data reports

OPEN a ACCESS

Crystal structure of (benzenecarbothioamide-*kS*)chloridobis(triphenylphosphane-*kP*)silver(I)

Wattana Ruangwut and Chaveng Pakawatchai*

Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand. *Correspondence e-mail: chaveng.p@psu.ac.th

Received 30 June 2014; accepted 9 July 2014

Edited by A. J. Lough, University of Toronto, Canada

mixed-ligand In the mononuclear title complex, $[AgCl(C_7H_7NS)(C_{18}H_{15}P)_2]$, the Ag^I ion is four coordinated by one S atom of a benzenecarbothioamide ligand, two P atoms of two triphenylphosphane ligands and one chloride ion, displaying a distorted tetrahedral coordination geometry. In the crystal, pairs of N-H···Cl hydrogen bonds form inversion dimers. An intramolecular $N-H\cdots Cl$ hydrogen bond is also observed.

Keywords: crystal structure; Ag¹ complex; benzenecarbothioamide; hydrogen bonds.

CCDC reference: 1012936

1. Related literature

For relevant examples of structures of Ag^I complexes, see: Aslanidis et al. (1997); McFarlane et al. (1998); Cox et al. (2000); Dennehy et al. (2007); Nimthong et al. (2008). For potential applications of related complexes, see: Isab et al. (2010); Nawaz et al. (2011).

2. Experimental

2.1. Crystal data

$AgCl(C_7H_7NS)(C_{18}H_{15}P)_2]$	
$M_r = 805.05$	
Monoclinic, $P2_1/n$	
a = 14.2405 (7) Å	
$p = 13.9271 (7) \text{ Å}_{2}$	
e = 19.0774 (10) Å	
$B = 98.711 \ (1)^{\circ}$	

2.2. Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.861, \ T_{\max} = 0.923$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.075$ S = 1.13

9308 reflections

Z = 4Mo $K\alpha$ radiation $\mu = 0.78 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.16 \times 0.10$ mm

V = 3740.0 (3) Å³

51284 measured reflections 9308 independent reflections 8544 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.031$

442 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.72 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

D

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1A···Cl1 ⁱ	0.86	2.43	3.1798 (17)	146
$N1 - H1B \cdots Cl1$	0.86	2.39	3.2434 (17)	173

Symmetry code: (i) -x + 2, -y, -z.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008), SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Acknowledgements

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education, the Department of Chemistry and the Graduate school, Prince of Songkla University, is gratefully acknowledged. We would like to thank Dr Arunpatcha Nimthong for valuable suggestions.

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5718).

References

- Aslanidis, P., Karagiannidis, P., Akrivos, P. D., Krebs, B. & Läge, M. (1997). Inorg. Chim. Acta, 254, 277–284.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cox, P. J., Aslanidis, P., Karagiannidis, P. & Hadjikakou, S. (2000). *Inorg. Chim.* Acta, **310**, 268–272.
- Dennehy, M., Quinzani, O. V. & Jennings, M. (2007). J. Mol. Struct. 841, 110-117.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). *Polyhedron*, 29, 1251–1256.

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- McFarlane, W., Akrivos, P. D., Aslanidis, P., Karagiannidis, P., Hatzisymeon, C., Numan, M. & Kokkou, S. (1998). *Inorg. Chim. Acta*, **281**, 121–125.
- Nawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). *Polyhedron*, **30**, 1502–1506.
- Nimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, m310-m311 [doi:10.1107/S1600536814015992]

Crystal structure of (benzenecarbothioamide- κS)chloridobis(triphenyl-phosphane- κP)silver(I)

Wattana Ruangwut and Chaveng Pakawatchai

S1. Experimental

Triphenylphosphine, (0.37 g, 0.14 mmol) was dissolved in 30 cm³ of acetonitrile at 343 K. AgCl (0.10 g, 0.70 mmol) was added and then the mixture was stirred for 3 hours. At that time, a white precipitate was deposited and then benzene-carbothioamide (0.09 g, 0.70 mmol) was added. The new reaction mixture was continually heated under refluxed for 5 hours. The resulting clear solution was filtered and the filtrate was kept to evaporate at room temperature. X-ray quality crystals were obtained after two days and were filtered and dried in *vacuo*.

S1.1. Refinement

All H atoms were positioned geometrically and refined using a riding-model, approximation with C—H = 0.93 with $U_{iso}(H) = 1.2 U_{eq}(C)$, N—H = 0.86 with $U_{iso}(H) = 1.2 U_{eq}(N)$.

S2. Results and discussion

The coordination compounds of Ag^I complexes with phosphine and thione ligands have gained interest in recent years because of their participation in biological process as antibacterial agents (Isab *et al.*, 2010; Nawaz *et al.*, 2011). A large number of crystal structures of Ag^I complexes containing phosphine and thione as ligands have presented that these complexes are either mononuclear (McFarlane *et al.*, 1998) or dinuclear (Cox *et al.*, 2000) complexes with the silver(I) center exhibiting distorted tetrahedral or trigonal coordination geometry (Aslanidis *et al.*, 1997).

The molecular structure of the title mononuclear complex displays a distorted tetrahedral coordination geometry (Fig. 1). The deviation from ideal tetrahedral geometry can be described by the P2—Ag1—P1 angle which has value of 120.05 (2)° and this value is much larger than the perfect tetrahedral value of 109.5°. This distortion may be due to the steric imposition induced by the two bulky triphenylphosphine ligands. This has also been observed in previous reports e.g. the P2—Cu1—P1 angle in $[Cu1(C_7H_8N_2S)(C_{18}H_{15}P)_2]$ is 118.63 (5)° (Nimthong *et al.*, 2008). The Ag1—S1 bond distance in the title complex 2.5880 (5) Å lies in the range of other Ag¹ complexes such as the Ag—S bond in $[Ag(C_7H_4NS_2O_2)(C_{18}H_{15}P)_3]$ of 2.5939 (10) Å (Dennehy *et al.*, 2007). In the crystal, pairs of N—H…Cl hydrogen bonds form inversion dimers. An intramolecular N—H…Cl hydrogen bond is also observed (Fig. 2).

Figure 1

The molecular structure with displacement ellipsoids drawn at the 50% probability level and H atoms are omitted for clarity.

Figure 2

Part of the crystal structure showing the intermolecular and intramolecular hydrogen bonds as dashed lines are drawn between the non-hydrogen atoms. The symmetry related molecule is generated by the operator (-x+2, -y, -z).

(Benzenecarbothioamide-*kS*)chloridobis(triphenylphosphane-*kP*)silver(I)

Crystal data

[AgCl(C7H7NS)(C18H15P)2]
$M_r = 805.05$
Monoclinic, $P2_1/n$
a = 14.2405 (7) Å
<i>b</i> = 13.9271 (7) Å
c = 19.0774 (10) Å
$\beta = 98.711 \ (1)^{\circ}$
$V = 3740.0 (3) Å^3$
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: sealed tube φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{\min} = 0.861, T_{\max} = 0.923$ 51284 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.075$ S = 1.139308 reflections 442 parameters 0 restraints F(000) = 1648 $D_x = 1.430 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7876 reflections $\theta = 2.4-28.3^{\circ}$ $\mu = 0.78 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.30 \times 0.16 \times 0.10 \text{ mm}$

9308 independent reflections 8544 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 28.3^\circ, \ \theta_{min} = 1.7^\circ$ $h = -19 \rightarrow 18$ $k = -18 \rightarrow 18$ $l = -25 \rightarrow 25$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0351P)^2 + 1.9067P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.72$ e Å⁻³ $\Delta\rho_{min} = -0.39$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Agl	0.96337 (2)	0.11780 (2)	0.18826 (2)	0.01933 (5)	
Cl1	1.07616 (3)	0.00745 (4)	0.12713 (2)	0.02523 (10)	
S1	0.79118 (3)	0.07930 (4)	0.13044 (2)	0.02617 (11)	
P1	1.02572 (3)	0.27274 (3)	0.15422 (2)	0.01705 (9)	
P2	0.98356 (3)	0.07020 (3)	0.31343 (2)	0.01641 (9)	
N1	0.86973 (12)	-0.00117 (13)	0.02851 (9)	0.0257 (4)	
H1A	0.8678	-0.0242	-0.0135	0.031*	
H1B	0.9221	-0.0018	0.0576	0.031*	
C1	1.02873 (12)	0.29144 (13)	0.05997 (9)	0.0187 (3)	
C2	1.05820 (14)	0.37795 (14)	0.03329 (10)	0.0236 (4)	
H2	1.0772	0.4285	0.0640	0.028*	
C3	1.05912 (15)	0.38854 (15)	-0.03897 (11)	0.0268 (4)	
H3	1.0791	0.4460	-0.0566	0.032*	
C4	1.03040 (16)	0.31370 (16)	-0.08444 (11)	0.0296 (4)	
H4	1.0312	0.3210	-0.1328	0.036*	
C5	1.00051 (17)	0.22818 (16)	-0.05892 (11)	0.0324 (5)	
H5	0.9810	0.1781	-0.0899	0.039*	
C6	0.99972 (15)	0.21714 (14)	0.01362 (10)	0.0258 (4)	
H6	0.9796	0.1595	0.0309	0.031*	
C7	1.14768 (13)	0.29086 (13)	0.19631 (10)	0.0200 (4)	
C8	1.16664 (14)	0.30735 (15)	0.26924 (10)	0.0263 (4)	
H8	1.1166	0.3123	0.2952	0.032*	
C9	1.25915 (16)	0.31638 (17)	0.30335 (12)	0.0352 (5)	
H9	1.2711	0.3289	0.3518	0.042*	
C10	1.33373 (16)	0.30669 (18)	0.26532 (13)	0.0374 (5)	
H10	1.3960	0.3129	0.2881	0.045*	
C11	1.31608 (15)	0.28778 (18)	0.19375 (13)	0.0377 (5)	
H11	1.3665	0.2800	0.1685	0.045*	
C12	1.22346 (14)	0.28022 (16)	0.15898 (11)	0.0286 (4)	
H12	1.2121	0.2680	0.1105	0.034*	
C13	0.96006 (13)	0.37748 (13)	0.17718 (10)	0.0197 (4)	
C14	0.86150 (15)	0.37148 (15)	0.16127 (13)	0.0305 (5)	
H14	0.8335	0.3157	0.1411	0.037*	
C15	0.80496 (16)	0.44786 (18)	0.17519 (14)	0.0390 (6)	
H15	0.7393	0.4438	0.1632	0.047*	
C16	0.84564 (17)	0.53014 (17)	0.20690 (12)	0.0348 (5)	
H16	0.8075	0.5811	0.2166	0.042*	
C17	0.94290 (16)	0.53631 (15)	0.22403 (10)	0.0286 (4)	
H17	0.9702	0.5913	0.2460	0.034*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C18	1.00066 (14)	0.46105 (14)	0.20872 (10)	0.0223 (4)
H18	1.0664	0.4664	0.2195	0.027*
C19	1.10059 (13)	0.08806 (13)	0.36558 (10)	0.0193 (4)
C20	1.11456 (15)	0.12565 (17)	0.43381 (11)	0.0319 (5)
H20	1.0625	0.1439	0.4548	0.038*
C21	1.20579 (16)	0.13612 (19)	0.47091 (13)	0.0386 (5)
H21	1.2144	0.1611	0.5167	0.046*
C22	1.28319 (15)	0.10983 (17)	0.44038 (13)	0.0358 (5)
H22	1.3442	0.1164	0.4654	0.043*
C23	1.26999 (16)	0.07346 (19)	0.37215 (14)	0.0385 (5)
H23	1.3224	0.0563	0.3511	0.046*
C24	1.17911 (14)	0.06228 (16)	0.33477 (12)	0.0297 (4)
H24	1.1709	0.0375	0.2890	0.036*
C25	0.90286 (13)	0.13427 (14)	0.36321 (10)	0.0201 (4)
C26	0.86802 (14)	0.09695 (16)	0.42206 (11)	0.0272 (4)
H26	0.8856	0.0355	0.4380	0.033*
C27	0.80725 (15)	0.15072 (19)	0.45705 (12)	0.0362 (5)
H27	0.7838	0.1249	0.4959	0.043*
C28	0.78167 (16)	0.2422 (2)	0.43432 (13)	0.0413 (6)
H28	0.7413	0.2781	0.4580	0.050*
C29	0.81590 (16)	0.28085 (17)	0.37632 (14)	0.0381 (5)
H29	0.7990	0.3429	0.3613	0.046*
C30	0.87564 (14)	0.22677 (15)	0.34051 (11)	0.0280 (4)
H30	0.8977	0.2525	0.3011	0.034*
C31	0.96144 (13)	-0.05724 (13)	0.32671 (9)	0.0185 (3)
C32	0.91259 (14)	-0.10887 (14)	0.26999 (11)	0.0246 (4)
H32	0.8938	-0.0785	0.2267	0.030*
C33	0.89178 (15)	-0.20533 (15)	0.27774 (12)	0.0297 (4)
H33	0.8587	-0.2391	0.2398	0.036*
C34	0.92006 (16)	-0.25143 (15)	0.34174 (12)	0.0295 (4)
H34	0.9052	-0.3158	0.3471	0.035*
C35	0.97056 (16)	-0.20123 (15)	0.39764 (11)	0.0288 (4)
H35	0.9907	-0.2323	0.4404	0.035*
C36	0.99138 (14)	-0.10483 (14)	0.39031 (10)	0.0243 (4)
H36	1.0256	-0.0717	0.4282	0.029*
C37	0.79299 (13)	0.03483 (13)	0.04814 (9)	0.0200 (4)
C38	0.70443 (14)	0.03396 (14)	-0.00449 (9)	0.0219 (4)
C39	0.69078 (16)	-0.03464 (16)	-0.05811 (11)	0.0307 (5)
H39	0.7379	-0.0797	-0.0620	0.037*
C40	0.60665 (17)	-0.03594 (18)	-0.10586 (12)	0.0379 (5)
H40	0.5977	-0.0820	-0.1415	0.045*
C41	0.53653 (16)	0.03057 (19)	-0.10061 (12)	0.0386 (5)
H41	0.4800	0.0289	-0.1323	0.046*
C42	0.55038 (18)	0.0996 (2)	-0.04827 (13)	0.0444 (6)
H42	0.5035	0.1451	-0.0450	0.053*
C43	0.63401 (16)	0.10130 (18)	-0.00047 (12)	0.0348 (5)
H43	0.6429	0.1482	0.0346	0.042*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	<i>U</i> ¹²	<i>U</i> ¹³	U^{23}
Ag1	0.02407 (8)	0.01923 (7)	0.01454 (7)	-0.00135 (5)	0.00242 (5)	0.00012 (5)
Cl1	0.0264 (2)	0.0283 (2)	0.0204 (2)	0.00856 (19)	0.00159 (17)	-0.00369 (18)
S 1	0.0203 (2)	0.0411 (3)	0.0165 (2)	0.0002 (2)	0.00093 (17)	-0.0062 (2)
P1	0.0174 (2)	0.0171 (2)	0.0162 (2)	-0.00025 (17)	0.00140 (16)	0.00061 (16)
P2	0.0171 (2)	0.0186 (2)	0.0133 (2)	-0.00141 (17)	0.00131 (16)	-0.00025 (16)
N1	0.0225 (8)	0.0345 (9)	0.0191 (8)	0.0021 (7)	-0.0006 (6)	-0.0072 (7)
C1	0.0167 (8)	0.0210 (9)	0.0179 (8)	0.0013 (7)	0.0012 (6)	0.0017 (7)
C2	0.0261 (10)	0.0208 (9)	0.0237 (9)	-0.0039 (7)	0.0035 (7)	-0.0005 (7)
C3	0.0301 (10)	0.0256 (10)	0.0261 (10)	-0.0010 (8)	0.0083 (8)	0.0060 (8)
C4	0.0378 (12)	0.0331 (11)	0.0185 (9)	0.0057 (9)	0.0058 (8)	0.0053 (8)
C5	0.0494 (14)	0.0257 (10)	0.0201 (9)	-0.0008 (9)	-0.0013 (9)	-0.0028 (8)
C6	0.0353 (11)	0.0210 (9)	0.0199 (9)	-0.0015 (8)	0.0000 (8)	0.0034 (7)
C7	0.0192 (8)	0.0178 (8)	0.0220 (9)	0.0003 (7)	0.0000 (7)	0.0005 (7)
C8	0.0250 (10)	0.0304 (10)	0.0226 (9)	0.0018 (8)	0.0007 (8)	-0.0007 (8)
C9	0.0344 (12)	0.0376 (12)	0.0295 (11)	0.0001 (10)	-0.0083 (9)	-0.0021 (9)
C10	0.0222 (10)	0.0395 (13)	0.0463 (13)	-0.0031 (9)	-0.0088 (9)	0.0019 (10)
C11	0.0198 (10)	0.0463 (14)	0.0478 (14)	0.0014 (9)	0.0072 (9)	0.0036 (11)
C12	0.0241 (10)	0.0350 (11)	0.0265 (10)	0.0017 (8)	0.0036 (8)	-0.0010 (8)
C13	0.0207 (9)	0.0209 (9)	0.0183 (8)	0.0029 (7)	0.0052 (7)	0.0039 (7)
C14	0.0216 (10)	0.0261 (10)	0.0439 (13)	0.0003 (8)	0.0050 (9)	0.0054 (9)
C15	0.0228 (10)	0.0388 (13)	0.0580 (15)	0.0107 (9)	0.0139 (10)	0.0135 (11)
C16	0.0421 (13)	0.0315 (11)	0.0346 (11)	0.0170 (10)	0.0180 (10)	0.0103 (9)
C17	0.0449 (12)	0.0240 (10)	0.0170 (9)	0.0079 (9)	0.0050 (8)	0.0014 (7)
C18	0.0265 (9)	0.0214 (9)	0.0187 (8)	0.0022 (7)	0.0019 (7)	0.0017 (7)
C19	0.0175 (8)	0.0193 (8)	0.0200 (8)	-0.0007 (7)	-0.0007 (7)	0.0022 (7)
C20	0.0225 (10)	0.0473 (13)	0.0255 (10)	-0.0013 (9)	0.0019 (8)	-0.0068 (9)
C21	0.0291 (11)	0.0536 (15)	0.0298 (11)	-0.0051 (10)	-0.0064 (9)	-0.0102 (10)
C22	0.0199 (10)	0.0411 (13)	0.0429 (13)	-0.0012 (9)	-0.0070 (9)	0.0014 (10)
C23	0.0201 (10)	0.0462 (14)	0.0494 (14)	0.0062 (9)	0.0065 (9)	-0.0019 (11)
C24	0.0239 (10)	0.0342 (11)	0.0308 (11)	0.0024 (8)	0.0037 (8)	-0.0061 (9)
C25	0.0151 (8)	0.0247 (9)	0.0196 (8)	-0.0004 (7)	-0.0001 (7)	-0.0053 (7)
C26	0.0212 (9)	0.0377 (12)	0.0229 (9)	-0.0005 (8)	0.0041 (7)	-0.0030 (8)
C27	0.0250 (11)	0.0556 (15)	0.0297 (11)	-0.0022 (10)	0.0096 (9)	-0.0119 (10)
C28	0.0259 (11)	0.0541 (16)	0.0441 (14)	0.0043 (10)	0.0062 (10)	-0.0252 (12)
C29	0.0311 (11)	0.0312 (12)	0.0499 (14)	0.0070 (9)	-0.0004 (10)	-0.0121 (10)
C30	0.0256 (10)	0.0264 (10)	0.0307 (10)	0.0014 (8)	0.0001 (8)	-0.0041 (8)
C31	0.0173 (8)	0.0197 (9)	0.0194 (8)	-0.0008 (7)	0.0060 (7)	-0.0005 (7)
C32	0.0263 (10)	0.0244 (10)	0.0220 (9)	-0.0008 (8)	0.0003 (8)	-0.0021 (7)
C33	0.0325 (11)	0.0233 (10)	0.0327 (11)	-0.0047 (8)	0.0029 (9)	-0.0080 (8)
C34	0.0345 (11)	0.0193 (9)	0.0384 (11)	-0.0029 (8)	0.0170 (9)	-0.0016 (8)
C35	0.0393 (12)	0.0250 (10)	0.0245 (10)	0.0002 (9)	0.0123 (9)	0.0053 (8)
C36	0.0292 (10)	0.0254 (10)	0.0186 (9)	-0.0019 (8)	0.0049 (8)	-0.0005 (7)
C37	0.0227 (9)	0.0198 (9)	0.0172 (8)	-0.0031 (7)	0.0017 (7)	0.0003 (7)
C38	0.0231 (9)	0.0255 (9)	0.0162 (8)	-0.0035 (7)	-0.0003 (7)	0.0003 (7)
C39	0.0307 (11)	0.0296 (11)	0.0292 (10)	0.0013 (9)	-0.0034 (8)	-0.0070 (9)

supporting information

C40	0.0370 (12)	0.0416 (13)	0.0309 (11)	-0.0022 (10)	-0.0080 (9)	-0.0118 (10)
C41	0.0292 (11)	0.0586 (16)	0.0242 (10)	0.0023 (11)	-0.0082 (9)	-0.0049 (10)
C42	0.0349 (13)	0.0619 (17)	0.0326 (12)	0.0199 (12)	-0.0072 (10)	-0.0099 (11)
C43	0.0336 (12)	0.0441 (13)	0.0239 (10)	0.0105 (10)	-0.0042 (9)	-0.0115 (9)

Geometric parameters (Å, °)

Ag1—P2	2.4529 (5)	C18—H18	0.9300
Ag1—P1	2.4578 (5)	C19—C24	1.387 (3)
Ag1—S1	2.5880 (5)	C19—C20	1.389 (3)
Ag1—Cl1	2.6208 (5)	C20—C21	1.390 (3)
S1—C37	1.6918 (19)	C20—H20	0.9300
P1—C7	1.8173 (19)	C21—C22	1.372 (3)
P1-C13	1.8216 (19)	C21—H21	0.9300
P1	1.8238 (18)	C22—C23	1.383 (3)
P2-C19	1.8240 (18)	C22—H22	0.9300
P2-C31	1.8269 (19)	C23—C24	1.389 (3)
P2—C25	1.8300 (19)	C23—H23	0.9300
N1—C37	1.308 (2)	C24—H24	0.9300
N1—H1A	0.8600	C25—C26	1.395 (3)
N1—H1B	0.8600	C25—C30	1.395 (3)
C1—C6	1.383 (3)	C26—C27	1.389 (3)
C1—C2	1.397 (3)	C26—H26	0.9300
C2—C3	1.388 (3)	C27—C28	1.377 (4)
С2—Н2	0.9300	С27—Н27	0.9300
C3—C4	1.378 (3)	C28—C29	1.384 (4)
С3—Н3	0.9300	C28—H28	0.9300
C4—C5	1.378 (3)	C29—C30	1.391 (3)
C4—H4	0.9300	С29—Н29	0.9300
C5—C6	1.394 (3)	С30—Н30	0.9300
С5—Н5	0.9300	C31—C36	1.392 (3)
С6—Н6	0.9300	C31—C32	1.394 (3)
C7—C12	1.388 (3)	C32—C33	1.388 (3)
С7—С8	1.396 (3)	С32—Н32	0.9300
С8—С9	1.384 (3)	C33—C34	1.384 (3)
С8—Н8	0.9300	С33—Н33	0.9300
C9—C10	1.381 (3)	C34—C35	1.382 (3)
С9—Н9	0.9300	C34—H34	0.9300
C10-C11	1.376 (3)	C35—C36	1.386 (3)
C10—H10	0.9300	С35—Н35	0.9300
C11—C12	1.388 (3)	C36—H36	0.9300
C11—H11	0.9300	C37—C38	1.488 (2)
C12—H12	0.9300	C38—C43	1.384 (3)
C13—C14	1.393 (3)	C38—C39	1.392 (3)
C13—C18	1.395 (3)	C39—C40	1.391 (3)
C14—C15	1.384 (3)	С39—Н39	0.9300
C14—H14	0.9300	C40—C41	1.377 (3)
C15-C16	1.381 (4)	C40—H40	0.9300

01.5 MI.5	0.00	G.11 G.12	1 2 5 0 (2)
С15—Н15	0.9300	C41—C42	1.378 (3)
C16—C17	1.377 (3)	C41—H41	0.9300
C16—H16	0.9300	C42—C43	1.386 (3)
C17—C18	1.390 (3)	C42—H42	0.9300
C17—H17	0.9300	C43—H43	0.9300
	0.7500		0.9500
P2—Ag1—P1	120.053 (16)	C24—C19—C20	118.98 (18)
P2 = Ag1 = S1	108 823 (16)	C_{24} C_{19} P_{2}	117 53 (15)
\mathbf{D}_{1} $\mathbf{A}_{\alpha 1}$ \mathbf{S}_{1}	115 222 (17)	C_{24} C_{10} P_{2}	117.55(15) 123.40(15)
$\begin{array}{c} r_1 - Ag_1 - S_1 \\ p_2 - A_{-1} - C_{-1} \\ \end{array}$	115.225(17)	$C_{20} = C_{19} = F_{2}$	123.49(13)
P2—Ag1—C11	106.579 (16)	C19—C20—C21	120.5 (2)
Pl—Agl—Cll	97.298 (16)	С19—С20—Н20	119.8
S1—Ag1—Cl1	107.087 (16)	C21—C20—H20	119.8
C37—S1—Ag1	108.95 (7)	C22—C21—C20	120.3 (2)
C7—P1—C13	105.87 (9)	C22—C21—H21	119.8
C7—P1—C1	104.61 (8)	C20—C21—H21	119.8
C13—P1—C1	102.26 (8)	C21—C22—C23	119.6 (2)
C7—P1—Ag1	111.37 (6)	C21—C22—H22	120.2
C_{13} P1 Ag1	114.86 (6)	C23—C22—H22	120.2
C1 - P1 - Ag1	116 70 (6)	$C_{22} = C_{23} = C_{24}$	120.2 120.5(2)
$C_1 = P_2 = C_2 $	102.67(8)	$C_{22} = C_{23} = C_{24}$	120.3 (2)
$C_{19} = 12 = C_{31}$	102.07(8) 104.12(8)	$C_{22} = C_{23} = H_{23}$	119.7
C19 - F2 - C25	104.13(6)	$C_{24} = C_{23} = H_{23}$	119.7
C31—P2—C25	105.47 (9)	C19—C24—C23	120.1 (2)
C19—P2—Ag1	117.18 (6)	C19—C24—H24	119.9
C31—P2—Ag1	113.60 (6)	C23—C24—H24	119.9
C25—P2—Ag1	112.53 (6)	C26—C25—C30	118.54 (18)
C37—N1—H1A	120.0	C26—C25—P2	124.32 (15)
C37—N1—H1B	120.0	C30—C25—P2	117.13 (15)
H1A—N1—H1B	120.0	C27—C26—C25	120.6 (2)
C6—C1—C2	119.31 (17)	C27—C26—H26	119.7
C6-C1-P1	118 31 (14)	C25—C26—H26	119.7
$C_2 C_1 P_1$	122.38(14)	C_{23}^{23} C_{23}^{27} C_{26}^{26}	120.1(2)
$C_2 = C_1 = C_1$	122.38(14) 120.12(18)	$C_{28} = C_{27} = C_{20}$	120.1 (2)
$C_3 = C_2 = C_1$	120.12 (16)	$C_{26} = C_{27} = H_{27}$	119.9
C3—C2—H2	119.9	C26—C27—H27	119.9
C1—C2—H2	119.9	C27—C28—C29	120.2 (2)
C4—C3—C2	119.88 (18)	C27—C28—H28	119.9
С4—С3—Н3	120.1	C29—C28—H28	119.9
С2—С3—Н3	120.1	C28—C29—C30	119.9 (2)
C3—C4—C5	120.62 (19)	С28—С29—Н29	120.1
C3—C4—H4	119.7	С30—С29—Н29	120.1
C5—C4—H4	119.7	C29—C30—C25	120.6 (2)
C4-C5-C6	119 69 (19)	C29—C30—H30	1197
C4—C5—H5	120.2	$C_{25} = C_{30} = H_{30}$	119.7
C6-C5-H5	120.2	C_{36} C_{31} C_{32}	118 82 (17)
$C_1 C_6 C_5$	120.2	$C_{30} = C_{31} = C_{32}$	110.02(17)
	120.38 (19)	C_{20} C_{21} P_2	123.17(14)
	119.8	C32—C31—P2	118.01 (14)
С5—С6—Н6	119.8	C33—C32—C31	120.38 (19)
C12—C7—C8	118.76 (18)	С33—С32—Н32	119.8
C12—C7—P1	121.58 (15)	C31—C32—H32	119.8

C8—C7—P1	119.41 (15)	C34—C33—C32	120.30 (19)
C9—C8—C7	120.7 (2)	С34—С33—Н33	119.9
С9—С8—Н8	119.7	С32—С33—Н33	119.9
С7—С8—Н8	119.7	C35—C34—C33	119.59 (19)
С10—С9—С8	119.8 (2)	С35—С34—Н34	120.2
С10—С9—Н9	120.1	С33—С34—Н34	120.2
С8—С9—Н9	120.1	C34—C35—C36	120.40 (19)
C11—C10—C9	120.0 (2)	С34—С35—Н35	119.8
C11—C10—H10	120.0	С36—С35—Н35	119.8
C9—C10—H10	120.0	C35—C36—C31	120.48 (19)
C10—C11—C12	120.4 (2)	С35—С36—Н36	119.8
C10—C11—H11	119.8	С31—С36—Н36	119.8
C12—C11—H11	119.8	N1—C37—C38	117.60 (16)
C11—C12—C7	120.2 (2)	N1—C37—S1	122.48 (14)
C11—C12—H12	119.9	C38—C37—S1	119.91 (14)
C7—C12—H12	119.9	C43—C38—C39	118.97 (18)
C14-C13-C18	118.83 (18)	C43 - C38 - C37	120.29(17)
C14—C13—P1	115.88 (15)	C39—C38—C37	120.74 (18)
C18—C13—P1	125.29 (14)	C40-C39-C38	120.1(2)
C_{15} C_{14} C_{13}	120.6 (2)	C40—C39—H39	120.0
C15—C14—H14	119.7	С38—С39—Н39	120.0
C13—C14—H14	119.7	C41—C40—C39	120.4 (2)
C16—C15—C14	120.3 (2)	C41—C40—H40	119.8
C16—C15—H15	119.9	C39—C40—H40	119.8
C14—C15—H15	119.9	C40—C41—C42	119.7 (2)
C17—C16—C15	119.7 (2)	C40—C41—H41	120.1
С17—С16—Н16	120.1	C42—C41—H41	120.1
C15—C16—H16	120.1	C41—C42—C43	120.2 (2)
C16—C17—C18	120.6 (2)	C41—C42—H42	119.9
С16—С17—Н17	119.7	C43—C42—H42	119.9
С18—С17—Н17	119.7	C38—C43—C42	120.6 (2)
C17—C18—C13	119.99 (19)	C38—C43—H43	119.7
C17—C18—H18	120.0	С42—С43—Н43	119.7
C13—C18—H18	120.0		
C7—P1—C1—C6	121.08 (16)	P2-C19-C20-C21	179.13 (18)
C13—P1—C1—C6	-128.69 (16)	C19—C20—C21—C22	0.3 (4)
Ag1—P1—C1—C6	-2.47 (17)	C20—C21—C22—C23	0.5 (4)
C7—P1—C1—C2	-59.59 (17)	C21—C22—C23—C24	-0.8 (4)
C13—P1—C1—C2	50.64 (17)	C20—C19—C24—C23	0.5 (3)
Ag1—P1—C1—C2	176.86 (13)	P2-C19-C24-C23	-179.44 (18)
C6-C1-C2-C3	-0.6 (3)	C22—C23—C24—C19	0.3 (4)
P1—C1—C2—C3	-179.96 (15)	C19—P2—C25—C26	-81.47 (18)
C1—C2—C3—C4	0.4 (3)	C31—P2—C25—C26	26.25 (18)
C2—C3—C4—C5	0.1 (3)	Ag1—P2—C25—C26	150.62 (15)
C3—C4—C5—C6	-0.3 (3)	C19—P2—C25—C30	97.99 (15)
C2-C1-C6-C5	0.5 (3)	C31—P2—C25—C30	-154.29 (14)
P1—C1—C6—C5	179.81 (16)	Ag1—P2—C25—C30	-29.92 (16)
			· · ·

C4—C5—C6—C1	0.0 (3)	C30—C25—C26—C27	0.2 (3)
C13—P1—C7—C12	-130.56 (17)	P2-C25-C26-C27	179.70 (16)
C1—P1—C7—C12	-22.97 (19)	C25—C26—C27—C28	-0.8 (3)
Ag1—P1—C7—C12	103.94 (16)	C26—C27—C28—C29	0.4 (3)
C13—P1—C7—C8	55.30 (17)	C27—C28—C29—C30	0.6 (3)
C1—P1—C7—C8	162.89 (16)	C28—C29—C30—C25	-1.1 (3)
Ag1—P1—C7—C8	-70.20 (16)	C26—C25—C30—C29	0.7 (3)
C12—C7—C8—C9	2.3 (3)	P2-C25-C30-C29	-178.80 (16)
P1C7C8C9	176.59 (17)	C19—P2—C31—C36	35.53 (18)
C7—C8—C9—C10	-1.6 (3)	C25—P2—C31—C36	-73.24 (17)
C8—C9—C10—C11	-0.2 (4)	Ag1—P2—C31—C36	163.06 (14)
C9—C10—C11—C12	1.3 (4)	C19—P2—C31—C32	-144.12 (15)
C10—C11—C12—C7	-0.6 (4)	C25—P2—C31—C32	107.10 (16)
C8—C7—C12—C11	-1.2 (3)	Ag1—P2—C31—C32	-16.59 (17)
P1-C7-C12-C11	-175.38 (17)	C36—C31—C32—C33	2.0 (3)
C7—P1—C13—C14	-168.93 (15)	P2-C31-C32-C33	-178.37 (16)
C1—P1—C13—C14	81.80 (16)	C31—C32—C33—C34	-0.5 (3)
Ag1—P1—C13—C14	-45.60 (17)	C32—C33—C34—C35	-1.1 (3)
C7—P1—C13—C18	11.10 (18)	C33—C34—C35—C36	1.2 (3)
C1—P1—C13—C18	-98.18 (17)	C34—C35—C36—C31	0.2 (3)
Ag1—P1—C13—C18	134.42 (15)	C32—C31—C36—C35	-1.8 (3)
C18—C13—C14—C15	1.3 (3)	P2-C31-C36-C35	178.54 (15)
P1-C13-C14-C15	-178.66 (18)	Ag1—S1—C37—N1	19.52 (18)
C13—C14—C15—C16	-1.8 (4)	Ag1—S1—C37—C38	-161.76 (13)
C14—C15—C16—C17	0.6 (3)	N1—C37—C38—C43	-153.7 (2)
C15—C16—C17—C18	1.0 (3)	S1—C37—C38—C43	27.5 (3)
C16—C17—C18—C13	-1.5 (3)	N1-C37-C38-C39	26.7 (3)
C14—C13—C18—C17	0.3 (3)	S1—C37—C38—C39	-152.13 (17)
P1-C13-C18-C17	-179.73 (14)	C43—C38—C39—C40	-1.1 (3)
C31—P2—C19—C24	81.55 (17)	C37—C38—C39—C40	178.5 (2)
C25—P2—C19—C24	-168.66 (16)	C38—C39—C40—C41	0.2 (4)
Ag1—P2—C19—C24	-43.67 (18)	C39—C40—C41—C42	0.8 (4)
C31—P2—C19—C20	-98.36 (18)	C40—C41—C42—C43	-0.9 (4)
C25—P2—C19—C20	11.4 (2)	C39—C38—C43—C42	1.1 (4)
Ag1—P2—C19—C20	136.42 (16)	C37—C38—C43—C42	-178.5 (2)
C24—C19—C20—C21	-0.8 (3)	C41—C42—C43—C38	-0.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A···Cl1 ⁱ	0.86	2.43	3.1798 (17)	146
N1—H1 <i>B</i> …Cl1	0.86	2.39	3.2434 (17)	173

Symmetry code: (i) -x+2, -y, -z.