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Background. Stage II colorectal cancer patients had heterogeneous prognosis, and patients with recurrent events had poor survival. In
this study, we aimed to identify stage II colorectal cancer recurrence associated genes by microarray meta-analysis and build
predictive models to stratify patients’ recurrence-free survival. Methods. We searched the GEO database to retrieve eligible
microarray datasets. 2e microarray meta-analysis was used to identify universal recurrence associated genes. Total samples were
randomly divided into the training set and the test set. Two survivalmodels (lasso Coxmodel and random survival forest model) were
trained in the training set, and AUC values of the time-dependent receiver operating characteristic (ROC) curves were calculated.
Survival analysis was performed to determine whether there was significant difference between the predicted high and low risk groups
in the test set. Results. Six datasets containing 651 stage II colorectal cancer patients were included in this study.2emicroarraymeta-
analysis identified 479 recurrence associated genes. KEGG and GO enrichment analysis showed that G protein-coupled glutamate
receptor binding and Hedgehog signaling were significantly enriched. AUC values of the lasso Cox model and the random survival
forest model were 0.815 and 0.993 at 60 months, respectively. In addition, the random survival forest model demonstrated that the
effects of gene expression on the recurrence-free survival probability were nonlinear. According to the risk scores computed by the
random survival forest model, the high risk group had significantly higher recurrence risk than the low risk group (HR� 1.824, 95%
CI: 1.079–3.084, p � 0.025).Conclusions.We identified 479 stage II colorectal cancer recurrence associated genes bymicroarraymeta-
analysis. 2e random survival forest model which was based on the recurrence associated gene signature could strongly predict the
recurrence risk of stage II colorectal cancer patients.

1. Introduction

Colorectal cancer is the third most common cancer and also
a leading cause of cancer mortality worldwide [1]. About half
of colorectal cancer patients presented with early stage
diseases (stage I–II), and about 25% of patients presented
with locally advanced stage diseases (stage III), yet the rest of
patients had distant metastasis (stage IV) [2, 3]. Surgical
resection and adjuvant chemotherapy were the most

common treatments for colorectal cancer and helped pa-
tients gain significant survival benefit, especially for those
early stage patients [4, 5]. However, more than 20% of
colorectal cancer patients suffered from disease recurrence
after primary tumor resection, with the majority of them
having metastatic recurrence [6]. It was noteworthy that
most of colorectal cancer related deaths were attributed to
disease recurrence [7]. In addition, recurrence-free survival
time of colorectal cancer patients was strongly associated
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with overall survival time [8]. Hence there is an urgent need
to discover new prognostic markers and develop predictive
models for colorectal cancer recurrence.

Traditionally, it was believed that the prognosis of co-
lorectal cancer was largely determined by the TNM stage at
the time of diagnosis. However, there was a survival paradox
that stage IIB patients had higher recurrence rate and worse
survival than stage IIIA patients [9, 10]. For stage II patients,
although pT4 stage andmismatch repair deficiency (dMMR/
MSI-H) could stratify patients into higher or lower recur-
rence risk groups, respectively, early recurrence still oc-
curred among those alleged low recurrence risk patients
[11–13]. Towards the need for personalized cancer care, it
was necessary to build predictive models, especially for stage
II colorectal cancer patients.

With the rapid development of high throughput tech-
nology, identifying cancer molecular subtypes and building
molecular prognostic models gradually came to reality.
Guinney et al. created the colorectal cancer consensus
molecular subtypes, which consisted of four subtypes with
distinguishing biological behaviors and clinical character-
istics [14]. In terms of colorectal cancer recurrence, some
researchers have made great efforts to develop predictive
models based on cancer molecular characteristics. For ex-
ample, Dai et al. built the lasso Cox model based on 15 gene
expression values to identify stage I–III colon cancer patients
with high recurrence risk [15]. Agesen et al.developed a
classifier based on 13 gene expression values, which was also
known as the ColoGuideEx, to predict stage II colorectal
cancer patients’ recurrence-free survival [16]. However,
there was still room for improvement for current models.
First, most of the models were based on single or a few
datasets and were not limited to stage II patients, and so far
no universal recurrence associated genes in stage II colo-
rectal cancer were recognized. In addition, the methods of
building and training models were mainly linear models,
such as Cox regression or lasso Cox regression, yet the
relationship between specific gene expression value and
cancer recurrence risk might be nonlinear, which would
probably reduce the prediction accuracy of models.

In this study, we included microarray data of 651 stage II
colorectal cancer patients and identified a group of recur-
rence associated genes by microarray meta-analysis. We
further performed the feature selection process and built
predictive models with different machine learning algo-
rithms, such as lasso Cox model and random survival forest
model, and we found that the random survival forest model
based on universal recurrence associated gene signature
could strongly predict the recurrence risk of stage II colo-
rectal cancer patients.

2. Materials and Methods

2.1. Searching and ScreeningDatasets. We searched the GEO
database (http://www.ncbi.nlm.nih.gov/geo/) to retrieve
potentially eligible microarray datasets. 2e search strategy
was as follows: (“colorectal cancer” OR “colon cancer” OR
“rectal cancer”) AND (“Expression profiling by array”).
First, we filtered datasets by screening titles and abstracts.

2en, we further screened datasets according to the inclu-
sion and exclusion criteria. 2e inclusion criteria were as
follows: patients had stage II colorectal cancer with recur-
rence-free survival follow-up data; experimental platforms
were gene expression array. 2e exclusion criteria were as
follows: dataset sample sizes were less than 40; datasets only
provided whether patients had recurrent events without
follow-up time. 2e following information of eligible
datasets was extracted: series accession number, microarray
experimental platform, sample size, recurrence-free survival
follow-up duration, and recurrence rate.

2.2. Microarray Data Preprocessing and Quality Control.
Raw data and platform sets of each dataset were downloaded
from the GEO database (http://ftp.ncbi.nih.gov/geo/series/).
Raw data (CEL files) of each dataset were read into R using
the “oligo” package (version 1.42.0), and then background
correction, normalization, and summarization were per-
formed using the RMA algorithm [17]. Microarray data
quality control was assessed by hierarchical clustering based
on the distance between samples in Pearson’s correlation
matrices, and the height cut-off value was set to 0.20 to
recognize potential outliers [18], which were removed before
further analysis.

2.3. Microarray Meta-Analysis. To identify universal re-
currence associated genes, we performed microarray meta-
analysis following the guidelines proposed by Ramasamy
et al. [19]. Universal recurrence associated genes were
identified using the “MetaDE” package (version 1.0.5) in R
based on the recurrence-free survival and censored data [20].
2e log-rank test was used to calculate p values of each gene
in individual datasets, and then p values were pooled via the
minP method [20]. On account of multiple statistical tests,
the false discovery rate (FDR) controlling procedures were
performed via the Benjamini–Hochberg method, with the
cut-off value of 0.10 to select candidate genes for further
analysis [21].

2.4. Enrichment Analysis and Protein-Protein Interaction
Network Analysis. To uncover the biological characteristics
of the selected genes, we used the Metascape tool (http://
metascape.org) to perform KEGG and GO terms enrich-
ment analysis, which consisted of pathway and function set
enrichment analysis [22]. For universal recurrence associ-
ated genes identified by microarray meta-analysis, genes
included in the microarray meta-analysis were set as the
enrichment background, then we calculated p values of
enriched KEGG and GO terms based on the hypergeometric
distribution of expected terms, and finally enrichment bar
plots were displayed and colored by p values. Protein-
protein interaction network of the selected genes was per-
formed using STRING database (http://string-db.org/) and
visualized using Cytoscape software [23]. Proteins which
interacted with more than 10 other proteins were considered
as potential hub genes.
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2.5. Batch Effect Normalization, Correlation Analysis, and
Principal Component Analysis. Expression profiles of uni-
versal recurrence associated genes were extracted from the
included datasets. To minimize microarray batch effect, we
adopted ComBat to perform batch effect normalization, and
we selected GSE39582 as the reference batch due to its
largest sample size. Correlation analysis was performed by
calculating the Pearson correlation coefficient of universal
recurrence associated genes, and it was visualized using the
“corrplot” package (version 0.84) [24]. Based on the gene
expression profiles, principal component analysis was
conducted using “stats” package (version 3.4.2), and the first
3 principal components were displayed in scatter plots [25].
In addition, proportions of variance explained by principal
components were also plotted using the “ggplot2” package
(version 2.2.1) [26].

2.6. Lasso Cox Model and Random Survival Forest Model.
We randomly divided total samples into the training set
(60%) and the test set (40%), and then lasso Cox model and
random survival forest model were trained. 2e lasso Cox
model was built and trained using the “glmnet” package [27],
which was the penalized Cox regression model with the least
absolute shrinkage and selection operator method, and it
was generally used in high dimensional data and could help
with the variable selection procedure [28, 29]. By placing a
constraint on the absolute value of regression coefficients,
the lasso Cox model forced numerous regression coefficients
to become smaller or exactly zero [29]. Partial likelihood
deviance was selected as the loss function, and the penalty
parameter λ was determined through 20-fold cross valida-
tion to reach the minimal loss function value [29]. Re-
gression coefficients of genes were calculated with the
optimal λ value, and recurrence risk scores of patients were
then summarized based on the expression level of genes and
their regression coefficients accordingly.

2e random survival forest model consisted of plenty
survival trees, which were trained on bootstrap samples of
the training set. Each survival tree had one root node that
would branch out into two child nodes. 2e node-splitting
rules were as follows (Figure S1): A given number of vari-
ables were randomly selected as candidate variables in each
root node, then the optimized cut-off values of candidate
variables were generated to maximize the survival difference
of child nodes, and only the most discriminative candidate
variable would become the node-splitting variable. Itera-
tively, child nodes became parent nodes, and the above
node-splitting processes were repeated until the number of
samples in the terminal node was less than the prespecified
number [30].

2e random survival model is specially suitable for
dealing with high dimensional data with survival outcomes,
and it could assess the nonlinear effect and importance of
variables [31]. In this study, tuning parameters, such as the
prespecified number of samples in the terminal node (node
size) and the number of candidate variables randomly se-
lected in each parent node (mtry), were optimized by grid
search to minimize the out-of-bag (OOB) error. In addition,

the random survival forest model was an efficient tool for
variable selection. 2e model used minimal depths to reflect
the priority of variables being selected as node-splitting
variables, and smaller minimal depths indicated greater
importance of variables (Figure S1). We ranked variables
according to the minimal depths and then filtered variables
above the cut-off value [30]. Models were trained once again
with variables below the cut-off value until no variables were
above the cut-off value. Marginal effects of variables on the
recurrence-free survival probability were also displayed.
Finally, with the trained random survival forest model,
recurrence risk scores of patients were calculated using the
“predict” function of the “stats” package [25]. 2e random
survival forest model was built and trained utilizing the
“randomForestSRC” package [30].

2.7. Statistical Analysis. Time-dependent receiver operating
characteristic (ROC) curve analysis was performed with the
“timeROC” package (version 0.3) to assess the prognostic
value of trained models, and a higher area under the ROC
curve (AUC) value indicated better performance [32, 33]. In
addition, Youden indexes (sensitivity + specificity− 1) of risk
score cut-off values were calculated, and the optimized cut-off
value was determined when Youden index reached the
maximum. 2e concordance index (Harrell’s C-index) was
calculated to assess model fitness, which ranged from 0.5
(indicating random prediction) to 1 (indicating perfect pre-
diction) [30]. 2e Mann–Whitney test was adopted to ex-
amine whether predicted recurrence risk scores were
statistically significant when comparing the nonrecurrent
group and the recurrent group. Kaplan–Meier survival curves
were displayed using the GraphPad Prism 6 software, and the
log-rank test was performed to find whether survival differ-
ence between groups was statistically significant.2e packages
used in the current study were all under the R environment
(version 3.4.2) [25]. A two-tailed p value less than 0.05 showed
statistical significance unless it was specified.

3. Results

3.1. Characteristics of the Included Datasets. As shown in
Figures 1(a) and 1(b), we searched the GEO database and
exported a total of 981 datasets; then, 880 datasets were
removed by screening titles and abstracts. Next, 95 datasets
were excluded according to the inclusion and the exclusion
criteria; then, the remaining 6 datasets were included, and
samples were hierarchically clustered for outliers detection,
yet no samples were designated as outliers (Figures 1(c) and
1(d)). Finally, 6 datasets containing 651 stage II colorectal
cancer patients were included in the following analysis.

2e majority of the datasets adopted the GPL570
microarray platform (Affymetrix Human Genome U133
Plus 2.0 Array), and 1 dataset adopted the GPL5175
microarray platform (Affymetrix Human Exon 1.0 ST Ar-
ray), as shown in Table 1. GSE39582 had the largest sample
size of 267, while GSE92921 had the smallest sample size of
43, and the median recurrence-free survival follow-up du-
ration varied from 37.31 to 74.63 months.
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3.2. Identifying Universal Stage II Colorectal Cancer Recur-
renceAssociatedGenes. Based on recurrence-free survival and
censored data, we first performed log-rank tests in individual
datasets to calculate p values of each gene, which were then
pooled via the minP microarray meta-analysis method [20].
2e FDR controlling procedure was performed to solve the
issue of multiple statistical tests, and a total of 479 significant
genes were below the FDR cut-off value, as shown in Table S1.

3.3. Enrichment Analysis, Correlation Analysis, and Principal
Component Analysis. To further explore the function of
universal stage II colorectal cancer recurrence associated

genes, we performed the KEGG and GO terms enrichment
analysis (Figure 2). Top function set terms were inositol
1,3,4,5-tetrakisphosphate binding, G protein-coupled glu-
tamate receptor binding, and Hedgehog signaling, while top
pathway terms were cellular defense response, regulation of
rRNA processing, and neurotransmitter reuptake. Inter-
estingly, some previous studies have reported the correlation
of Hedgehog signaling and colorectal cancer recurrence [34].
In addition, dysregulation of small GTPase family proteins
and their regulators was shown to have prognostic value for
colorectal cancer recurrence [35–37]. Protein-protein in-
teraction network of 479 significant genes is shown in
Figure S2. We found that there were intensive protein-

Searching the GEO database produced 981 datasets

880 datasets were removed by
screening titles and abstracts

Sample information of 101 datasets was further
screened according to exclusion and inclusion criteria

95 datasets were excluded

6 datasets were included and samples were hierarchically
clustered within datasets for outlier detection

0 samples were defined as outliers

Finally 6 datasets containing 651 stage II CRC patients
were included in microarray meta-analysis
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Figure 1: (a) Flow diagram of microarray datasets screening and selection. (b) Flow diagram of microarray meta-analysis and subsequent
machine learning models. (c) Cluster dendrogram of the GSE14333 dataset. (d) Cluster dendrograms of the GSE17538 dataset. Another 4
cluster dendrograms of the included datasets were not shown.

Table 1: Characteristics of the included datasets.

Dataset accession Microarray platform Sample size RFS follow-up months Recurrence event
GSE14333 GPL570 94 2.26–118.58 (median: 37.66) 14/94
GSE17538 GPL570 70 0.43–118.58 (median: 37.31) 11/70
GSE33113 GPL570 89 1.8–119.97 (median: 39.47) 18/91
GSE39582 GPL570 267 0–201 (median: 53) 61/267
GSE92921 GPL570 43 6.4–139.7 (median: 74.63) 2/43
GSE24551 GPL5175 88 5.04–120 (median: 47.82) 27/90
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protein interaction pairs, and 3 potential hub genes
(POLR2B, GNB2, and GNG2) were identified, which sug-
gested that universal recurrence associated genes may co-
operate together to have an impact on the recurrence of stage
II colorectal cancer patients.

Before applying machine learning algorithms to predict
patients’ recurrence risk, we performed correlation analysis
and principal component analysis to explore the distribution
of gene expression data. As shown in Figure 3(a), we ran-
domly selected 50 genes out of 479 significant genes and
calculated their correlation coefficients. Strong correlation of
these genes was observed. By performing principal com-
ponent analysis, we found that the cumulative proportion of
variance of the top 77 and 147 principal components reached
80% and 90%, respectively, while the top 3 principal com-
ponents explained 23.82%, 9.28%, and 3.66% of total vari-
ance (Figure 3(b)). Furthermore, the top 3 principal
components did not help stratify colorectal cancer recur-
rence effectively (Figures 3(c)–3(e)).2us, we did not extract
principal components before building predictive models.

3.4. Lasso Cox Model. We randomly divided total samples
into the training set (60%) and the test set (40%) and then
built the lasso Cox models in the training set. First, the
penalty parameter λ was determined through 20-fold cross

validation to reach the minimal partial likelihood deviance
value, and the optimized λ value was 0.0387 (Figure 4(a)).
2e lasso Cox model could reduce the variable dimension by
placing a constraint on the absolute value of regression
coefficients, so that numerous regression coefficients became
smaller or exactly zero [29]. Regression coefficients of 455
genes turned into zero, while the remaining 24 genes were
included in the simplified lasso Cox model (Table 2). Eleven
regression coefficients of genes were positive, while 13 re-
gression coefficients of genes were negative. Higher ex-
pression of genes with positive regression coefficients
contributed to higher recurrence risk, while higher ex-
pression of genes with negative regression coefficients
contributed to lower recurrence risk, respectively. With
these regression coefficients, we calculated each patient’
recurrence risk in the training set, and then time-dependent
ROC curves were plotted. As shown in Figures 4(b)–4(d),
AUC values of the lasso Cox model were 0.825, 0.821, and
0.815 at 12, 36, and 60 months, respectively. In addition, the
Harrell’s C-index was 0.805, which implied moderate
concordance of the lasso Cox model.

3.5. Random Survival Forest Model. Next, we used the same
training set to build and evaluate the random survival forest
model. As shown in Figure 5(a), the primary model was
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Figure 2: Bar plots of the enriched GO and KEGG. (a) Functional set and (b) pathway terms. 2e x-axis was log-transformed. Bars are
colored by p values, and a darker color indicates smaller p values.
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based on the total 479 significant genes, and the OOB error
was steady when the total number of trees reached 1000.2e
random survival forest model was an efficient tool for
variable selection, and we ranked variables according to the
minimal depth of the maximal subtrees and then filtered
variables above the cut-off value [30]. In the primary model,
there were 300 genes whose minimal depths were above the
average cut-off value of 15.06; the remaining 179 genes were
fed into the random survival forest model again

(Figure 5(b)). Similarly, there were 153 genes above the
cut-off value of 11.99 in the simplified (once) model, and
the remaining 26 genes were fed into the simplified
(twice) model (Figure 5(c)). Finally, all 26 genes were
below the cut-off value of 6.35, and model iteration
process was successfully completed. 2e minimal depth
of the maximal subtrees of the genes included in the
simplified (twice) model is shown in Table 3. 2e minimal
value was 4.39, which was attributed to the NVL gene, and
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Figure 3: (a)2e correlation plot of the randomly selected 50 genes among the 479 universal stage II colorectal cancer recurrence associated
genes. 2e blue color indicates positive correlations, while the red color indicates negative correlations. (b) Proportions of variance
explained by principal components. Blue points show the proportion of variance explained by a single principal component, while red points
show the cumulative proportions of variance. (c) 2e scatter plot of the selected principal components (the x-axis: PC1; the y-axis: PC2).
Blue points indicate stage II colorectal cancer patients who had recurrent eventswithin 3 years, while red points indicate patients who did not
have recurrent events within 3 years. (d) 2e scatter plot of the selected principal components (the x-axis: PC1; the y-axis: PC3). (e) 2e
scatter plot of the selected principal components (the x-axis: PC2; the y-axis: PC3).
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it implied that this gene was the most important in the
current model in terms of stratifying the recurrence risk
of stage II colorectal cancer patients. It was noteworthy
that there were 8 genes (ADNP2, JUNB, MCMBP,
FAM46C, NVL, NUP50, JUP, ESM1) included in both
models (Figure S3).

In the simplified (twice) random survival forest model,
each patient’ recurrence risk in the training set was com-
puted, and then time-dependent ROC curves were plotted.
As shown in Figures 6(a)–6(c), AUC values of the models
were 0.995, 0.999, and 0.993 at 12, 36, and 60 months, re-
spectively. In addition, the Harrell’s C-index was 0.986,
which implied excellent concordance of the random survival
forest model. We also explored marginal effects of gene
expression on the recurrence-free survival probability
(Figure 6(d)). Using NVL gene as an example, we found that
the probability of patients’ recurrence-free survival elevated
almost linearly when NVL gene expression level increased
from 6 to 7, while the probability reached a plateau after its
expression level exceeded 7. 2e majority of the remaining
genes had similar trend, yet the expression level of JUP and
MCMBP had an approximately linear relationship with
patients’ recurrence-free survival.

We further chose the random survival forest model to
evaluate the model performance in the test set, since it had
larger AUC value and Harrell’s C-index than the lasso Cox
model. 2e expression matrix of the 26 genes was imported
into the random survival forest model, and recurrence risk
score was computed for every patient in the test set. As
shown in Figure 7(a), we found that the recurrent group had
significantly higher recurrence risk scores than the nonre-
current group (p � 0.0037). Using the time-dependent ROC
curve of the random survival forest model in the training set,
we calculated the optimized cut-off value of recurrence risk
score (5.986), under which Youden index reached the
maximum. Patients were subsequently divided into the high
risk group and the low risk group according to the cut-off
value. As shown in Figure 7(b), survival analysis indicated
that patients in the high risk group had significantly higher
recurrence risk than those in the low risk group (HR� 1.824,
95% CI: 1.079–3.084, p � 0.025).

4. Discussion

2e TNM stage is widely used to predict overall survival and
recurrence-free survival of cancer patients; however, the
prognosis of colorectal cancer patients in the same stage still
varied a lot [38, 39]. Due to the survival heterogeneity of
stage II colorectal cancer patients, the prognosis of these
patients has drawn many researchers’ attention, and they
have been trying to discover new prognostic factors in
various respects such as pathology, radiology, and biological
characteristics of tumor [14, 15]. In the present study, we
found prognostic genes that could help stratify stage II
colorectal cancer patients’ recurrence risk and build pre-
dictive models. Different from previous studies [15, 16, 40],
we only included stage II colorectal cancer patients from 6
independent microarray datasets, and the total sample size
was relatively large. In addition, we performed the micro-
array meta-analysis to identify universal prognostic genes
across datasets, which further increased the robustness of
our results, and a total of 479 genes were found to be sig-
nificantly associated with patients’ recurrence-free survival.
However, high dimensional data inevitably had the
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Figure 4: (a) 2e tuning parameter plot of the lasso Cox model. 2e x-axis represents log-transformed lambda values, and the y-axis
represents the partial likelihood deviance.2e vertical dashed line indicates the minimal partial likelihood deviance. (b)2e time-dependent
ROC curve of the lasso Coxmodel at 1 year (12months), with an AUC of 0.825. (c)2e time-dependent ROC curve of the lasso Coxmodel at
3 years (36 months), with an AUC of 0.821. (d)2e time-dependent ROC curve of the lasso Cox model at 5 years (60 months), with an AUC
of 0.815.

Table 2: Regression coefficients of the lasso Cox model.

Gene symbol β∗ Gene symbol β∗

PAOX −0.02752 FLJ90680 0.011181
SIGLEC7 0.174815 NVL −0.0407
PHAX −0.02803 ESM1 0.158185
XCR1 0.073122 GABRR2 0.055987
TM4SF4 0.021224 FAM166A −0.56059
TRIOBP 0.173985 USP14 −0.03345
MCMBP −0.10873 JUNB 0.268267
HCFC1R1 0.029341 UBAP2 −0.41623
ADNP2 −0.1739 AP5B1 −0.3134
NUP50 −0.02431 FAM46C −0.02913
GTF2A2 −0.01368 LDB3 0.146108
BCCIP −0.03355 JUP 0.260895
∗Positive regression coefficients indicate that higher gene expression values
contributed to higher recurrence risks, while negative coefficients indicate
that higher gene expression values contributed to lower recurrence risks.
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shortcoming of self-correlation to some extent, which was
also demonstrated by the correlation analysis in our study.
Furthermore, a model requiring the expression of hundreds

of genes was not appropriate for clinical practice. 2erefore,
it was crucial to perform feature selection and model
simplification.
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Figure 5: Tuning parameter plots of (a) the primary, (b) the simplified (once), and (c) the simplified (twice) random survival forest model.
Left panel: node size is the prespecified number of samples in the terminal node; mtry is the number of candidate variables randomly selected
in each parent node; OOB error is the out-of-bag error. A darker color indicates larger OOB error, while a lighter color indicates smaller
OOB error. Right panel: the relationship between the number of trees and error rate.
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Table 3: Minimal depths of variables in the simplified (twice) random survival forest model.

Gene symbol Minimal depths∗ (threshold� 6.35) Gene symbol Minimal depths∗ (threshold� 6.35)
NVL 4.39 SNED1 5.553
ACER3 4.719 ESM1 5.59
JUP 4.816 MARCO 5.599
PLAT 4.834 FAM46C 5.744
JUNB 4.913 LMO2 5.772
IGDCC3 4.965 HAUS8 5.791
ANKRD27 5.029 TTC13 5.823
NUP50 5.09 ADNP2 5.843
GIT1 5.244 RSBN1L 5.863
PRKCDBP 5.321 RAVER2 5.883
TDO2 5.349 SNORA21 6.054
LOC100287896 5.397 PNRC1 6.205
MCMBP 5.498 PJA1 6.338
∗Minimal depths of all variables in the simplified (twice) random survival forest model were under the threshold.
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Figure 6: (a) 2e time-dependent ROC curve of the simplified (twice) random survival forest model at 1 year (12 months), with an AUC of
0.995. (b)2e time-dependent ROC curve of the simplified (twice) random survival forest model at 3 years (36 months), with an AUC of 0.999.
(c) 2e time-dependent ROC curve of the simplified (twice) random survival forest model at 5 years (60 months), with an AUC of 0.993. (d)
Marginal effects of variables included in the simplified (twice) random survival forest model on the recurrence-free survival probability.
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Figure 7: (a) Violin plot of the predicted recurrence risk scores in the test set. Patients who did not experience recurrence are shown in
green, and patients who experienced recurrence are shown in red. 2e Mann–Whitney test was adopted to examine whether predicted
recurrence risk scores had statistical significance between groups. (b) Kaplan–Meier survival curve of the random survival forest model
prediction results in the test set. Patients who had higher recurrence risk scores than the cut-off value were predicted to be the high risk
group (red curve), and patients who had lower recurrence risk scores than the cut-off value were predicted to be the low risk group
accordingly (green curve). 2e log-rank test was performed to find whether survival difference between groups was statistically significant.
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Most of the previous studies adopted the Cox propor-
tional hazard model with lasso penalization for high di-
mensional data [15, 41], yet the Cox model made an
assumption that the impact of variables on survival risk was
linear. Furthermore, previous studies did not compare the
performance of other models with the lasso Cox model.
Unlike recently emerging classification models, there were
not too many survival prediction models available; however,
the random survival forest model has been gradually utilized
by researchers for survival prediction. For instance, Paik
et al. developed a 21-gene-based random survival forest
model to predict progression-free survival of ovarian cancer
[42]. Jung et al. identified insulin resistance SNPs in com-
bination with lifestyle factors for breast cancer risk pre-
diction via the random survival forest model [43]. In the
current study, the random survival forest model had larger
AUC and Harrell’s C-index than the lasso Cox model. By
performing marginal effects analysis, we also found the
nonlinear relationship between gene expression value and
patients’ recurrence-free survival probability. In addition,
several genes included in both models, such as JUP and
ESM1, were reported to be associated with the prognosis of
colorectal cancer patients by other researchers [44, 45],
which proved that the results of both models were reliable.

However, the current study was inevitably limited in
some aspects. First, we only included the gene expression
data from public databases, and the demographic and
clinicopathological characteristics were not available. We
believed that the performance of our model will be further
improved with features such as tumor differentiation and
MMR status. Second, although our model was based on the
microarray meta-analysis, it still needs to be validated by
large-scale prospective cohort studies involving stage II
colorectal cancer patients. We did not further perform
multiple platform analysis such as RNA-Seq or immuno-
histochemistry, since the sample sizes of public datasets
which specifically included stage II colorectal cancer patients
were relatively small, and many of them did not provide
recurrence-free survival follow-up information. In addition,
the molecular mechanisms of these genes were unknown,
and a group of dysregulated genes rather than certain single
gene may participate in the recurrence of stage II colorectal
cancer. In the future, more mechanistic studies and mul-
tiomics studies will be needed to address how these genes
contributed to stage II colorectal cancer recurrence.

5. Conclusions

We identified 479 stage II colorectal cancer recurrence asso-
ciated genes by microarray meta-analysis. Enrichment analysis
indicated that G protein-coupled glutamate receptor binding
and Hedgehog signaling may be associated with colorectal
cancer recurrence. Two survival models with feature selection
process were trained, and the random survival forest model
outperformed the linear lasso Cox model. Based on the risk
score, the random survival forest model could strongly predict
the recurrence risk of stage II colorectal cancer patients.
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