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Plant-derived compounds, without doubt, can have significant medicinal effects since

many notable drugs in use today, such as morphine or taxol, were first isolated from

botanical sources. When an isolated and purified phytochemical is developed as a

pharmaceutical, the uniformity and appropriate use of the product are well defined.

Less clear are the benefits and best use of plant-based dietary supplements or other

formulations since these products, unlike traditional drugs, are chemically complex and

variable in composition, even if derived from a single plant source. This perspective will

summarize key points–including the premise of ethnobotanical and preclinical evidence,

pharmacokinetics, metabolism, and safety–inherent and unique to the study of botanical

dietary supplements to be considered when planning or evaluating botanical clinical

trials. Market forces and regulatory frameworks also affect clinical trial design since

in the United States, for example, botanical dietary supplements cannot be marketed

for disease treatment and submission of information on safety or efficacy is not

required. Specific challenges are thus readily apparent both for consumers comparing

available products for purchase, as well as for commercially sponsored vs. independent

researchers planning clinical trials to evaluate medicinal effects of botanicals. Turmeric

dietary supplements, a top selling botanical in the United States and focus of over 400

clinical trials to date, will be used throughout to illustrate both the promise and pitfalls

associated with the clinical evaluation of botanicals.
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INTRODUCTION

Research of plant-derived products (e.g., extracts and/or dried plant parts) stands at the complex
intersection of science, consumerism, industry, and federal regulation connecting stakeholders
with differing and only partly overlapping interests and expectations. Nowhere is this more
apparent than when examining the design and results of published botanical clinical trials and
their therapeutic impact (1). In contrast to FDA-approved drugs, the regulatory environment
for botanical dietary supplements in the United States (US), which only allows their sale under
the explicit provision that the products not be marketed for the treatment or prevention of
any specific disease, does not provide a strong commercial incentive for financing appropriately
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powered and designed (e.g., dose finding or equivalency) clinical
studies (2, 3). The often-lacking defined chemical composition of
botanical products, as well as their non-uniformity, adds a layer
of complexity for scientists, clinicians, and consumers alike when
attempting to understand the medical implications of published
trials (4). Thus, consumers often become the final arbiters of
information derived from trials of readily available botanicals,
and may use a product with a chemical composition distinct
from that studied to treat a medical condition for which definitive
efficacy and safety data are also lacking (5).

While approximately one third of the earth’s plants have been
used traditionally as medicines, often in combination, <10%
of traditional medicinal plants have been the focus of scientific
research (6). Despite this absence of scientific evaluation, a
majority of populations in developing nations continue to rely
on traditional remedies for disease treatment, while in developed
nations, such as the United States, over the counter botanical
sales continue to expand (7). How can we best marshal limited
commercial and government resources to improve the quality
and significance of information derived from botanical clinical
trials to better understand the benefits and limitations of plant-
derived products? Using turmeric as a test case, given its rich
history of ethnobotanical use (8), the impressive number (>400)
of modern clinical studies conducted to understand its best use
(9, 10), and its current rank as one of the top selling botanicals
in the United States (4, 11), we will summarize key points to be
considered when designing or evaluating results from botanical
clinical trials.

SCIENTIFIC PREMISE SUPPORTING
CLINICAL EVALUATION OF A BOTANICAL

Ethnobotanical Evidence
In contrast to pharmaceutical development, which usually
begins with a specific biological target and works backwards
to find a silver bullet, clinical evaluation of botanicals often
has its nidus in ethnobotanical evidence of therapeutic effects
of a particular plant, mechanism unknown (12). Indeed,
the majority of plant-derived compounds developed into
pharmaceuticals were identified following ethnobotanical leads
(6). For some plants, centuries of use by specific populations,
often supported by written texts, provides a compelling
source of information for disease-specific treatments despite
an absence of modern studies to confirm effects. Turmeric
is one such plant, having been used as an anti-inflammatory
in Ayurvedic medicine for thousands of years, up until the
present (8). Using modern scientific methods, turmeric clinical
trials have offered evidence in support of this traditional
anti-inflammatory use (9, 13). While likely not common in
antiquity, obesity-associated diseases, like insulin resistance
or non-alcoholic fatty liver disease, for which inflammation
is a key driver, have been the most studied conditions
in turmeric clinical trials, representing almost one third of
citations and yielding strong evidence of efficacy (13). Anti-
inflammatory effects of turmeric are also strongly supported
by studies related to musculoskeletal diseases, the second most

commonly studied condition, half of which have focused on
osteoarthritis, with the majority of studies reporting clinical
improvements (13).

Reliance on ethnobotanical evidence can have limitations,
however. For clinically silent disease processes, such as age-
related bone loss, ethnobotanical footprints do not exist.
In these cases, mechanistic pre-clinical studies in the same
or mechanistically similar conditions can sometimes provide
direction. For example, in the course of conducting pre-clinical
turmeric studies documenting remarkable in vivo anti-arthritic
efficacy, our laboratory identified direct and indirect inhibitory
effects of turmeric on the formation of bone resorbing osteoclasts
(14), key mediators of bone loss across all disease states (14–
16). Subsequent pre-clinical studies by our laboratory verified
anti-resorptive effects of turmeric in a model of menopausal
bone loss, a clinically silent disorder, that were subsequently
confirmed clinically (16, 17). For other biological processes, such
asmenopause, symptomatology can be culturally dependent (18),
and pharmacogenetic differences between populations can also
impact botanical responses (19), a caveat that should be kept
in mind when designing–and perhaps most importantly–when
interpreting clinical trial results. Similarly, for clinical endpoints
more responsive to placebo effects, ethnobotanical evidence
may also be less reliable. Menopause again provides a possible
example (20), as evidenced by the NIH-funded HALT trial
testing black cohosh effects onmenopausal vasomotor symptoms
where a clinically significant 30% reduction in symptoms was
documented in black cohosh—and in placebo—trial arms (21).
While placebo responsiveness was not necessarily the reason
that this trial did not identify an effect (e.g., criticism of the
product used and limited power of the study due to inclusion of
multiple arms have also been cited as possible explanations), this
caveat must again be considered when designing botanical trials,
particularly when estimating effect size to appropriately power
the clinical trial.

Pre-clinical Evidence
Even when ethnobotanical evidence of a medicinal effect
is strong, botanical clinical trials are vastly improved when
mechanistic data are available from appropriately designed
pre-clinical studies, particularly those performed in vivo (22).
In addition to strengthening scientific premise, mechanistic
information can also identify biomarkers for inclusion as
endpoints, thus improving assessment of pharmacodynamic
efficacy and pharmacokinetic sufficiency. For example, pre-
clinical data documenting specific, avid binding of turmeric-
derived curcumin to amyloid plaques in brains of Alzheimer’s
Disease (AD) mice has been leveraged, taking advantage of
curcumin’s natural fluorescence, to image these plaques non-
invasively in the retinas of ADmice (23). Subsequently, curcumin
has been used successfully to image retinal plaques in aging
patients suffering from cognitive decline (24), suggesting a
diagnostic tool for a disease where few currently exist. Since
curcumin is also reported to reduce amyloid plaques in AD mice
(25), an endpoint now accepted, albeit controversially, by the
FDA as ameasure of AD pharmaceutical clinical efficacy (26), this
pre-clinical discovery suggests that curcumin-visualized changes
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in retinal plaques could serve as a biomarker for clinical trials
assessing the efficacy of drugs–including curcumin–in slowing
AD progression.

Similarly, in vivo and in vitro pre-clinical studies from our
own laboratories have demonstrated in vivo inhibition of NF-κB
activation by curcumin (14), an effect likely attributable to adduct
formation between oxidative curcumin metabolites and IκB
kinase β (IKKß), the activating kinase upstream of NF-κB (14,
27–29). Furthermore, our laboratories have demonstrated that
in vivo inhibition of NF-κB activation in a pre-clinical arthritis
model is associated with decreased NF-κB-induced cytokines
or NF-κB-mediated tissue destructive processes (i.e., formation
of bone-resorbing osteoclasts) known to be closely linked with
adverse clinical outcome (Figure 1) (14–16). Consistent with
these pre-clinical findings, in clinical trials assessing curcumin
effects on diseases, such as arthritis, where NF-κB activation is
known to contribute to pathology, inhibitory effects of curcumin
on NF-κB activation and NF-κB downstream pathways have
also been reported, with these biomarkers lending credence
and mechanistic support to beneficial clinical outcomes (17,
30–33). Indeed, given the central role of NF-κB in mediating
inflammation and the significant contribution of inflammation
to many disease processes (34), it is perhaps not surprising
that benefits of turmeric have been reported in clinical trials
across disease types, consistent with its traditional use as an
anti-inflammatory (9).

CHOICE OF BOTANICAL PRODUCT FOR
STUDY

Botanical Product Composition
One fundamental feature of botanicals not always appreciated
by medical researchers is their chemical complexity and
variability, even for products derived from the same plant
(35). Most plant-derived medicinal compounds are so called

secondary metabolites lacking a function within the plant
itself, phytoestrogens being one excellent example (36).
Secondary metabolites are directed outward (e.g., polyphenolic
curcuminoids in turmeric rhizomes), often as a defensive
mechanism, protecting the plant from herbivores, insects,
or pathogens; thus, their biosynthesis is context-specific and
highly regulated but also variable (36, 37). However, even for
well-studied plants like turmeric, where curcuminoids have
been identified as a primary bioactive principle and are used
for extract standardization (4), so called entourage effects are
possible (38), with bioactivity resulting from additive and
synergistic effects of component parts. In the case of turmeric,
ground rhizome—containing polyphenols (3% curcuminoids
by weight), terpene-rich essential oils and polysaccharides—is
used both in cooking and for preparation of traditional medical
formulations (39), whereas the content of most US turmeric
dietary supplements is limited to curcuminoids only (98%
curcuminoids by weight) (4).

Given reports of enhanced curcuminoid bioavailability when
combined with turmeric’s essential oils (40), as well as
pre-clinical evidence from our laboratories of enhanced or
differential in vivo bioactivity of polyphenols derived from
turmeric (curcuminoids), or from the botanically-related plant
ginger (gingerols), when combined with essential oils and/or
polysaccharides, it is readily apparent that botanical extracts,
even when standardized to an active principle (e.g., curcuminoids
or gingerols) may have differential effects (8, 14, 41–46). For
example, in pre-clinical arthritis studies testing turmeric rhizome
extracts normalized for curcuminoid or essential oil content
(Figure 2), (14, 41, 42, 46) our laboratories have demonstrated
anti-arthritic effects for each type of secondary metabolites,
as well as additional effects of polar rhizome constituents.
However, when testing clinically-relevant, oral doses of purified
curcuminoids vs. essential oils, purified curcuminoids were
more potent with greater effects (41, 42, 47). In addition, it

FIGURE 1 | In a pre-clinical arthritis model, consistent with curcuminoid blockade of intraarticular NF-κB activation (not shown), curcuminoid (CURC) treatment

significantly altered (A) gene expression in arthritic joints, including suppression of over 40 NF-κB regulated genes, and (B) inhibited bone-resorbing osteoclast

formation in arthritic joints, which is also NF-κB mediated. ns, not significant or ***p < 0.001 vs. control (13).
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FIGURE 2 | Differential anti-arthritic effects of components extracted from

turmeric rhizome in a pre-clinical arthritis model. The anti-arthritic effects of

turmeric extracts of different chemical composition were assessed using an ip

dosing strategy given reports of altered oral curcuminoid bioavailability when

combined with essential oils. Each of turmeric’s secondary metabolites

[curcuminoids (orange triangles) and essential oils (blue squares)] had

significant anti-arthritic effects when administered separately. Interestingly,

differential effects were noted for a chemically complex curcuminoid extract

(brown triangles) devoid of essential oils but containing polar compounds,

such as polysaccharides. Anti-arthritic curcuminoid efficacy was confirmed

with oral dosing [50% inhibition; human equivalent dose (HED) of 1 g/d], while

protection from oral essential oils was much reduced (20%; HED of 5 g/d) (13).

was notable that in vivo anti-inflammatory effects of these
same extracts differed for joint vs. hepatic inflammation in the
same animals, and also did not necessarily correlate with in
vitro screening assays (14, 42). Thus, while high throughput
screening methods to identify target-specific bioactivity of
complex extracts are being developed (48), the utility of pre-
clinical data evaluating in vivo efficacy of normalized botanical
constituents administered alone or in combination can be
particularly helpful in choosing a product for clinical study.
In addition, entourage effects may also alter active principle
bioactivity. The availability of head-to-head pharmacokinetic
studies for botanical products normalized to an active principle
can serve as a gold standard in this regard. For example, turmeric
essential oils, while perhaps of limited anti-inflammatory efficacy
in clinically relevant doses, have been variably reported to
enhance curcuminoid bioavailability in human pharmacokinetic
studies (40, 47, 49). This raises interesting questions not only
about botanical product choice for clinical testing, but also
regarding assessment of ethnobotanical evidence. If true, the
western reductionist approach of using purified curcuminoids
rather than complex extracts may not only require higher
dosing, but also suggest a corollary question; can intake of lower
curcuminoid doses via dietary or traditional medicinal use of
essential oil- and curcuminoid-containing turmeric preparations
yield biological effects? While this question remains unanswered,
it is intriguing that a recent pharmacokinetic study by Mahale
et al. (39), examining a turmeric rhizome dose in food analogous
to estimated daily dietary intake in India, documented serum
curcuminoid levels similar to those reported for therapeutic doses
of purified curcuminoid dietary supplement formulated by other
means to enhance bioavailability (49–51).

Standardization of the entirety of a plant extract can be
difficult, however, because the exact chemical composition can
also be dependent not only on the plant and plant part used, but
also on growing conditions andmethod of preparation, including
possible fractionation and/or solvents used for extraction, which
can differ between products and manufacturers (4, 44, 46). For
example, residual levels of 7 different carcinogenic class 1 or toxic
class 2 solvents, while below USP limits, were documented by
our laboratories in the majority of turmeric dietary supplements
tested, suggesting differential modes of preparation, as well as the
potential for safety concerns (4). Even when bioactive content
is well documented, other aspects of product formulation can
confound comparisons of bioactivity in clinical trials andmust be
considered in clinical trial design. For example, our laboratories
have documented that more than half of commercial turmeric
dietary supplement sold in the US are enhanced bioavailability
formulations and/or include additional botanicals (4). Country-
specific regulatory environments can add another layer of
complexity to product standardization for botanical clinical trials
(3). Reports of botanical product mislabeling in terms of both
plant species and chemical content, deliberate adulteration with
drugs, or contamination are not uncommon (52). Even in well
studied proprietary botanical products, formulations can change
over time, possibly altering bioavailability and bioactivity of the
standardized active principle. For all of these reasons, besides
careful consideration and justification of botanical composition
to be tested in a clinical trial, it is absolutely critical that the
chemical composition of the specific product and lot(s) used are
documented independently by the clinical trial researchers and
reported as an integral part of the clinical trial results—evenwhen
commercial products are used—so that research can be replicated
and reasons for possible differences between studies can be more
rigorously assessed (53). For assay of some active principles,
such as curcuminoids (54), standardized methods have been
described. In all cases, methodology used to determine product
content should be included when reporting clinical trial results.

Botanical Product Dosing
As exemplified by the turmeric clinical trial literature (9), even
for diseases where botanical clinical efficacy is reported across
a majority of clinical trials (e.g., curcuminoid treatment of
diseases attributable to obesity-associated inflammation or joint-
inflammation) (13), definitive conclusions as to efficacy (e.g.,
from metanalyses) or informed clinical use by consumers are
often limited since botanical clinical trials often test only a
single dose, with the added complication of disparate products
being tested across trials for a given clinical condition. In the
case of turmeric dietary supplements, for example, because
many are formulated as enhanced bioavailability products (4),
curcuminoid dosing is difficult to compare across trials even
if product curcuminoid content is reported (9). Thus, neither
consumers nor biomedical researchers can easily extrapolate
information from a given study to support the rational
clinical use or clinical evaluation of a different product, unless
detailed information on product composition, dosing and
pharmacokinetics are all included in clinical trial design and
reported and discussed when publishing results. For example,
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FIGURE 3 | Metabolic conjugation of curcumin and deconjugation for quantitative analysis. Curcumin is consumed in its free (aglycone) form and undergoes rapid

phase II conjugation following intestinal absorption. The glucuronide conjugate accounts for about half of the circulating conjugates while sulfate and other, more

complex conjugates account for the rest. Free curcumin is low or undetectable in plasma samples. For quantification plasma samples are often deconjugated using

β-glucuronidase but this achieves only incomplete hydrolysis of sulfate and complex conjugates; more complete hydrolysis of all conjugates can be achieved using

sulfatase. Direct analysis of conjugates is preferred but hampered by the large number of conjugates, lack of standards, and technical challenges. Reduction of the

aliphatic double bonds, a significant route of metabolism in vivo, and other metabolic events are not illustrated.

while osteoarthritis (OA) is one of the most commonly studied
diseases in turmeric clinical trials (n = 35 unique citations),
yielding generally positive effects in studies that are primarily
double-blinded, placebo-controlled, and randomized (77%), the
OA clinical trials evaluated approximately 20 different, primarily
proprietary, curcuminoid-enriched products without any head to
head comparisons or inclusion of pharmacokinetic endpoints;
rarely included multiple dosing arms; and frequently omitted
information regarding curcuminoid content of the study drug
and/or rationalization of the single dosing choice (i.e., anticipated
bioequivalency of proprietary enhanced bioavailability products,
based on prior pharmacokinetic analyses) (13). Thus, both
clinical translation and validation of trial results can be improved
when dosing information is clearly stated, well justified, and
preferably supported by pharmacokinetic data. Both pre-
clinical (scaled for human equivalent dosing [HED]) or clinical
pharmacokinetic and pharmacodynamic data can be used to
optimize clinical trial dosing. For example, a least effective dose
of 4 mg/kg daily curcuminoids blocked joint swelling in a rat
arthritis model in our laboratory, yielding no greater effect at
a higher dose, with a similar inhibitory effect documented with
an oral HED of 1 g/d (Figure 2). As even oncologic drugs
are sometimes insufficiently studied to determine least effective
clinical dose (55), these types of pre-clinical data can help direct
botanical clinical trial design.

Pharmacokinetic Analyses
Inclusion of pharmacokinetic endpoints in clinical trial design
can help to overcome limitations attributable to the testing of
disparate products across trials, facilitating comparisons. This
is most particularly true for botanicals, such as curcuminoids,

where use of enhanced bioavailability products is common
and careful head to head pharmacokinetic comparisons of
formulations containing identical amounts of the bioactive are
required to determine actual bioequivalency (50). Even when
bioequivalency or bioavailability has been reported previously for
a product—and most definitely in cases where it has not—as a
minimum standard, rudimentary assessments of bioavailability
(e.g., assessment of Cmax, the maximum plasma concentration)
should be included in clinical trial design. For example, while
different approaches have been used to enhance curcuminoid
bioavailability, targeting absorption or secondary metabolism
(40, 49–51, 56), a rare head to head comparison of different
proprietary enhanced bioavailability curcuminoid products in
healthy adults did not support prior published pharmacokinetic
reports in all cases (49, 56). This demonstrates the importance
of documenting Cmax or other pharmacokinetic parameters in
clinical trials, particularly when testing botanical products in
disease-specific populations.

The design of pharmacokinetic endpoints in botanical clinical
trials also can present unique challenges since the in vivo
metabolic fate of plant-derived compounds can complicate
analyses. For example, we and others have demonstrated that
curcumin and many other plant-derived polyphenols primarily
circulate as glucuronide or sulfate conjugates (57–60), with
ingested aglycones being near undetectable (Figure 3). Indeed,
in the case of curcuminoids, these conjugates can persist
in the circulation for over 24 h (e.g., 10% of administered
curcuminoids, independent of dose) (61), due in part to
enterohepatic recirculation (Figure 4A) (60–65). For this reason,
and because glucuronide conjugates are difficult to analyze
(66), serum samples for curcuminoids and other botanicals
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FIGURE 4 | Pharmacokinetics of oral curcuminoids in mice. (A) Circulating

curcumin-glucuronide (CG) levels predominate and are sustained for up to 24 h

in mice following a single oral curcumin dose (HED 2.5 g), with sustained, albeit

lower, levels also documented in bone, where ß-glucuronidase-dependent GC

hydrolysis to form aglycone curcumin occurs, resulting in higher aglycone

concentrations than those perfusing bone. (B) Following curcumin ingestion in

mature ovariectomized (OVX) mice modeling menopausal bone loss (vs.

controls), the capacity of bone to deconjugate curcumin glucuronide

distributing to this site persists and is higher in OVX mice. Interestingly,

curcumin concentrations in mouse bones are also highest in trabecular bone

compartments where menopausal bone loss is most pronounced. Figures are

reproduced with permission from John Wiley and Sons (62).

are often pre-treated with deconjugating enzymes to liberate
the aglycone prior to pharmacokinetic analyses (51, 58).
This practice, however, is not always well documented or
characterized, nor are the clinical implications of low in vivo,
bioactive aglycones always considered (60, 67). For example,
data from our laboratories indicate that the common practice of
glucuronidase hydrolysis can underestimate curcumin exposure
due to incomplete hydrolysis of significant quantities of sulfated
or higher order conjugates and suggest the use of sulfatase
instead of glucuronidase since the former enzyme achieves
a more complete hydrolysis of conjugates (58). Some have
questioned the clinical relevance of such measures as conjugates
typically lack bioactivity (68). Others postulate that the prolonged
circulation of these conjugates provides a ready source ofmaterial
(e.g., polyphenols) that can be deconjugated locally, and most
particularly at sites of inflammation due to the presence of
glucuronidase-rich hematopoietic cells, to form the bioactive
aglycone (60, 69). Evidence for this later postulate has come from
recent studies in our own laboratories. Following oral curcumin
administration to mice, bone has the capacity to deconjugate
the majority of circulating curcumin glucuronides distributing
this site (Figure 4B), which has high levels of glucuronidase
due to resident hematopoietic marrow cells (60, 62, 67).
This deconjugation process is glucuronidase-dependent and

can yield local aglycone curcumin concentrations sufficient to
inhibit NF-κB-mediated formation of bone-resorbing osteoclasts
(60, 62, 67).

In vivo Botanical Metabolism
A further complication in assessing botanical exposure is
the possibility that botanicals, besides forming phase II
conjugates, may undergo further in vivo metabolism to create
additional bioactive moieties (28, 70, 71). This has been
extensively described for flavonoids (72–74), and curcumin is
also susceptible to reductive as well as enzymatic and non-
enzymatic oxidative metabolism (Figure 5) (66, 75). Again, in
the case of curcumin, our laboratories have demonstrated an
important role for oxidative metabolites of curcumin (70, 76) in
altering protein function via the formation of specific adducts
(27, 77–80).While evidence for protein adduction of curcumin in
vivo is yet lacking, in cell-based assays multiple proteins appear
to be targeted by reactive oxidative metabolites of curcumin
(28, 67, 77–83), consistent with curcumin’s reported pleiotropic
effects. Protein adduction appears specific and reproducible,
likely dictated by the susceptibility of specific proteins (e.g.,
regulatory site cysteine thiols) to reaction with the existing
enone electrophile of curcumin or with electrophilic moieties in
metabolites formed upon oxidative transformation (71, 83, 84).
For example, curcumin blockade of NF-κB, a transcription factor
that is a master regulator of inflammation, appears attributable to
adduct formation with the Cys179 residue of IKKβ, the upstream
kinase controlling NF-κB activation (85). This tendency to form
covalent protein adducts causes some plant-derived compounds,
such as curcumin or flavonoids (74, 76), to be “frequent
hitters” in screening assays, leading some to suggest that these
compounds should be avoided in drug discovery or, indeed,
biomedical research (86, 87). However, covalent modification
is a pharmacologic strategy employed by many FDA-approved
drugs (88, 89), most notably kinase inhibitors (90), or widely
used drugs like proton-pump inhibitors (91), anti-thrombotics
targeting the platelet P2Y12 receptor like clopidogrel (92),
and the cyclooxygenase inhibitor aspirin (93). Thus, it can
be argued that the clinical evaluation of botanicals, such as
curcuminoids, that specifically, albeit not exclusively, target
proteins physiologically relevant to their ethnobotanical use via
this mechanism (e.g., blockade of NF-κB via covalent kinase
inhibition), can be justified, particularly when the scientific
premise is further supported by pre-clinical evidence of in vivo
efficacy without “off target” toxicities (14, 16).

Given the major effect that in vivo metabolism of botanicals
can have on bioavailability and bioactivity, this not only
complicates the design and interpretation of relevant
pharmacokinetic assays, but also raises questions about
possible pharmacogenomic differences between subjects in
botanical clinical trials that could alter clinical outcomes. For
example, in the case of polyphenols, such as curcumin, that
rapidly undergo phase II metabolism, genetic variations in
endogenous conjugation (e.g., defective conjugation due to
UGT1A1 mutations [Gilbert Syndrome], affecting almost 10%
of adults) and/or deconjugation capacity may be important
determinants of botanical bioavailability, and thus bioactivity,
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FIGURE 5 | Metabolism of curcumin and the effect on biological activity. Curcumin is reduced and conjugated in vivo as shown by the detection of the corresponding

metabolites in plasma samples. Deconjugation of circulating and inactive curcumin-glucuronide by β-glucuronidase may contribute to a tissue- or disease-specific

effect. Oxidation of curcumin is prominent in buffer and in cultured cells but awaits to be proven in vivo. Adduction of curcumin to protein has been described, and at

least in part depends on oxidation of curcumin to a quinone methide or other electrophilic oxidation product, i.e., spiroepoxide, that target redox-sensitive cysteine

residues and soluble thiols like glutathione. The quinone methide radical and spiroepoxide are unstable intermediates in the oxidation of curcumin to the stable

end-product, bicyclopentadione. Curcumin also exerts biological effects through mechanisms not involving metabolic transformation.

which should be considered in clinical trial design (60, 62, 94–
96). Interestingly, separate reports suggest that gender may
also be an important determinant of clinical curcumin
responses, independent of bioavailability, and that gender
may also influence bioavailability, although differences in body
weight may have accounted for higher levels documented
in women. This finding remains clinically relevant since
curcuminoids in clinical trials–and clinical use–are rarely
dosed based on weight (50, 97, 98). In addition, for certain
botanicals, most notably phytoestrogens (99), but also possibly
curcuminoids (100), metabolism by the gut microbiome can also
affect bioavailability.

OTHER CRITICAL ELEMENTS AND
POTENTIAL BARRIERS TO HIGH QUALITY
BOTANICAL CLINICAL TRIAL DESIGN

Design elements driving the quality of any clinical trial are
obviously also applicable here, including appropriately powered,
controlled, randomized and double-blinded studies with pre-
specified analyses (101). However, often these elements are
overlooked in botanical clinical trials, or, indeed difficult to
achieve, whether due to funding limitations, or other issues
specific to a botanical. For example, it can be difficult to blind
studies, as is the case with curcumin, due to its unique vibrant
orange hue. Placebo composition is therefore an important
element of botanical study design (21). In our own experience,
optimization of placebo composition, particularly when the

botanical product is being obtained from a nutraceutical
company with fixed production lines, can be a time-consuming
issue that should be considered in planning timelines. Another
element to be considered in the US, even when testing an over-
the-counter product, is the need to prepare, file and undergo an
FDA review of an Investigational New Drug application (IND),
following botanical specific guidelines (102), if disease outcomes
(i.e., disease treatment) are an endpoint, as well as consideration
of whether clinical trial goals could be met with an alternative
design (103).

Funding is more limited for botanicals than for
pharmaceuticals, given their different marketing and approval
pathways. This often places limits on study size and duration
that impact clinical and statistical significance. For example,
the two published trials assessing curcumin in AD which were
only of 6-month duration and involved fewer than 30 treated
subjects, perhaps not surprisingly, yielded no significant effects,
an outcome attributed in part to low product bioavailability
(104, 105). In contrast, larger and longer (e.g., 12-month)
studies examining effects of enhanced bioavailability curcumin
products on cognitive decline in aged adults have all reported
benefits (106–111). In the US, industry-funded clinical trials
are disincentivized in general, since nutraceuticals can be
sold without evidence of efficacy and cannot be marketed for
disease treatment (3). Other market driven forces can impact
industry-supported study design in ways that are sometimes not
helpful to consumers or researchers. For example anti-arthritic
benefits have been reported in separate trials for two turmeric
products manufactured by the same company, a unique product
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combining curcuminoids with turmeric polysaccharides and
a curcuminoid-only product analogous to most commercial
turmeric supplements, without an assessment of bioactivity
attributable—or not—to polysaccharide content (112, 113).

PRIORITIZING PUBLIC HEALTH AND
SAFETY

Due to the large number of traditional medicinal plants, the
disparate composition of commercial products for a given
plant, and the paucity of botanical clinical trial funding, the
task of documenting medicinal benefits of every potentially
valuable botanical is daunting and likely not achievable. How
can available resources best be used? As previously discussed,
strong ethnobotanical and pre-clinical evidence of botanical
efficacy are important pillars supporting clinical trial design. The
study of lesser-known plants, particularly, for diseases lacking
effective treatments, can also yield clear benefits. However, in
these cases, considering all the intricacies associated with the
study of plant-based medicines as described here, strong pre-
clinical pharmacokinetic and pharmacodynamic evidence should
first be obtained to guide the appropriate design of subsequent
botanical clinical trials.

Prevalence of use is one additional factor to consider; public
health benefits can be greater in these cases, not only with respect
to efficacy, but also safety. Indeed, because some populations tend
to use botanicals for disease treatment even in the absence of
cultural traditions or evidence of efficacy, examination of safety
becomes a key concern. For example, in our recent observational
studies, current turmeric use was reported by one third of
individuals with rheumatoid arthritis or breast cancer in the
US despite a paucity of efficacy or safety data (11, 114, 115).
Botanical safety information is thus important for public health.
Consumers tend to falsely equate natural with safe, and, in the
US, may also incorrectly assume that the federal government
requires commercial botanical products to be vetted for efficacy
and safety (116, 117). Examination of possible pharmacogenetic
risk factors related to botanical metabolism and/or adverse
drug-botanical interactions can therefore be important elements
of botanical clinical trial design, particularly for government
funded studies (118, 119). This is particularly true when studying
populations at higher risk of adverse effects due to underlying
chronic disease and/or concurrent use of pharmaceuticals, as, for
example, has been reported for concurrent use of certain dietary
supplements with breast cancer chemotherapy (11, 120, 121).

One additional safety related concern, unique to botanicals
(vs. pharmaceuticals) and attributable to their variable content
and lack of regulatory oversight, is the risk of adverse effects
due to possible contaminants (2, 4). For example, isolated
case reports from our laboratories and others of turmeric-
or black cohosh-associated hepatitis highlight potential risks,
as well as difficulties in determining the etiology, of adverse
botanical effects outside the context of clinical trials (2, 122–
124). Thus, consideration of all available product- or plant-
specific safety data must guide product selection in order to
optimize botanical clinical trial design (4, 122). At the same

time, well-designed clinical trials are often the only source of
high-quality safety information for a given botanical product.
For example, a review of FDA MedWatch reports for turmeric
obtained by our laboratories under a Freedom of Information
Request in 2017 yielded 107 reports, with turmeric products
being equally listed as the possible suspected product (being used
in combination with other supplements in half of these cases)
vs. concurrent medication, making identification of turmeric
product-specific safety issues difficult. Lastly, for publicly funded
studies, selection of a product representative of those readily
available to consumers may also be a consideration (4).

CONCLUSION

Plants are a rich source of potential therapeutics, whether
developed as drugs, or used as complex botanical products.
However, the chemical complexity and differential regulation
of botanicals provide unique challenges when designing high
quality botanical clinical trials, with perhaps the largest public
health and medical benefits to be gained by prioritizing the
study of botanicals with a high prevalence of use and/or
likelihood of ameliorating diseases lacking effective treatments.
Turmeric is one such example, being a top selling botanical
already in widespread use with demonstrated promise in the
treatment of inflammatory conditions associated with obesity, a
major health problem worldwide. However, for many published
turmeric clinical trials, key clinical study design elements unique
to botanicals, as described here, have been lacking. Thus,
while turmeric may appear to be overstudied as compared
to other botanicals, because of its widespread prevalence of
use and the strength of existing ethnobotanical and scientific
evidence of medicinal effects, it can perhaps be best described
as ineffectively studied from the viewpoint of consumers and
healthcare providers. Improved botanical clinical trial designs,
making the best use of limited resources, are needed to realize
the full potential of turmeric and other medicinal botanicals,
complementing the experimental evidence of our ancestors with
the application of current best clinical research practices.
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