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Illuminating spatial pharmacology with in situ drug
imaging
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In pharmacology, absorption, distribution, metabolism,
excretion (ADME) describes in vivo drug actions. Typ-
ically, distribution is measured as organ-specific drug
concentrations, with the notion that drugs could have vari-
ous tendencies to enter and retain in different organs. Such
variability can stem from on- and off-target engagement,
chemical property of the drug (size, charge, polarity, etc.),
or the property of the organ (lipid content, vasculature,
blood-brain barrier, etc.).1 While the inter-organ difference
in drug distribution is well-recognized, cellular diversity of
drug engagement within an organ is not easily accessible
with conventional pharmacokinetics (PK) and pharmaco-
dynamics (PD) studies. This knowledge gap is becoming
increasingly important as we begin to understand how
single-cell level heterogeneity could significantly affect
organ physiology and pathology.2
A barrier to tracking drug engagement in vivo across

tissue compartments and cell types is the lack of tools to
visualize drug molecules in situ. Conventional bulk tissue
analysis loses spatial and cellular information. Although
it retains spatial information, positron emission tomog-
raphy generally lacks sufficient resolution to resolve cell
type identities.3 Fluorescence-based imaging has been
widely used with antibodies or messenger ribonucleic acid
(mRNA) probes to visualize endogenous biomolecules, but
such tags are too bulky to fit small molecule drugs. To cir-
cumvent these barriers, we turned to copper(I)-catalyzed
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azide-alkyne cycloaddition (CuAAC) click reaction. By
attaching a small, chemically inert alkyne handle to the
drug, one can potentially image the drug with an azide
fluorescence label after in vivo administration and subse-
quent click reactions. Similar strategies have been widely
successful in chemoproteomics efforts to profile drug tar-
gets in cell culture and tissue lysates.4 However, direct in
situ drug labeling in mammalian tissue has not been feasi-
ble due to potential side reactions and low signal-to-noise
ratio.
In the recent report by Pang et al.,5 we developed

Clearing Assisted Tissue click CHemistry (CATCH) by
combining tissue clearing with in situ click chemistry.
This allowed us to visualize covalent drug binding at sub-
cellular resolution directly. Compatible with mainstream
histological methods such as immunostaining and in situ
hybridization, CATCH can identify where and which
cell types within an organ are quantitatively bound by
a specific drug, revealing heterogeneous intraorgan drug
engagement.
For example, we found: (1) PF7845 and BIA10-2474, two

fatty acid amide hydrolase (FAAH) inhibitors that primar-
ily targeted neurons in the brain, whereas the monoamine
oxidase inhibitor pargyline mostly bound blood vessels.
(2) The less specific FAAH inhibitor BIA10-2474 showed
off-target binding in a small nucleus in the pons. (3) At the
sub-saturating dose, PF7845 binding was constrained by
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vasculature proximity in the hippocampus. (4) At ascend-
ing doses, the monoacylglycerol lipase inhibitor MJN110
spread from the axonal to the soma compartment through
off-target binding to FAAH. These findings demonstrate
that CATCH can unveil expected and unexpected drug
binding across cell types and tissue compartments in
a dose-dependent manner, which can be used to guide
drug candidate optimizations for maximizing therapeutic
windows.
We are witnessing the rapid development of single-cell

RNA sequencing, proteomics, and spatial transcriptomics
technologies that transform our understanding of cellular
heterogeneity across organ systems.2,6,7 The spatial infor-
mation on drug engagement revealed by CATCH can be
registered onto the ever-growing multiomics database,8
conceptually paving the way for spatially-resolved phar-
macology, which can bring holistic, unbiased assessment
of drug efficacy, and toxicity in vivo.
In recent years, covalent kinase inhibitors targeting

Bruton’s tyrosine kinase (BTK), epidermal growth factor
receptor (EGFR), and mutant Kirsten rat sarcoma virus
(KRAS-G12C) have had tremendous successes in treating
hematological malignancies and solid tumors.9 Yet, ques-
tions remain on improving their efficacywhileminimizing
toxicity by optimizing tissue selectivity,10 especially for
the central nervous system. CATCH has the potential to
greatly accelerate this process by revealing the drug’s cellu-
lar engagement in both “wanted” and “unwanted” organs,
thereby guiding lead selection and modification.
In conclusion, we foresee CATCH can bridge the gap

and bring pharmacology study to the exciting single-cell
multiomics era. The concepts and strategies in CATCH
can be broadly utilized in future basic chemical biology
research and benefit clinical candidate development.
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