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Monitoring of training performance and physical activity has become indispensable these days for athletes. Wireless technologies
have started to be widely used in the monitoring of muscle activation, in the sport performance of athletes, and in the examination
of training efficiency. ,e monitorability of performance simultaneously in the process of training is especially a necessity for
athletes at the beginner level to carry out healthy training in sports like weightlifting and bodybuilding. For this purpose, a new
system consisting of 4 channel wireless wearable SEMG circuit and analysis software has been proposed to detect dynamic muscle
contractions and to be used in real-time training performance monitoring and analysis. ,e analysis software, the Haar wavelet
filter with threshold cutting, can provide performance analysis by using the methods of moving RMS and %MVC. ,e validity of
the data obtained from the system was investigated and compared with a biomedical system. In this comparison, 90.95%± 3.35 for
left biceps brachii (BB) and 90.75%± 3.75 for right BB were obtained. ,e output of the power and %MVC analysis of the system
was tested during the training of the participants at the gym, and the training efficiency was measured as 96.87%± 2.74.

1. Introduction

In recent years, the monitoring of athlete performance has
become indispensable for the health of athletes. Wireless
technologies have started to be widely used in order to obtain
data for the purpose of examining training efficiency in the
monitoring of muscle activation and sport performance of
athletes [1, 2]. It is possible to collect information about
athlete performance and rehabilitation, about preventing
muscle fatigue or injuries through posttraining analysis of
SEMG signal obtained during the training [3–5]. Recording
of SEMG signals in related muscles during training can be
extremely useful in increasing performance and preventing
disabilities [6].

Traits of SEMG signals obtained during training (fre-
quency, severity, etc.) change depending on the muscle
group measured and the severity of contraction [7–9]. In
these measurements, surface-type electrodes are used to
determine and examine the activity of muscles during

contraction and relaxation of muscles. When academic
studies related to this subject are analysed, there are some
wearable biometric systems developed for the purpose of
the monitoring of performance during training. Some of
these systems are intended for recording parameters like
heart rate, respiration, location, and velocity or for esti-
mating the levels of muscle fatigue [10–13]. Some of them
have been produced for the measurement of the SEMG
signals in laboratorial environment [14]. Another pro-
portion of them has been designed for the purpose of
perceiving dynamic muscle contraction during isolated
training through the SEMG [15]. ,e last proportion has
carried out low-cost experimental SEMG systems and
matched the key features of the system with the existing
systems [16–18].

,e most reliable method used in the adequacy and
examination of muscle activation in physiological studies is
the amplitude analysis carried out on SEMG signals, known
as MVC (maximum voluntary contraction) normalization
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[19]. Data with MVC normalization enable understanding
of what capacity the muscle works, how effective level
muscles have reached through training and how much
effort a training requires from an athlete [20].

,e simultaneous monitorability of athlete performance
during the process of training is a must for athletes at the
beginner level to being able to carry out healthy training in
sports like weightlifting and bodybuilding [21, 22]. ,is
feature enables performance evaluation to be carried out
momentarily during the time when there is no trainer or until
the motor skills of the athlete concerning movement develop
enough. A SEMG system, to be used during the training for
this purpose [7, 23–25] has to

(i) Be able to provide the required SEMG data necessary
for monitoring training efficiency in performance
analysis

(ii) Be able to filter the noise of movement during
isotonic exercises and noise and distortions in
SEMG signals appearing as a result of other factors

(iii) Its procedures like calibration, etc., have to continue
for a short time

(iv) ,e data obtained have to be at a close accuracy to
biomedical systems

(v) Has to be simultaneously usable in a training
environment

For use in the industrial field, various systems are
available for SEMG data collection and processing. To
investigate these, WB-EMG [26], BiometricsDatalog [27],
Myo Armband [28], DelsysTrignio [29], BITalino [30],
Mbody3 [31], Mpower [32], MyoTrac [33], MyoWare [34],
Shimmer [35], and hospital [36] are such systems. ,e
systems specified in [26], [27], and [29] and the systems
which we measure in hospital [36] are not wearable during
training. ,e system specified in [44] is wearable and
supports wireless transmission but its production is
stopped. In terms of the electrodes used, and CMRR, there
is no difference in all of these products and they comply
with the SENIAM criteria. ,e systems [26], [27], and [30]
do not have noise and data processing filters, and the
systems in [28] and [29] use a Notch filter and a band-stop
filter with narrow-bandwidth in hardware. ,e system in
[26, 34] is designed for single-channel use but does not
support multichannel monitoring. ,e systems in [31–34]
are wearable and do not include contraction detection and
simultaneous MVC analysis although they can monitor
multiple muscle groups. A summary of these comparisons
is presented in Table 1.

When the table is analysed, it is seen that all of these
systems can simultaneously observe biopotential changes in
muscle ormuscle groupsmonitored during training, but none
of them include real-time MVC normalization and con-
traction detection procedures for performance analysis
during training.

,at these features can be monitored simultaneously
during the training process may be useful especially for
beginner athletes to perform a healthy training in sports

like weightlifting and bodybuilding, for the performance
evaluation of the athlete until the motor skills of the
movement are improved and at necessary moments in
preventing the injury process by intervening in training.

Based on these elements, a new wireless wearable SEMG
data collection system has been introduced which enables
performance monitoring and analysis at training time with
its real-time MVC normalization and contraction detection
processes. ,e SEMG circuit used in our system is designed
by us to be used in future studies and to be developed
according to our needs.

In the presented system, digital filtering is also used in
addition to hardware filtering in SEMG circuit. ,ese nu-
merical filters are Haar wavelet filters with,reshold cutting
based on (TCHW) and linear Kalman [37, 38]. Each nu-
merical filtering method is tested together with hardware
filtering. Results obtained from here will be determinative in
deciding the filtering structure that can be used in future
stages of the system design. Subsequently, filtered data are
processed through moving RMS method containing the
methods of moving average (MA) and root mean square
(RMS), scaled through MVC normalization, and a training
support system that can carry out real-time performance
analysis and monitoring.

2. Materials and Methods

2.1. Isotonic Contraction. Isotonic contraction encompasses
exercises where muscle tendons get shortened to generate
movement. Any kind of movement, ranging from weight-
lifting to rowing and running, is in this category [39]. In
sport, an isotonic exercise is a training where the most
amount of strength is exerted on a particular muscle or
muscle group to increase that muscle mass or performance
in general. Due to the fact that human activity and athletic
performance necessitate these kinds of movement, isotonic
exercises form the basis of a lot of training protocols [40]. It
is possible to observe pathological changes or efficiency
obtained from the training through an examination of
SEMG signals generated in muscles during these exercises
[41].

2.2. SEMG Circuit Design. ,e SEMG circuit design details
are given below. ,e circuit consisting of 4 channels could
monitor the biopotential change of 4 different muscle groups
at the same time. So, it is possible to monitor biopotential
changes occurring in muscles in symmetrical movements
that affect multiple muscle groups (e.g., the Bench Press
movement affects pectoralis major and triceps muscles). ,e
circuit has in each channel, respectively, one in-
strumentation amplifier, a inverting amplifier, a low-pass
filter, a high-pass filter, and a full-wave rectifier. ,e circuit
has a diode for input protection, a pointer indicating that the
circuit is working, and a start-up button. During working,
the LD1117 regulator was used for the Bluetooth feed and
the 7805 regulator for the +5 volt and − 5 volt op-amp feed
(Figure 1(a)). ,e SEMG signals we want to process are

2 Journal of Healthcare Engineering



MUAP signals whose amplitude is between 0 and 1.5 mVolt
(RMS). To process this electrical signal, it must firstly be
amplified. In the system, this amplification is done by in-
creasing the difference between the two electrodes in bipolar
mode.While the obtained common signal is amplified in this
mode, the background noise is also suppressed. Two of the
probes activated from each channel are connected to the
circuit’s soil, like the reference probe [42] which is placed in
a more electrically remote area (preferably a neutral or close
to the bone region) while going to the amplifier and filter
circuits over INA 128P, which operates in a single differ-
ential mode. In the first step, amplification was performed by
using the INA 128P differential amplifier (Figure 1(b)).

As stated in [43], the reason why we use INA 128P is that
the amplitude of the SEMG signal is low and that the
amplifier to be used due to other factors like noise must have
a high input impedance and a high common mode rejection
rate (CMRR> 95 dB). ,is amplifier has the required fea-
tures with CMRR >120 dB and 10GΩ input impedance.
When we set the gain value for the 60Hz input signal to
G� 74.52 using INA 128P in our system, approximately
108 dB CMRR was obtained as stated in the technical
document in [44]. ,e reason for selecting a 60Hz input
signal in the system design is that the SEMG signal is
dominant in the range of 50Hz to 150Hz. To obtain a
processable signal amplitude in the second stage, TL072 was
used as shown in Figure 1(c) as an active inverting amplifier.
At this stage was the amplifier gain approximately G� 59
and the CMRR approximately 100 dB by using the 60Hz
input signal as stated in [45].

In SEMG applications, analogue (hardware) and digital
(software) filters are used to remove unwanted component
noises and process the necessary parts in the SEMG signal
[46]. Analogue filters remove anything above or below a
selected cut frequency, while digital filters make this process
more precise as they can be programmed [47]. ,is certainty
is due to the fact that the features of digital filters can be

changed depending on the input signal parameters [48]. In
these applications, analogue filters are used to eliminate
noise from the signal in signal amplification and processing
circuits, to provide noise immunity, and to obtain the
necessary parts of the frequency band [49]. On the contrary,
digital filters are used to filter signal residues named artifact
after motion and to analyse SEMG signal (feature extraction,
time-frequency analysis, contraction detection, performance
analysis, etc.) [41, 50].

In the circuit, analogue filtering is performed by low- and
high-pass filters. Ideal SEMG signals are observed between
50Hz and 500Hz and should be filtered from frequency
components outside this range [51]. For this, the signal from
the output of the instrumentation amplifier is first filtered so
that the gain is 1 in the high-pass filter (HPF) using TL072
with a cutoff frequency of about 48Hz (Figure 1(d)). ,e
components of the EMG signal above 500Hz are filtered
through a 2nd order Sallen–Key low-pass filter (LPF) using
TL072. ,rough this section, resistance and capacitor values
are designed so that the cutoff frequency is approximately
482Hz, the quality factor is 0.5, and the gain is 1
(Figure 1(e)). ,e reason we prefer the Sallen–Key topology
we use in the circuit is that this filter has the ability to
produce a quadratic low-pass reaction with better selectivity
(higher pole) and various possible approaches (Butterworth,
Chebyshev, ,omson-Bessel, etc.) [43, 47, 49]. ,is will help
us in our future work.

,en, the whole SEMG signal was moved to the positive
level using the full-wave rectifier (Figure 1(f)). With this
process, it is possible to analyse the low-frequency oscilla-
tions by overcoming the high-pass nature of the SEMG
signal [52]. ,us, it is aimed to use the circuit except for the
training efficiency, also in the fields of prosthesis control and
ergonomics.

,e Pic16F1786 microcontroller with connected full-wave
rectifier outputs contains 11 12bit A/D (Analogue/Digital)
converters.,e data obtained from the rectifier of each channel

Table 1: Comparison of the SEMG acquisition systems.

System Signal
type

Number
of

channels
Gain

ADC
resolution
(bits)

Wearable Filter type Contraction
detection

Real-
time
MVC
norm.

CMRR Connection
type

Proposed
system SEMG 4 4400 12 Yes Hardware + software Yes Yes >90 Bluetooth

WB-EMG SEMG 1 100–10000 12 No No No No >90 Bluetooth
Biometrics
datalog SEMG 8 1000 14 No No No No >90 Bluetooth

Myo
armband SEMG 8 ≥1000 8 Yes Notch No No >90 Bluetooth

Delsys
Trignio SEMG 16 909 16 No Notch No No >90 RF

BITalino SEMG Up to 6 1000 6–10 Yes No No No >90 Bluetooth
Mbody3 SEMG Up to 6 ≥1000 24 Yes Hardware + software No No >90 Bluetooth
Mpower SEMG 4 ≥1000 — Yes Hardware + software No No >90 Bluetooth
MyoTrac SEMG 2 ≥1000 14 Yes Butterworth No No >90 Bluetooth
MyoWare SEMG 1 ≥1000 — Yes No No No >90 Bluetooth
Shimmer SEMG Up to 60 ≥1000 16 Yes Hardware + software No No >90 Bluetooth
Hospital SEMG 8 1–10000 24 No Hardware + software Yes No >90 Usb
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in the circuit are connected, respectively, to the RA0-RA3
inputs of this controller. ,is microcontroller performs the
A/D conversion in 20ms time intervals through the pro-
gram we write. ,e converted channel data are turned into
a string, and this sends data from the RC0 output to the
Bluetooth module (Figure 1(g)). ,e transmitted data have
a resolution of 2.4 μV in each step. Data sent at 4800 bps
speed via the HC-06 Bluetooth module (Figure 1(h)) are

received and processed by the data collection program
written in the C# language. ,e digitalized SEMG data in
the data collection program are processed through digital
filters. ,e PCB (printed circuit board) of the circuit is
designed to be 10 cm× 10 cm in size, and as stated in [53], the
PCB tracks are intended to be exposed to as little noise as
possible.,emounted state of the circuit shown in Figure 1(i)
is boxed and placed inside a wearable belt. ,e necessary
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Figure 1: Block diagram and mounted state of the SEMG circuit. (a) Regulator circuit. (b) Instrumentation amplifier. (c) Inverting
amplifier. (d) 1st-order HPF. (e) 2nd-order Sallen–Key LPF. (f ) Full-wave rectifier. (g) PIC 16F1786. (h) Bluetooth module. (i) Mounted state
of the SEMG circuit.
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energy for the operation of the circuit was obtained from
1000mAh lithium batteries. It is intended to minimize power
line interference (PLI) without the need for any insulation, as
stated in [54] using battery in the system.

2.3. Participants and Setup. Five males and two females
voluntarily participated in our study and have at least 2 years
of experience in strength training. ,e information of the
participants is shown in Table 2.

,e participants were informed about the content of
our study, and a signed consent form was obtained from all
of them. All exercises and measurements were made under
the supervision of a specialized trainer. As described in the
recommendations of the European initiative known as
SENIAM (surface electromyography for noninvasive
muscle evaluation of muscles) by selecting 10mm diameter
electrodes shown in Figure 2 for SEMG, the bipolar con-
figuration is located 1–2 cm away from the centre of the
muscle and the reference electrode is placed in a region that
is electrically neutral according to the action [51]. ,e
connection between the electrodes and the circuit channels
is provided by using armoured cables which have 3.5mm
ends, 3 colour code (red, green, and blue) and labelled
contacts (L, F, and R), as shown in Figure 2.

Our experiments consist of 3 parts. In the first part, 8
repetitions and 1 set of alternate dumbbell curl (ADBC)
training was performed using a maximum load of 60–70%.
In this section, firstly, it is investigated whether the ana-
logue filter data obtained from the circuit in the training
reflect the biopotential activity changes that occur during
the training. In the sequel, the analogue filter data obtained
from the circuit are processed by means of Kalman and
threshold cut Haar wavelet filter (TCHW) to eliminate
noise sources and to investigate the perceptibility of the
isotonic contractions.

In the second part, the accuracy of the developed system
was compared with the biomedical system (Viking on
Nicolet EDX) used in Karaman State Hospital (See Table 1).
In this comparison, the RMS values obtained from both
systems were used.

In the third part, the availability of moving RMS and
%MVC values as the screen output of the system was
investigated in terms of performance feedback. For this
purpose, first, the moving RMS values obtained by asking
users to perform a second ADBC (8 repetitions 1 set)
training were recorded. In addition, a %MCV mea-
surement was made by asking all users in the training
environment to lift 5 kg dumbbell and maximum weight
(Men 17.5 kg, 20 kg, and 25 kg dumbbell; women 12.5 kg
and 15 kg dumbbell) they can.

2.4. Kalman and TCHW Filters. Kalman filter is used to
estimate the system status from input and output in-
formation with the previous information of a model in a
dynamic system indicated by the state-space model [55, 56].

When the system is modelled, it was aimed to minimize the
distortions in data by estimating the k parameter specified by
x in SEMG data array at a particular time as Xk:

Xk � Kk · Zk +(1− )Kk · Xk− 1. (1)

Here, Zk expresses the measuring data wanted to be
absolutized, Kk the Kalman gain and Xk− 1 the measuring
data belonging to the previous stage. If the system is
modelled through this information, a model consisting of
calculation (2) and update (3) is obtained.

xk � Axk− 1 + Buk + wk− 1, (2)

zk � Hxk + vk. (3)

In (2), any xk is expressed as a linear combination of the
next control signal k of its previous value and the noise of the
process. In (3), anymeasurement value making certain of the
accuracy of which we are not sure is accepted to be a linear
combination of the signal value and the noise of the
measurement.

In HW, the main wavelet acts as the wavelet transform
but is scaled and shifted during this procedure of wavelet
transform [35]. Scaling corresponds to the widening and
constriction of the signal (f(t)) and the shift to the wave
shift (τ) in the timescale axis (t) in the following equation
[57, 58]:

F(ω, τ) �  f(t)w(t − τ)e
− jωt

dt. (4)

HW is a wavelet-based, scaled, “square-shaped” array of
functions. ψ(t), the main function of HW (5), and also φ(t),

Table 2: Information about age, gender, weight, and height of the
subjects.

Participant no. Age Gender Weight (kg) Height (cm)
1 21 Male 80 163
2 25 Male 82.3 178
3 29 Male 87 180
4 33 Male 85 177
5 37 Male 104.6 193
6 24 Female 70 180
7 27 Female 68 172

Figure 2: Example view of electrodes and shielded cables.
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a scaling function (6), are defined in t time interval given as
follows:

ψ(t) �

1, 0≤ t≤
1
2
,

− 1,
1
2
< t≤ 1,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

φ(t) �
1, 0≤ t≤

1
2
,

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(6)

,e Haar function ψn,k is defined as shown in

ψn,k(t) � 2n/2ψ 2n
t − k( , t ∈ R. (7)

Since the SEMG signals are user-based, SEMG signals
between isotonic muscle contractions may vary according to
the individual. In the method we use with HW, the indi-
vidual waits for approximately 2–4 seconds with the weight
in his hand before starting training and in the meantime, the
procedure of threshold cutting in the system can be carried
out. ,e threshold cutting is based on the calculation of the
average value (8), the standard deviation (9), and the signal
slope (10):

A �
1
n
∗ 

n

i�1
xi, (8)

σ �

������������

1
N



N

i�1
xi − μ( 

2




, (9)

s �
(x − x)(y − y)

(x − x)2
. (10)

Here, xi is the value added to the average, μ is the average
value and N is the number of the total value. After the values
of the average, standard deviation and slope are calculated
and all SEMG signals complying with this condition are
equalled to zero. ,us, the signals between the voluntary
contractions can be eliminated.

2.5. RMS, MA, and %MVC. After the SEMG signal is cap-
tured, the commonly used RMS or MA values are analysed
by using [59]. In RMS analysis, the SEMG signal is subjected
to a set of mathematical operations designed to measure the
power of change. ,us, the intensity and duration of events
like muscle contractions can be investigated. ,erefore, the
RMS value is a parameter chosen during contraction and
reflects the level of physiological activity in the body.
Mathematically, the RMS value of a continuous-time
waveform is the square root of a function defining the
continuous waveform shown in f (t) in the following, de-
fined in the range T1≤ t≤T2:

frms �

������������������
1

T2 − T1


T2

T1

[f(t)]
2
dt



, (11)

frms � limT⟶∞

������������

1
T


T

0
[f(t)]

2
dt



. (12)

Another method we use as MA is the technique of
analysing changes in a data set to estimate long-term trends.
For a given N time window, if the values s1, s2, s3,. . ., sn
corresponding to this time interval of the S variable shown in
the times t1, t2, t3, . . ., tn are known, the MA window size is
defined as N� 2k+ 1 and processed as specified in

MA �
1
N



+k

j�− k

si− j. (13)

,us, changes in the time window given at the j
moment are obtained by averaging the time series of the k
time in the j moment. Instead of using the above-
mentioned RMS and MA methods separately, the moving
RMS method was used in our system by calculating the
RMS value in a moving window, which is a combination of
these methods. In this method, the operation can be
performed at any t time interval of the moving window;
therefore, it acts as a filter in a certain time interval, as
shown in (14). In this way, the processing of the data
obtained according to the variable speed of the replays in
the training sets gets easier. In this equation, n refers to the
length of the window, while x(k) refers to the data within
the window:

xRMS[i] �
1
n0



i

j�(i− N+1)

x
2
[k]⎛⎝ ⎞⎠

1/2

. (14)

So, it can bemeasured howmuch power is obtained from
the muscle through the moving RMS value.

,e MVC (maximum voluntary contraction-maximum
amplitude of the signal) normalization is widely used in
SEMG signals as an amplitude analysis technique. ,e re-
sults are shown as a percentage (%MVC) of the MVC value
that can be used to create a common background when
comparing data between subjects [60, 61]. SEMG signals
depend on the user and have a structure that can cause
records to change even when measured from the same
position with the same motion. ,erefore, MVC normali-
zation is used to eliminate this difference and to enable data
comparison between subjects [61]. MVC expresses the
highest value obtained in a repeat during this measurement
to normalize SEMG signals obtained for a specific purpose,
while SMVC (submaximal voluntary contraction) refers to
the voluntarily recorded SEMG data. %MVC corresponds to
the multiplication of the normalized value of according to
SMVC’s MVC with 100 [62, 63]:

%MVC �
SMVC
MVC

 ∗ 100. (15)
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,us, it can be scaled how much power is obtained from
the muscle or muscle groups investigated in repetitions in
each set of training.

2.6. Proposed System. Our system has the ability to follow
the biopotential changes of four different superficial muscle
groups at the same time. ,e reason why the system is
designed with 4 channels is that most movements used in
bodybuilding and weight training activate at least 1 or 3
muscle groups at the same time. ,e system takes the
biopotential signals of the muscles that are activated during
training through surface electrodes (Figure 3(a)), and then,
first it amplifies them in the instrumentation and amplifier
parts in the SEMG circuit, after it filters them with the 1st-
degree high pass and 2nd-degree Sallen–Key low-pass fil-
ters. ,ese analogue-filtered signals are sent to the com-
puter via Bluetooth after a 12 bit analogue-to-digital
conversion (Figure 3(b)). By the software we developed in
C# language, all SEMG channel data received by the
computer are digitally filtered and then they calculated the
moving RMS values in time windows that vary according to

the training speed (Figure 3(c)). After this process, the
SMVC value of each repetition in each set of the training is
processed according to the previously saved MVC values.
,en, %MVC values are displayed on the screen in separate
graphs according to the channels from which the data are
taken. Finally, they are saved to the database in “.csv,”
“.dat,” and “.xlsx” formats (Figure 3(d)).

3. Results and Discussion

3.1. Analogue +Digital Filtered Data from the System. ,e
analogue-filtered data of the first 4 repetitions of ADBC
training performed by participant number two is shown in
Figure 4(a), marked as 4(a) and 4(b) for each repetition.

,e left BB (LBB-Left Biceps Brachii) data are obtained
from CH1 (first channel of the SEMG circuit), and the right
BB (RBB-Right Biceps Brachii) data are obtained from CH2
(the second channel of the SEMG circuit). From the data
obtained, some decrease in Rep2b, Rep3a, Rep3b, and Rep4a
(between 100 and 200 μV) and a data change during pushing
the weight down (relaxation period of the muscle) in Rep 4b
were observed. As we consulted with the professor of

(a) (d)

(b) (c)

4x Surface
EMG electrode

EMG inst. amp.
G = 74.5

Amplifier
G = 59 1-order HPF

MVC
analysis

M-RMS
calculation

PC

Haar
wavelet

filter
2-order

Sallen–Key LPF
12 bit A/D
converter

Bluetooth
module

Figure 3: Overview of the system. (a) Connecting electrodes before training (Photoshoot by Orucu). (b) Block diagram of the SEMG circuit.
(c) Block diagram of the analysis software. (d) User interface of the analysis software.
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Physical Education and Sports Teaching (Karamanoğlu
Mehmetbey University), he stated that the fall was caused by
the distortion of movement. According to the consultant
professor, this change appeared to have been caused by the
prolongation of the activation period of the muscle as a
result of pushing the weight down more slowly as specified
in [64, 65].

Other data of training performed by participant
number four are shown in Figure 4(b). In this training, LBB
data were obtained from CH3 (the third channel of the
SEMG circuit) and RBB data were obtained from CH4 (the
fourth channel of the SEMG circuit). When the results
obtained are investigated in accordance with contraction
and relaxation situations as specified in [65, 66] which
consultant professor pointed, it is observed that BBmuscles
contract and relax normally in Rep1, Rep5, Rep7, and Rep9
and BB muscles contract fast and relax normally in Rep2. It
is observed that the left BB contracts more than the right BB
does and both relax normally in Rep3, that the required
support is taken from other regions and movement is
ruined in Rep4 and that the left BB muscle contracts more,
the right BB muscle contracts normally and both relax
normally in Rep6 and Rep8. It is observed that the left BB
contracts normally and the right BB contracts more and

both relax normally in Rep10, in which distortion in
movement appears as a result of fatigue in Rep11 and
Rep12. In addition, the data of other participants obtained
from these trainings are presented in Figure 5.

In Figure 6, the data, processed with TCHW and Kalman
filters, of two repetitions in training, belonging to the right
BB muscle, conducted by the participant numbered 4, are
shown. In this Figure, 6(a) shows the analogue filtered state
of the SEMG signal, and 6(b) shows the preliminary mea-
surement of the threshold cut-out. ,e average and standard
deviation measured here were found as 61.11± 51.61 μV, and
the slope was found as 0.005⁰.,e signal filtered with TCHW
after this procedure is shown in 6(c), and the signal pro-
cessed through Kalman filter is shown in 6(d). Filtering
results indicate that the TCHW method produces better
results in filtering unwanted signals and contraction de-
tection compared to the method of Kalman filter. As a result
of these processes, it was decided to use TCHW filter in our
system.

3.2. Comparison Results with the Existing Biomedical System.
,e accuracy of the data obtained from our system was
compared through the data belonging to two men and two
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Figure 4: Sample analogue filtered data obtained from the SEMG circuit during training: (a) Sample results of participant number two,
(b) sample results of participant number six.
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Figure 5: Continued.

Journal of Healthcare Engineering 9



1200
CH3-left BB

Raw data

1000

800

600

M
ea

n 
CH

3-
le

ft 
BB

 as
 μ

V
 ra

w

400

200

0
0 2000 4000

t as millisecond
6000 8000

(a)

250

200

150

100

50

0
0 1000 2000 3000 4000 5000

SE
M

G
 n

oi
se

 as
 u

V

t as millisecond

(b)

Figure 6: Continued.
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Figure 5: Data of other participants obtained from these trainings. (a) Results of participant number one. (b) Results of participant number
three. (c) Results of participant number five. (d) Results of participant number six. (e) Results of participant number seven.
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women with the SEMG device in Karaman State Hospital
(Figure 7).

As shown in Table 3, this procedure was carried out
through the data of 108 measurements in total, obtained
through volunteers being unattached, lifting dumbbells of
5 kg and the maximum weight they could lift isometrically
(1 RM) first in the gym, then in the hospital system for three

times with breaks of 90 seconds. In this procedure, first the
data given from the hospital system were recorded and then
the moving RMS was calculated on the analogue and digital
filter data obtained from the system.

In the system designed as a result of this measurement,
accuracies of 90.95%± 3.35 for the left BB and 90.75%± 3.75
for the right BB were obtained.

(a) (b)

Figure 7: (a) Ameasurement taken in the hospital environment and a photograph of the current biomedical system. (b) A photograph taken
at the gym before training.
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Figure 6: Comparison of the filtering results. (a) SEMG data without the filter. (b) Premeasurement for threshold filter. (c) SEMG signal
with threshold +HW filter. (d) SEMG signal with Kalman filter.

Table 3: Moving RMS Results in Gym and Hospital. Note that “M” denotes the measurement number; “BB” denotes biceps brachii; “S”
denotes system; “H” denotes hospital, “MN” denotes muscle name.

Participants/weight (no./kg)
M MN Type 1/idle 2/idle 3/idle 4/idle 1/5 2/5 3/5 4/5 1/25 2/25 3/15 4/12.5

I
Left BB S 70.69 69.72 51.18 43.82 123.69 129.54 97.54 93.64 914.7 935.98 566.98 547.64

H 67.13 72.31 47.24 45.9 137.42 141.94 108.66 101.05 950.94 1112.53 616.53 604.36

Right BB S 71.4 69.75 49.66 42.45 119.11 127.41 96.86 93.95 960.71 937.69 565.69 515.43
H 69.64 70.51 50.22 43.93 135.57 143.13 107.93 97.14 943.82 1117.15 615.15 545.64

II
Left BB S 69.86 68.84 52.03 43.15 121.82 128.9 95.71 93.8 907.35 934.5 563.5 518.06

H 70.39 69.61 51.76 43.75 138.87 139.69 105.78 101.55 942.14 1116.89 614.89 595.59

Right BB S 69.84 71.34 49.01 46.68 122.96 126.95 96.5 93.61 950.6 932.61 562.61 526.48
H 71.82 67.83 50.25 43.27 136.52 142.8 106.73 102.46 1002.4 1110.94 612.94 598.81

III
Left BB S 69.45 70.89 50.96 46.22 124.61 128.91 97.88 89.07 907.15 934.34 564.34 511.19

H 68.57 69.97 50.24 46.71 138.81 139.69 106.74 105.67 1000.8 1115.11 614.11 583.55

Right BB S 71.64 67.65 52.01 43.55 122.97 129.74 95.38 92.52 948.63 930.36 562.36 539.49
H 68.56 69.63 49.72 44.79 135.94 145.8 107.5 104.28 1000.9 1110.61 612.61 543.35
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3.3. Moving RMS and %MVC Values. During the training,
the volunteers were asked to perform a second training in
order to obtain the moving RMS values given back to the
user as feedback. ,e results are presented in Figure 8 and
Table 4 in terms of ease of investigation.

,us, it can be seen that the system can achieve mini-
mum and maximum values of biopotential changes in
muscles during training as in [66, 67].

Finally, the users were asked to lift 5 kg of dumbbell and
the maximum weight they could lift. ,us, the %MVC was
measured to be used in performance feedback through the
obtained moving RMS values. ,e results obtained are
presented in Table 5.

If Table 5 is analysed, it can be seen that the system can
measure efficiency during training with the success rate of
96.87%± 2.74 based on %MVC.

When data obtained from the designed SEMG system
are compared with data obtained from the systems used
in the biomedical field, it is seen that it has 90.85%

accuracy. As digitally filtered data are compared, it is
seen that TCHW method produces better results com-
pared to Kalman filter. TCHW can soften data as pro-
cessable and can also completely filter out unwanted
signals between muscle contractions. It also eliminates
the distortions in data expressed as artifact. Kalman filter
appears to soften the data but not to be able to completely
filter the signal between muscle contractions. Moreover,
it is seen that the system can scale the strength obtained
as moving RMS during the training on the basis of %
MVC with the success rate of 96.87% ± 2.74 in terms of
efficiency. ,is allows the data obtained to be used in the
simultaneous performance monitoring and analysis of
athletes.

4. Conclusion

,anks to this system, it is thought that athletes will be
able to examine their performances instantly for each

Table 4: Moving RMS results in gym as training feedback.

Muscles and participants Rep1 Rep2 Rep3 Rep4 Rep5 Rep6 Rep7 Rep8
LBB 1 862 798 738 683 782 556 715 741
LBB 2 845 779 852 786 590 812 796 766
LBB 3 757 725 721 560 712 699 645 736
LBB 4 810 841 840 804 828 832 791 830
LBB 5 704 802 651 670 604 354 558 701
LBB 6 387 413 395 354 367 403 381 370
LBB 7 316 328 372 346 377 302 328 319
RBB 1 876 833 811 790 815 846 704 653
RBB 2 823 817 847 834 649 747 621 770
RBB 3 821 793 766 696 566 884 685 785
RBB 4 832 853 856 821 819 808 809 815
RBB 5 815 763 750 753 718 707 725 714
RBB 6 389 422 418 350 371 402 361 378
RBB 7 331 380 365 351 372 348 314 341
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Figure 8: ADBC results of participants.
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training and make their training more efficient. It is
possible to create intelligent training corners by using the
system in gyms. It is thought that the system can easily be
used by athletes, trainers, kinesiologists, and re-
habilitation experts in bodybuilding trainings and re-
habilitation processes. It is possible to improve system
features by increasing the number of channels, further
reducing the PCB size and adding extra sensor. It can be
possible to follow more complicated movements (deadlift,
barbell row, etc.) by increasing the number of channels. By
making the size of system smaller, it can be possible to
place it into textile product. In addition, by adding the
pulse oximetry sensor to the system, oxygen consumption
can be observed during the training. In our future studies, it
is being thought of supporting the system with an image
processing system in order to determine movement dis-
tortions in addition to use it for monitoring training
performance and efficiency.
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