was determined by 
the largest cross-correlation of that image with templates 1 and 2. 
Then, we fit the percent correct of the modeled observer using a 
Weibull function. The ratio of the modeled observer’s 75% correct 
threshold over the subject’s threshold is a normalized threshold. A 
normalized threshold of 1 means that the subject was as good as a 
pixel template matcher.

EEg rEcordIng and prEprocEssIng
In Canada, we acquired EEG data with a 256-channel Geodesic 
Sensor Net and pre-processed them as described previously 
(Rousselet et al., 2009). In the UK, we used a 128-channel Biosemi 
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FiGuRE 1 | Linear regression analyses. (A) Data from a 21-year-old subject. 
In the left panel, single trials from the electrode showing the best model fit 
are sorted from top to bottom in their chronological order. Amplitude in μV is 
color coded from positive in red to negative in blue, and smoothed by a 
five-step moving average. In the middle panel, trials are sorted from top to 
bottom from 0 to 85% phase coherence, revealing strong phase modulations 
around 200–300 ms. In the right panel, the mean across trials at each noise 
level confirms this pattern. (B) Data from a 41-year-old subject. (C) Data from 
an 81-year-old subject. (D) The activity at each time point, like the one marked 
by a black vertical bar in (C), is decomposed using linear regression. In other 

words, we identify variations in neural activity across trials that are 
statistically associated with changes to visual information. Strong 
associations at certain time-points imply that the visual system activity is 
significantly modulated by image characteristics. (E) The weights allocated to 
the predictors can be visualized over time, revealing a stronger contribution of 
local phase coherence shortly after 200 ms. Face identity is the absolute 
difference between the face 1 and face 2 predictors. (F) The model R 2 
provides a good summary of the spatial–temporal EEG sensitivity to image 
structure. The inset map shows the R 2 distribution at the R 2 maximum 
peak latency.
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in means) is true. Then, in each bootstrap loop, first we sampled 
single-trials with replacement. Second, we performed a t-test on 
trimmed means. Third, we computed the sum of each cluster of 
contiguous significant F values (squared t-values). Fourth, we 
determined, independently at each electrode, the maximum of 
these cluster sums. Fifth, we saved the maximum of these cluster 
sums across electrodes. We used this distribution of maximum 
bootstrapped cluster statistics to determine which original clus-
tered F values were significant.

varIancE analysEs
We determined if an age-related difference in ERP phase coher-
ence thresholds could be due to a difference in variance across age 
groups. For the electrodes used in Section “ERP Phase Coherence 
Thresholds,” we performed, independently at each time point and 
noise level, a linear regression between age and the 20% winsorized 
variance, a robust measure of dispersion that is used to estimate 
the standard error of the trimmed mean (Wilcox, 2005, pp. 59–63). 
Even without control for multiple comparisons, we observed no 
significant age effect at any time point or noise level.

WEIghtEd agE functIons
The Harrell–Davis estimator of a quantile is a robust estimator 
(Wilcox, 2005, pp. 71–73, 139–141) that is derived from a weighted 
sum of sorted values (Figure 2A). We applied the weights used in 
the calculation of the quantiles of the age distribution of our sample 
to entire behavioral and EEG functions to derive weighted means 
of these functions. This procedure allowed us to visualize how our 
dependent measures change as a continuous function of age.

rEsults
maIn bEhavIoral rEsults
Maximum percent correct tended to decrease, and 75% correct 
thresholds tended to increase, with age (Figures 2 and 3). A regres-
sion model of the 75% correct thresholds, including the factors 
age, visual acuity and sex revealed only a significant contribution 
of the age factor (model R2 = 0.33, beta coefficients: age = 0.0433, 
P = 0.0003; acuity = −0.0051, P = 0.65; sex = 0.0076, P = 0.41). Thus, 
a simple factor like increased blur (decreased visual acuity) is not 
likely to explain the increased thresholds with age. Also, there was no 
evidence that the 24 subjects tested in a second EEG session signifi-
cantly lowered their thresholds, irrespectively of age, suggesting that 
the age effect was not due to insufficient behavioral training.

To ensure that the age effect on behavioral thresholds was not 
due to a difference in the information available in the pairs of 
images assigned to different subjects, we used the ratio of the 75% 
correct threshold for a modeled pixel-matching observer divided by 
the 75% correct threshold for human observers. This ratio normal-
izes the behavioral thresholds by the discriminability of the images, 
as indexed by our template matching model, and decreased signifi-
cantly with age (Figure 3C). The analysis of normalized thresh-
olds suggests that variation in information availability was not the 
cause of threshold variation across age. A normalized threshold of 
0.5 means that the modeled template matching observer was only 
twice as good as a human observer. Given that 67% of subjects 
had a threshold higher than 0.5, our subjects performed on aver-
age very well.

 provided the best fit, i.e. where R2 was the largest. The signal at that 
particular electrode was most sensitive to the structure of the image 
as described by the design matrix and therefore constitutes the most 
likely candidate for reflecting the activity of cortical sources sensi-
tive to image information. In general, R2 was largest at posterior 
electrodes that also exhibited large responses to faces (Rousselet 
et al., 2008a,b). We also used the envelope R2, the maximum R2 
across electrodes computed at each time point, to make sure our 
analyses did not miss local maxima at electrodes other than the 
one showing the largest R2.

The EEG regression model contained fewer parameters than the 
model we used previously (Rousselet et al., 2009). Nevertheless, the 
maximum amount of explained variance in the Canadian dataset 
did not differ between the two models.

R 2 dIstrIbutIon latEralIzatIon IndEx
A lateralization index was computed to estimate the degree of hemi-
spheric lateralization of R2 scalp distribution. First, R2 scalp data 
normalized in the range [0–1] were interpolated and rendered in a 
67 × 67 pixel image using the EEGLAB topoplot function. Second, 
the intensity of the pixels in the lower left and right quadrants, 
excluding the midline, were summed separately. Finally, the laterali-
zation index was computed as the ratio (Σ

left
 − Σ

right
)/(Σ

left
 + Σ

right
).

Erp phasE cohErEncE thrEsholds
We determined the first level of phase coherence at which the 
signal differed significantly from the signal obtained in the noise 
condition. For each subject, we selected the electrode showing the 
maximum absolute difference between the 70% phase coherence 
and the 0% phase coherence conditions. We choose 70% because 
it was the highest phase coherence in common between the two 
datasets, and a level at which a face is clearly visible. Then, in the 
Canadian dataset, we compared the 0% trials (i.e., noise) to the 
30, 40, 50, 60, and 70% trials. In the UK dataset, because of the 
smaller increments, the noise condition was formed by combining 
the 0, 5, and 10% phase coherence trials to increase sample size – 
the ERP did not differ and mean response accuracy was at chance 
in these three conditions. Conditions 20–70% phase coherence, 
with 10% increments, were created by combining the trials at each 
noise level with trials at 5% lower and 5% higher noise levels, 
e.g. 15, 20, and 25% formed the 20% phase coherence condition. 
Thus, each comparison involved two independent groups, a noise 
group and a signal group, with no overlap between the two groups. 
For the Glasgow dataset the signal groups did overlap. However, 
the assumption of the independent group t-test is only about 
the independence of the two groups that are actually compared, 
not about the independence of all possible comparisons. At each 
electrode and time point, the 20% trimmed mean of the noise 
condition was compared with every other condition using a Yuen 
t-test for independent groups (Wilcox, 2005, pp. 56–57, 159–161). 
We controlled for multiple comparisons by using a percentile-t 
bootstrap (Wilcox, 2005, pp. 162–165) and a clustering technique 
inspired by Maris and Oostenveld, (2007). We centered data so 
that each condition had a 20% trimmed mean of 0, our null 
hypothesis. By centering the data, we can use the bootstrap to 
derive an estimate of the sampling distribution of our statistic 
in a condition in which the null hypothesis (i.e., no difference 
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This result holds true after quantization of the behavioral 
thresholds, a transformation that makes them more comparable 
to the ERP thresholds (Figures 4D,E). Also, there was no significant 
increase in ERP variance with age at any time point or condition, 
suggesting that the age-related elevation in ERP thresholds was due 
to lower responses to signal with age, not increased noise.

EEg rEgrEssIon: global fIt and bEta coEffIcIEnts
The mean across subjects of the EEG maximum R2 was 0.4 [0.36, 
0.43], min = 0.07, max = 0.66, median = 0.4, and did not differ signif-
icantly across ages. The maximum R2 was significantly larger in the 
UK group (mean = 0.44) than in the Canadian group (mean = 0.35, 
difference = −0.09 [−0.14, −0.03], P = 0.006). The better signal qual-
ity of the Biosemi system may explain this difference.

Figure 5 shows the time-course of the beta coefficient and the 
R2 model fit for all 62 subjects at the electrode with maximum R2. 
With age, R2 tended to start to rise later, and to peak later, with a 

Erp phasE cohErEncE thrEsholds
Although the main purpose of increased phase noise was to reduce 
face identity discrimination, another effect of noise is to reduce face 
detection. Therefore, the increase in 75% correct threshold with age 
could be due to a more conservative strategy in older subjects, who 
may feel uncomfortable responding to noisy stimuli that their visual 
system can nevertheless detect. Alternatively, the visual system of older 
subjects may literally need more evidence to detect the presence of a 
face. We tested this second hypothesis by calculating ERP thresholds, 
which indicate the phase coherence at which the ERP of each subject 
started to differ significantly from the ERP to noise. These thresholds 
tended to increase significantly with age, similarly to the behavio-
ral thresholds (Figures 4A,B). After subtracting the ERP thresholds 
from the behavioral thresholds, the age-related increase in the phase 
coherence required to perform the task was no longer significant 
(Figure 4C), suggesting a decreased capacity to distinguish signal from 
noise, rather than a change in the capacity to use information.

FiGuRE 2 | Psychometric functions. (A) Weights of the Harrell–Davis estimator 
of the deciles of the subjects’ age distribution. These weights were applied to the 
individual behavioral psychometric functions to create weighted means for 

different age groups, as shown in (B). The inset shows the colors corresponding 
to the different age deciles. The age deciles are closer together for subjects under 
30 and over 60, reflecting a larger sampling of these age groups.

FiGuRE 3 | Main behavioral results as a function of age. (A) Maximum accuracy. (B) 75% correct threshold. (C) Normalized threshold. In each panel, the 
continuous line shows the linear trend described by the equation. In the equations, the first term is the intercept, the second term the slope, and the square brackets 
contain the 95% confidence intervals for each term.
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 envelope R2 function, which was computed by taking the maximum 
R2 value across all electrodes independently at each time point 
(Figures 8 and 9).

To estimate age-related changes in the time-course of noise sen-
sitivity, we determined how long it took subjects to integrate 50% 
of their R2 functions. For each subject, we computed the cumulated 
sum of the envelope R2 in the time window 0–500 ms. That cumu-
lated sum was then normalized between 0 and 1: it had a value 
of 0 at stimulus onset, and a value of 1 at 500 ms after stimulus 
onset (Figure 9B). Finally, we computed the time necessary to reach 
50% of that function using a cubic spline interpolation. The results 
across subjects are shown in Figure 9C.

A regression model of the 50% EEG R2 integration times, including 
the factors age, visual acuity and sex revealed a significant contribution 
of only the age factor (model: R2 = 0.64, beta coefficients: age = 23, 
P = 0; acuity = 3.3, P = 0.2; sex = 0.8, P = 0.7). We also found a sig-
nificant relationship between the 50% EEG R2 integration times and 
the 75% correct behavioral thresholds (linear regression: R2 = 0.4, 
slope = 0.0020 [0.0013, 0.0027], P = 0), but we need to be cautious 
because 75% correct behavioral thresholds are also well explained by 
age and therefore the relationship between 50% EEG R2 integration 
times and 75% correct behavioral thresholds could be related to this 
common factor and thus spurious (Hofer and Sliwinski, 2001).

Finally, we determined the time-course of the age effect by looking 
at the data from a different perspective (Figure 10). Instead of deter-
mining how long it took subjects to integrate 50% of their R2  functions, 

split between a younger and an older group around the late 40s. 
These changes in R2 functions are quantified in Sections “Reliability 
of the R2 functions” and following.

Importantly, the changes in R2 with age were not due to a change 
in the relative sensitivity to image parameters, but to a delayed sen-
sitivity to the same parameters. Indeed, as suggested by Figure 5, 
there was a significantly larger contribution of LPC, compared to 
global phase coherence, which in turn contributed more to the 
model fit than face identity (all P = 0; Figure 6). This was shown 
by an analysis of the unique variance (semi-partial regression coef-
ficients) contributed by each factor at the electrode and time point 
of maximum R2. The contribution of these factors was not affected 
significantly by aging.

The maximum R2 was located at posterior occipital electrodes 
in all age groups (Figure 7). The R2 scalp distribution was overall 
right lateralized (mean lateralization index = −0.13 [−0.18, −0.07], 
P = 0). As suggested by Figure 7, older subjects tended to be more 
right lateralized than middle age or younger subjects but this effect 
was not significant.

agE-rElatEd changEs In thE tImE-coursE of noIsE sEnsItIvIty
Consistent with our previous findings (Rousselet et al., 2008b, 
2009), the R2 functions measured in younger subjects tended to 
peak in the time-window 100–200 ms, whereas, in sharp con-
trast, R2 functions for older subjects peaked in a later time win-
dow, after 200 ms (Figure 5). We found the same results using an 

FiGuRE 4 | Behavioral and ERP phase coherence thresholds. (A) ERP phase 
coherence thresholds. Most subjects showed a significant difference at 
30% (37) and 40% (16) phase coherence. (B) Behavioral 75% correct 
thresholds, repeated from Figure 3. (C) Differences between behavioral and 
ERP thresholds. (D) Quantized version of the behavioral thresholds shown in 

(B). Quantization was achieved by rounding to the nearest decimal number. 
(E) Difference between quantized behavioral thresholds and ERP thresholds. 
In the equations, the first term is the intercept, the second term the  
slope, and the square brackets contain the 95% confidence intervals  
for each term.
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we determined the percentage that had been integrated at each time 
point after stimulus onset – this is equivalent to cutting  vertical slices 
through Figure 9B. Then, for each time point, we expressed the per-
centage integrated as a function of age. The slopes of the linear regres-
sions between these two variables are shown in Figure 10. The age 
effect, although weak, started to be statistically significant at 120 ms 
after stimulus onset; it was maximal at 208 ms post-stimulus.

rElIabIlIty of thE R 2 functIons
Our test–retest analyses suggest that the envelope R2 functions 
are both different among subjects and reliable within subjects 
(Figure 11). The mean Pearson’s correlation between sessions was 
95.6% [94.4, 96.7], min = 88.6, max = 99.4. All the correlations 
between session 1 and session 2 of one subject were significantly 
larger than the correlations between session 1 of that subject and 
session 2 from all other subjects (p < 0.05).

Across sessions, there was also a good correlation between the 50% 
EEG R2 integration times (Figure 12). These correlations were not sig-
nificantly modulated by age. The estimates of the age-related increase in 
50% EEG R2 integration time were similar in the two sessions, and fell 
within the confidence intervals of the original fit using all 62 subjects.

agE-rElatEd qualItatIvE changEs In R 2 functIons
Earlier, we observed a strong similarity in R2 functions within two 
clusters of subjects, one younger, one older, and strong dissimi-
larity between them (Figures 5 and 8). In a last analysis, we used 

FiGuRE 5 | Absolute normalized beta coefficients and R2 of the EEG 
model for all participants. For each subject, we show the data at the 
electrode at which the best fit was obtained. Data were sorted by subjects’ 
age, from the youngest at the bottom, to the oldest at the top. The stimulus 

difference is the difference between beta face 1 and beta face 2. For each 
subject, the absolute betas were normalized by dividing by the maximum 
across betas and time points. The R2 was normalized by dividing by the 
maximum across time points.

FiGuRE 6 | unique variance explained by the model’s predictors. An 
analysis of semi-partial correlation revealed the unique contribution of each 
predictor to the model fit. The mean unique variance, was in ascending order 
of importance: face identity = 0.003 [0.002, 0.004]; global phase 
coherence = 0.009 [0.007, 0.011]; local phase congruence = 0.028 [0.022, 
0.034]. The slope of the linear fit did not differ significantly from 0 for any 
predictor, suggesting that the contribution of each predictor was constant 
across age groups (slopes: face identity = 0 [−0.0001, 0], P = 0.19; global 
phase coherence = 0 [−0.0002, 0.0001], P = 0.71; local phase 
coherence = −0.0002 [−0.0004, 0.0001], P = 0.14).
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more stimulus information (i.e., stimuli with a lower noise level) 
to achieve the same level of performance as younger subjects, a 
result that might be explained by lower signal sensitivity in older 
brains. The maximum performance decreased with age but this 
effect was due to a few older subjects and, overall, subjects per-
formed very well in the task (0.97 [0.96, 0.98]). The EEG results 
show that aging delays noise sensitivity. This effect started 120 ms 
after stimulus onset and seemed to be independent of visual acuity, 
suggesting that increased blur does not explain the effect (Sokol 
and Moskowitz, 1981). Age-related changes in the time-course of 
the sensitivity to image structure could be due to a number of 
factors (Rousselet et al., 2009), including, but not limited to, loss 
of local GABA inhibition and loss of neuronal selectivity in early 
visual areas (Leventhal et al., 2003; Wang et al., 2005; Yu et al., 
2006), myelin, dendritic and synaptic integrity (Peters, 2009; Piguet 

 cross-correlation to provide an objective measure of this observa-
tion. We quantified age-related changes in brain activity by measur-
ing the shift needed in the R2 function of one subject to maximize 
its overall similarity with the R2 functions of other subjects. The 
analysis of the cross-correlation lags for maximum correlation con-
firmed the existence of two groups of subjects, one younger, one 
older (Figure 13). A regression analysis between age and the 20% 
trimmed mean of the cross-correlation lags showed a significant 
slope, with a switch from a younger to an older R2 function occur-
ring around 47 years old.

dIscussIon
We quantified age-related changes in the time-course of scalp EEG 
noise sensitivity in 62 subjects (age range 19 – 98 years old) per-
forming a simple face discrimination task. Older subjects needed 

FiGuRE 7 | Topographic maps of normalized R2 as a function of age. 
Weighted averages of the individual topographic maps were obtained by using the 
weights from the Harrell–Davis estimator of the deciles of the age distribution. The 
age deciles appear at the top of the maps. The maps are color coded from 0 (dark 
blue) to 1 (dark red). The right end map shows the interpolated number of subjects 

with a max R2 at each scalp location. The distribution of max R2 electrodes is 
occipital–temporal and right lateralized. One subject had a maximum at a frontal 
electrode. This is not unexpected because most subjects also had sensitivity to 
noise at frontal electrodes, in keeping with the literature. The subject with a frontal 
maximum also had noise sensitivity at occipital electrodes.

FiGuRE 8 | 3D rendering of the R2 quantiles. The Harrell–Davis estimation of 
the quantiles of the subjects’ age distribution is shown on the y-axis, from 
quantile 10 to 90%, with 5% increments. The weighted averages of the 

normalized envelope R2 functions corresponding to the different quantiles  
are color coded from 0 (dark blue) to 1 (dark red). Data were normalized 
before averaging.
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yet (Schyns et al., 2009). Here, we characterized the N170 time 
window by its sensitivity to image structure, which tended to 
be stronger than at any other period of time in young subjects. 
However, we observed a delay in image structure sensitivity with 
age. This delay in the maximum EEG sensitivity to image struc-
ture could either reflect a slowing of visual processing with age 
or be a consequence of additional attentional resources required 
by older subjects to perform the task. Indeed, old subjects might 
compensate for less efficient visual processing by increasing 
the top-down control of the ventral stream (Gazzaley et al., 
2008; Grady, 2008). In young subjects, task requirements and 
task difficulty modulate ERP amplitude in the N170-P2 time-
window in which our aging effects occurred (Vogel and Luck, 
2000; Philiastides et al., 2006; Rousselet et al., 2007b; Rousselet 
et al., 2008a), so that the changes in the time-course of noise 
sensitivity we report could be due to attentional differences 
confounded with age.

Alternatively, the age-related delay in noise sensitivity might 
reflect a slowing of visual processing with age. This interpreta-
tion would lead to the conclusion that, in older subjects, later time 
windows might become functionally equivalent to the N170 time 
window in younger subjects (Figure 6). Hence, comparing the 
N170 across age groups might be misleading, because the single-
trial activity around that time does not necessarily carry the same 
information content in all age groups.

et al., 2009), alterations of long-range interactions between the 
ventral pathway and the  prefrontal cortex (Thomas et al., 2008; 
Davis et al., 2009), differences in top-down control (Grady, 2008), 
and categorical dedifferentiation in higher-order cortex (Park 
et al., 2004; Voss et al., 2008). In addition to a new quantification 
of visual noise sensitivity delay with age, we established that this 
effect is reliable within subjects (test-retest in 24 subjects). Finally, 
we observed a qualitative shift in the time-course of brain activity 
around 47 years of age.

Improvements over prevIous face studIes
Previous EEG and MEG studies have focused their analyses on 
component peak latencies to estimate processing speed. In par-
ticular, they all measured the latencies of the M/N170 peak as a 
measure of face processing speed (Rousselet et al., 2008a). However, 
a link between information processing speed and peak latencies of 
face-evoked activity has been demonstrated only recently in the 
case of an emotion discrimination task (Schyns et al., 2007). This 
relationship was observed using tightly controlled stimuli, and it 
may not apply to other tasks and uncontrolled stimuli used in 
previous experiments.

Comparing the latencies from the same peak across age 
groups presumes that one peak indexes the same neuronal proc-
ess over the life-span. What information is processed in the time 
window of the N170, and how, has not been firmly established 

Figure 9 | Age-related changes in the time-course of noise sensitivity. 
(A) Weighted means of normalized envelope R2 functions. This is a 2D version of 
Figure 8, using less quantiles. The inset shows the deciles of the subject’s age 

distribution. (B) Normalized cumulated sums of the functions depicted in (A).  
(C) Time to integrate 50% of the normalized envelope R2 function, for  
the 62 subjects.

Figure 10 | Time-course of the eeg age effect. (A) Slope of the percentage of integrated R2 function as a function of age, plotted over time. The horizontal red bar 
indicates time points at which the slope was significantly different from 0. The vertical dashed lines mark the time points that are described in (B,C).
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almost identical to scalp data (Allison et al., 1999; Barbeau et al., 
2008; Sehatpour et al., 2008; Rosburg et al., 2009). In addition, the 
MEG sources of the M170 and the M200, the magnetic equivalent 
of the N170 and the P2, are very similar, suggesting that the two 
peaks may reflect the continuous activity of the same area (Itier et al., 
2006). However, at this point, we cannot dissociate the attentional 
from the processing speed interpretations of our results.

The functional equivalence of two time periods, encompassing 
two peaks, seems to contradict the assumption that peaks reflect 
different processes, and the involvement of different cortical areas. 
Results from other laboratories also challenge this assumption. 
In intracranial recordings, the same narrow patch of cortex can 
 produce the whole cascade of P1, N1/N170, and P2 peaks in response 
to objects and faces, sometimes with timing and relative shapes 

FiGuRE 11 | Test–retest of the envelope R2 functions. The envelope R2 functions (maximum across electrodes) from the 24 subjects from which we recorded EEG 
twice are sorted by subjects’ age from top to bottom. Subjects’ age is indicated in the upper left corner of each cell. Pearson’s correlation R is indicated in the upper 
right corner of each cell.

FiGuRE 12 | Test–retest of the processing time effects. (A) Correlation between 50% EEG R2 integration times in the two sessions. (B) 50% EEG R2 integration 
times, in the two sessions, as a function of age.
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(Cant et al., 1978; Shaw and Cant, 1980; Kurita-Tashima et al., 1992; 
Tobimatsu et al., 1993). Drug induced pupil dilation decreases P100 
latency, whereas pupil constriction has the opposite effect (Hawkes 
and Stow, 1981; Tobimatsu et al., 1988). More striking, reduced 
luminance causes the same latency increase in retinal evoked activity 
and in cortical evoked activity, suggesting that retinal delays could 
explain cortical delays, at least in young- and middle-age subjects 
(Tobimatsu et al., 1988; Froehlich and Kaufman, 1991).

Thus, there is a link between retinal illuminance and process-
ing speed, suggesting that senile miosis may explain age-related 
changes in cortical processing speed. However, a study that 
directly assessed the effect of aging on retinal and cortical activity 
concluded that age-related retinal delays cannot account entirely 
for the cortical delays, so that cortical delays were neuronal, not 
optical in origin (Celesia et al., 1987). Other authors also con-
cluded that reduced retinal illuminance caused by increased mio-
sis could not entirely explain increased P100 latencies with age 
(Sokol et al., 1981; Morrison and Reilly, 1989; Tobimatsu et al., 
1993). In contrast, one study reported a significant effect of age on 
the P100 latency at 5 cd/m2, but no effect at 50 cd/m2 (Shaw and 
Cant, 1980). Moreover, Trick et al. (1986) found no age-related 
latency change in retinal or cortical activity after correcting for 
the reduction in retinal illuminance caused by senile miosis. The 
correction was estimated by testing four control observers with 
neutral density filters. However, as noted by Morrison and Reilly 
(1989), equating for retinal illuminance fails to take into account 
the benefits provided by senile miosis (Sloane et al., 1988; Winn 
et al., 1994). It is also not clear whether the results from one 
study using checkerboards can be generalized to all visual stimuli, 
including our set of faces.

Overall, the literature suggests that senile miosis contributes to 
the age-related delay in P100 latency, but is unclear about the size 
of that contribution. Importantly, as far as we know, no study yet 
has modeled retinal and cortical processing speed as a function 
of age, pupil size, and luminance. We plan to study these factors 
systematically using our EEG approach.

agE-latEncy rElatIonshIp
We found a progressive age-related delay in noise sensitivity, with an 
estimated slope of 1 ms/year (Figure 9). This estimate is difficult to 
compare to the existing face literature, because our study is the first 
to test a continuum of ages using a component-free approach.

Large groups of subjects, with a continuum of ages, have been 
tested in aging studies that used the P100 pattern-reversal com-
ponent as a measure of perceptual processing speed. The P100 is 
the major positive peak around 100 ms recorded with EEG and 
MEG in response to checkerboards. Using this technique, some 
studies have reported a progressive slowing from early adulthood 
(Shaw and Cant, 1980; Sokol et al., 1981), whereas others have 
reported stable processing speed until the early 1950s or 1960s, 
followed by a progressive slowing in later life (Allison et al., 1984; 
Mitchell et al., 1987; Pitt and Daldry, 1988; Armstrong et al., 1991; 
Tobimatsu et al., 1993). Our results tend to show a linear age 
effect on the timing of noise sensitivity, but it seems that many 
more subjects would be required to properly assess the linearity 
of our results. Also, we did find a non-linear, qualitative shift, in 
the shape of brain activity around 47 years of age, but it is unclear 
how this effect may relate to earlier P100 effects (Figure 13).

optIcal factors
It is important to realize that aging studies, whether they used 
checkerboards, simple stimuli, or more complex face stimuli, have 
all reported large variance within age groups. Thus, despite signifi-
cant age effects, there tends to be considerable overlap between age 
groups. The unexplained variance implies that factors other than 
chronological age may be more suitable for explaining our effects.

Beyond the other age-related changes we have listed already, P100 
studies have identified senile miosis as a potential explanation for 
age-related delays. Senile miosis, the reduction in pupil size with 
age, is responsible for a reduction in retinal illuminance (Winn 
et al., 1994), which in turn may explain the increased latency of 
cortical evoked activity with age. Indeed, independently of age, the 
P100 latency increases with reduction in checkerboard luminance 

FiGuRE 13 | Age-related qualitative changes in R2 functions. (A) For each 
subject on the x-axis, the y-axis indicates the cross-correlation lag for maximum 
correlation between that subject and all the other subjects. The R2 functions 
from younger subjects did not need to be shifted much to maximize their overall 
similarity. However, their functions needed to be shifted to the right (positive 
shift, in red) to maximize the similarity with older functions. The reverse was true 

for older subjects. (B) For each subject, the 20% trimmed mean of the 
cross-correlation lags provides an indication of its overall similarity to other 
subjects. Younger subjects tended on average to have a positive lag, whereas 
older subjects tended to have a negative lag. There was a significant relationship 
between mean lags and age (R2 = 0.61, P = 0). The age at which a lag of 0 was 
observed provided an estimate of the age of a qualitative switch in brain activity.
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BehAvioRAl consequences of the Age-RelAted delAy
One interpretation of our results suggests an age-related delay in 
EEG integration times, in the context of our task and face stimuli. 
We did not look for a relationship between reaction times and EEG 
estimates of processing speed because we instructed participants to 
be as accurate as possible, and that response speed was completely 
irrelevant to the experiment. Nevertheless, slower EEG integration 
times should predict the amount of time required by the visual 
system to reach a decision about the stimulus.

Visual integration time can be measured behaviorally using 
backward masking. Habak et al. (2008) used a 2-AFC task, in which 
a face is presented for 200, 500, or 1000 ms, followed by one random 
noise mask for 200 ms. Subjects then had to select one of two choice 
faces. The percentage of face geometry change necessary to perform 
the task was measured, at each stimulus duration, in young (mean 
age 23) and old (mean age 64) subjects. For front view faces, the 
same face orientation we used, Habak et al. reported a main effect 
of stimulus duration, but no effect of age. Their result suggests 
that aging does not affect processing speed in a front-view face-
matching task, a result at odds with our EEG data. However, Habak 
et al. did not test older observers at stimulus durations shorter 
than 200 ms, and it is not clear whether their mask was able to 
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